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EDITORIAL COMMENT
Harnessing Genomics to Predict and
Prevent Anthracycline-Associated
Cardiotoxicity*

Yadav Sapkota, PHD
A nthracyclines, highly potent chemotherapy
drugs used in approximately 60% of pediatric
patients with solid and hematological malig-

nancies, have contributed to an improvement in the
overall 5-year pediatric cancer survival rate from
58% in the 1970s to 85% today (cancer.gov). Soon
after the introduction of anthracyclines into pediatric
cancer treatment protocols, the potential for cardio-
toxicity was recognized (1), with the risk being
dose-dependent, particularly when doses exceed
250 mg/m2 (2). Acute cardiotoxicity can manifest as a
reduction in left ventricular ejection fraction (LVEF),
arrhythmia, or symptomatic heart failure, potentially
severe enough to warrant heart transplantation (3).
Studies of long-term survivors of childhood cancer
have reported a risk of anthracycline-associated cardi-
otoxicity to be 15-fold higher compared with sibling
controls (4), with the cumulative incidence of
heart failure to be 7% to 10% at 30 years postexposure
(2). Although the association between cardiotoxic
anthracycline exposure and cardiomyopathy risk is
well-described in childhood cancer survivors, cumula-
tive anthracycline dose alone does not adequately
explain individual risk, with contributions of other
risk factors, including younger age at diagnosis of
primary cancer, female sex, chest radiation, and
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presence of cardiovascular risk factors, such as dia-
betes, hypertension, and obesity (5).

Several studies have suggested a genetic contri-
bution to anthracycline-associated cardiotoxicity
susceptibility. Initial efforts focused on in-
vestigations of candidate genes, resulting in identifi-
cation of more than 40 single nucleotide
polymorphisms (SNPs) associated with cardiotoxicity,
although only a few have been replicated in inde-
pendent samples (6). This limited success is likely
due to inconsistency in ascertainment and criteria for
defining cardiotoxicity, as well as different patient
characteristics, reduced study power associated with
small sample sizes, and failure to account for multiple
testing and population stratification. To date, 2
genome-wide association studies (GWAS) for
anthracycline-associated cardiotoxicity among child-
hood cancer survivors have been conducted, but
neither has identified genome-wide significant asso-
ciations. However, they detected variants with p
values that approached genome-wide significance,
including a nonsynonymous coding SNP, rs2229774,
in RARG that was replicated in both European and
non-European samples, and an SNP (rs1786814) in
CELF4 that was also independently replicated.
Although these studies have provided important in-
formation about the pathophysiology of
anthracycline-associated cardiotoxicity, they exam-
ined only common variants (occurring with more than
5% allele frequency in populations), which may limit
our understanding of the full spectrum of genetic
variation influencing anthracycline-associated
cardiotoxicity.

In this issue of JACC: CardioOncology, Chaix et al.
(7) investigated the role of rare and low-frequency
variants in anthracycline-associated cardiotoxicity
among childhood cancer survivors. Whole-exome
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sequencing was performed in 289 anthracycline-
exposed survivors from the Preventing Cardiac
Sequelae in Pediatric Cancer Survivors study who
were unselected for race/ethnicity. Using a nested
case-control design and extreme phenotypes, the
analysis compared 183 who received cumulative
anthracycline dose of #250 mg/m2 and experienced
cardiotoxicity (defined as LVEF #50% or 10% LVEF
decline to #55% from a prior echocardiogram, or low
LVEF #55%) with 106 who did not develop cardiac
dysfunction (LVEF >55%) despite their exposure to
>250 mg/m2 of anthracycline. The authors tested the
joint effects of rare and low-frequency variants
within each gene on the risk of anthracycline-
associated cardiotoxicity using the Burden Test,
Sequence Kernel Association Test (SKAT) and SKAT-
Optimized. Although no gene achieved exome-wide
statistical significance after accounting for multiple
testing, 28 genes showed nominal significance
(p < 0.001) in at least 2 of the 3 gene-based tests and
3 additional biologically relevant genes exhibited
p < 0.001 in at least 1 test. It should be noted that
these 3 gene-based tests are not completely inde-
pendent of each other and their results are correlated
to some degree except in extreme scenarios. The au-
thors observed a significantly lower burden of vari-
ants (odds ratio: 0.09; p ¼ 3.98 � 10–15) in these 31
genes among survivors with (42.6%) compared with
those without (89.6%) cardiac dysfunction, which is
expected from a post hoc analysis of nominally sig-
nificant set of genes. Among Caucasian survivors
alone, the variant burden was persistently lower
(odds ratio: 0.33; p ¼ 0.019), although the burden in
survivors with cardiac dysfunction increased sub-
stantially (72%) from that observed in an analysis
including survivors of all ethnicities. This suggests
the estimate of variant burden among all survivors
was likely influenced by population stratification and
thus underscores the need and importance of a
genetically homogeneous population in gene discov-
ery efforts.

