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I brutinib, an oral irreversible Bruton’s tyrosine ki-
nase inhibitor, is rapidly becoming the treatment
of choice for patients with chronic lymphocytic

leukemia, Waldenström macroglobulinemia, mantle
cell lymphoma, and marginal zone lymphoma, as
well as chronic graft-versus-host disease (1). While
generally well tolerated, ibrutinib is associated with
bleeding and increased risk of infection. A recent
meta-analysis of randomized clinical trials found
that ibrutinib recipients are at w4-fold increased
risk for developing atrial fibrillation (AF) as compared
with other cancer therapeutics (1,2). In 2002, a study
assessed the effects of tyrosine kinase inhibitors on
the cardiac sodium current (INa) and showed that
phosphorylation of this pathway plays an important
role in regulating the current in rabbit ventricular car-
diomyocytes (3). Furthermore, tyrosine kinase inhib-
itors not only reversibly inhibited INa, but they also
significantly prolonged the time course of sodium
channel recovery from inactivation. Recent studies
have also shown that calmodulin kinase II and pro-
tein kinase C mediate the effect of increased intracel-
lular calcium to enhance the late INa-L in
cardiomyocytes (4,5). Collectively, these studies sup-
port the hypothesis that enhanced INa-L in part medi-
ates ibrutinib-associated AF. Another potential
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mechanism by which ibrutinib may increase AF risk
is by regulating the phosphoinositide 3-kinase–Akt
pathway, important for stress-induced cardiac pro-
tection (6) with a recent report showing that both
Bruton tyrosine kinase and related kinases reduced
phosphoinositide 3-kinase–Akt activity in a trans-
genic mouse model associated with AF (7,8).

Although animal and clinical studies have reported
an association between ibrutinib and development of
ventricular arrhythmias and sudden cardiac death,
the underlying molecular mechanisms are poorly
understood (3,4). Importantly, the role of age and
hypertension, known risk factors for the development
of AF, in ibrutinib-induced ventricular arrhythmias is
unknown. In this issue of JACC: CardioOncology, Du
et al. (9) hypothesized that ibrutinib increases sus-
ceptibility to ventricular arrhythmias by calcium
cycling dysfunction and membrane repolarization
dysregulation in hearts with advanced age and car-
diomyopathy. The elegant set of studies using state-
of-the-art mapping techniques examined the acute
effects of ibrutinib on ventricular arrhythmia sus-
ceptibility, cytosolic calcium dynamics, and mem-
brane electrophysiology in young (10 to 14 weeks) and
old (10 to 14 months) spontaneous hypertensive rats
(SHRs). The investigators showed that acute treat-
ment with ibrutinib failed to induce ventricular
fibrillation in young SHRs but did so in old SHR hearts
with enhanced action potential duration (APD) alter-
nans and APD spatial discordance, longer calcium
transient duration 50, lower calcium amplitude
alternans ratio, and shorter time-to-peak calcium
amplitude. In contrast, ibrutinib treatment in young
SHRs failed to alter calcium and APD dynamics.

The study findings are novel, provide insights into
the underlying molecular mechanisms by which ibru-
tinib increases susceptibility to ventricular arrhyth-
mias and may have important clinical implications for
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patients treated with this Bruton’s tyrosine kinase in-
hibitor for cancer. This is the first study to show that
acute treatment with ibrutinib enhances spatially
discordant APD alternans, a recognized risk factor for
arrhythmias and sudden cardiac death, in old SHRs but
not in the young. Spatially discordant alternans is
particularly arrhythmogenic as it likely converts
standard repolarization heterogeneity to become
“pathological” creating conduction block and func-
tional re-entry for ventricular fibrillation. Further-
more, a longer calcium transient duration 50 suggests
abnormalities in ryanodine receptor 2 activity and a
shorter time-to-peak implicates calcium overload and
generation of delayed afterdepolarizations, respec-
tively. However, Du et al. (9) showed no changes in the
phosphorylation and expression of ryanodine receptor
2, phospholamban, SERCA2a, and other calcium
handling proteins. This may in part relate to acute
treatment with ibrutinib as chronic treatment en-
hances calmodulin kinase II expression and phos-
phorylation of ryanodine receptor 2 (10). Thus, the
study findings implicate mechanisms other than
phosphorylation of calcium regulatory proteins by
which acute ibrutinib treatment induces ventricular
arrhythmias.

Adenosine monophosphate-activated protein ki-
nase (AMPK) is a potential pathway by which acute
ibrutinib treatment may mediate dysregulation of
calcium handling proteins as it activates Akt under
metabolic stress and studies have shown that ibru-
tinib reduces phosphoinositide 3-kinase–Akt activity
in cardiomyocytes (8,11). However, Du et al. (9)
showed that acute ibrutinib treatment did not
change the expression and phosphorylation of
AMPK in old SHR hearts. Whereas this may in part
relate to reduced AMPK reserve in old SHRs, it
is also possible that changes in AMPK involve
translocation between subcellular compartments,
which is difficult to assess experimentally. Thus,
we cannot completely rule out the possibility of
AMPK-Akt pathway involvement in mediating
ibrutinib-induced changes in calcium handling pro-
teins. Nonetheless, the electrophysiological mecha-
nisms by which both acute and chronic ibrutinib
treatment alters calcium transients and dynamics
and predisposes to ventricular arrhythmias remains
unclear and requires further investigation. Under-
standing the underlying molecular mechanisms by
which ibrutinib predisposes individual patients to
increased risk of ventricular arrhythmias is not only
important for risk stratification but may also affect
their management as the proarrhythmic effects are
potentially life-threatening.
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