Table 3.
Accuracy Measure | Dataset | Clinical Model | Genetic Model | Combined Clinical and Genetic Model |
---|---|---|---|---|
AUC | Training | 0.9990 ± 0.0026 | 0.8996 ± 0.0216 | 0.9923 ± 0.0063 |
Testing | 0.5896 ± 0.0431 | 0.7133 ± 0.042 | 0.7156 ± 0.0421 | |
Overall | 0.7403 ± 0.0273 | 0.7819 ± 0.0262 | 0.8174 ± 0.0267 | |
Sn | Training | 0.9980 ± 0.0053 | 0.8232 ± 0.0457 | 0.9846 ± 0.0127 |
Testing | 0.4317 ± 0.0885 | 0.5552 ± 0.0827 | 0.5254 ± 0.0836 | |
Overall | 0.6401 ± 0.056 | 0.6538 ± 0.054 | 0.6944 ± 0.0528 | |
Sp | Training | 1.0000 ± 0.0004 | 0.9760 ± 0.0168 | 0.9999 ± 0.0008 |
Testing | 0.7475 ± 0.0682 | 0.8715 ± 0.0513 | 0.9057 ± 0.047 | |
Overall | 0.8404 ± 0.0431 | 0.9100 ± 0.035 | 0.9404 ± 0.0297 | |
PPV | Training | 1.0000 ± 0.0005 | 0.9609 ± 0.0254 | 0.9999 ± 0.0011 |
Testing | 0.4885 ± 0.0749 | 0.7259 ± 0.0820 | 0.7623 ± 0.0942 | |
Overall | 0.6767 ± 0.0473 | 0.8124 ± 0.0544 | 0.8498 ± 0.0595 | |
NPV | Training | 0.9986 ± 0.0035 | 0.8893 ± 0.0253 | 0.9896 ± 0.0084 |
Testing | 0.7058 ± 0.0384 | 0.7684 ± 0.0376 | 0.777 ± 0.0365 | |
Overall | 0.8135 ± 0.0243 | 0.8129 ± 0.0239 | 0.8552 ± 0.0231 | |
MC | Training | 0.0008 ± 0.0021 | 0.0864 ± 0.0182 | 0.0063 ± 0.0051 |
Testing | 0.3652 ± 0.0423 | 0.2465 ± 0.0385 | 0.2297 ± 0.0373 | |
Overall | 0.2311 ± 0.0268 | 0.1876 ± 0.0241 | 0.1475 ± 0.0237 | |
FPR | Training | 0.0000 ± 0.0002 | 0.0141 ± 0.0098 | 0.0000 ± 0.0005 |
Testing | 0.1632 ± 0.0457 | 0.0807 ± 0.0325 | 0.0610 ± 0.0308 | |
Overall | 0.1032 ± 0.0289 | 0.0562 ± 0.0220 | 0.0386 ± 0.0195 | |
FNR | Training | 0.0008 ± 0.0021 | 0.0723 ± 0.0185 | 0.0063 ± 0.0051 |
Testing | 0.2020 ± 0.0365 | 0.1658 ± 0.0333 | 0.1687 ± 0.0334 | |
Overall | 0.1279 ± 0.0231 | 0.1314 ± 0.0215 | 0.1089 ± 0.0211 |
Values are mean ± SD.
AUC = area under the curve; FNR = false negative rate; FPR = false positive rate; MC = misclassification; NPV = negative predictive value; PPV = positive predictive value; Sn = sensitivity; Sp = specificity.