Of the 31 genes, 5 (ZNF827, ELAC2, SEC62, USP42,
and PIK3R2), based on biological plausibility, were
considered for functional analysis using 2 published
human induced pluripotent stem cell-derived
cardiomyocyte (hiPSC-CM) lines generated from 2
healthy male donors. Among these, ZNF827, ELAC2,
and PIK3R2 were significantly upregulated after 24-h
treatment with doxorubicin compared with dimethyl
sulfoxide. Considering availability of targeted in-
hibitors, ZNF827 and PIK3R2 were further prioritized
for their potential roles in cardioprotection against
anthracycline-associated cardiotoxicity. The authors
found that TGX-221 (PI3KR2 inhibitor) and metformin
(ZNF827 inhibitor) were effective at blocking
doxorubicin-induced decrease in cardiomyocyte
viability. Both metformin and TGX-221 were superior
or comparable in their cardioprotective effect
compared with the nontargeted inhibitor, dexrazox-
ane, indicating pharmacologic disruption of pathways
associated with ZNF827 and PIK3R2 provided
cardioprotection against doxorubicin. The lower
variant burden in PIK3R2 with respect to
anthracycline-associated cardiotoxicity was repli-
cated in an independent sample of survivors (odds
ratio: 0.196; p ¼ 0.038). Although these results indi-
rectly support the observed cardioprotective effect of
variants in these pathways, additional studies using
patient-derived hiPSC-CMs with and without the
variant(s) of interest are needed to confirm these
observations.

The few studies that assessed potential utility of
genetic variants in cardiotoxicity risk stratification
found the area under the receiver operating charac-
teristic curve (AUC) improved from 0.68 to 0.69 to
0.79 to 0.87 when genetic variants were added to the
risk-prediction model including clinical risk factors
alone (8). Consistent with these findings, Chaix et al.
(7) also showed improvement in the AUC of the risk-
prediction model from 0.59 to 0.72 when genetic
risk factors were added to the clinical model.
Although these results are encouraging, none of the
prediction models that included genetic variants
were validated in independent external samples, and
selecting associated variants followed by evaluating
their contribution to prediction in the same dataset
does not prove their utility. Further studies are
needed to independently assess their potential utility
in clinical risk stratification.

Considering the limited yield of candidate-gene
studies, an agnostic approach such as GWAS may be
more suitable to discover novel genetic determinants
of anthracycline-associated cardiotoxicity. Genotyp-
ing arrays allow assessment only of common genetic
variation, and therefore, future GWASs for
anthracycline-associated cardiotoxicity would benefit
from whole genome sequencing, which is the only
single platform that can fully catalog all genomic
variation. Limited sample size is a challenge for
genome-wide interrogations for studies on adverse
drug effects such as those of anthracyclines because
of the need for well-phenotyped homogeneous pop-
ulations. Both national and international collabora-
tive research efforts are required to increase the
sample size and achieve the needed study power and
statistical rigor to detect and replicate genetic vari-
ants robustly associated with anthracycline-
associated cardiotoxicity.
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Most genetic studies assessing anthracycline
exposure and cardiac dysfunction have been per-
formed in European American survivors, although
African American (AA) survivors have a significantly
higher prevalence of cardiac dysfunction (9). Because
of increased genetic diversity in AAs, they may harbor
population-specific genetic variants that cannot be
found by studies in populations of European ancestry
alone. Moreover, without studies focused on AA
survivors, we risk excluding them from advances in
personalized genomic medicine and clinical care,
potentially increasing racial disparity. A recent study
demonstrated that patient-derived hiPSC-CMs are
efficient predictors of anthracycline-associated car-
diotoxicity (10). The hiPSC-CM model represents the
clear genetic background of an individual removing
the effect of environmental factors, such as age, car-
diotoxicity, and drugs, and is highly amenable to
genetic modification with CRISPR/Cas9. Thus, the
patient-specific hiPSC-CMs can be used to investigate
molecular mechanisms underlying identified genetic
associations that may elucidate novel mechanistic
insights and targets for cardioprotection. Together,
genomic studies offer the potential to advance un-
derstanding of the pathophysiology of cardiac
dysfunction, which could inform new approaches to
predict, prevent, and treat this treatment-related
cardiotoxicity.
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