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Abstract

Motivation: One major goal of single-cell RNA sequencing (scRNAseq) experiments is to identify novel cell types.
With increasingly large scRNAseq datasets, unsupervised clustering methods can now produce detailed catalogues
of transcriptionally distinct groups of cells in a sample. However, the interpretation of these clusters is challenging
for both technical and biological reasons. Popular clustering algorithms are sensitive to parameter choices, and can
produce different clustering solutions with even small changes in the number of principal components used, the k
nearest neighbor and the resolution parameters, among others.

Results: Here, we present a set of tools to evaluate cluster stability by subsampling, which can guide parameter
choice and aid in biological interpretation. The R package scclusteval and the accompanying Snakemake workflow
implement all steps of the pipeline: subsampling the cells, repeating the clustering with Seurat and estimation of
cluster stability using the Jaccard similarity index and providing rich visualizations.

Availabilityand implementation: R package scclusteval: https://github.com/crazyhottommy/scclusteval Snakemake
workflow: https://github.com/crazyhottommy/pyflow_seuratv3_parameter Tutorial: https://crazyhottommy.github.io/
EvaluateSingleCellClustering/.

Contact: tsackton@g.harvard.edu or tangming2005@gmail.com

1 Introduction

One of the most powerful applications of single-cell RNAseq is to
define cell types based on the transcriptional profiles of the cells. A
number of tools such as Seurat (Macosko et al., 2015), scanpy (Wolf
et al., 2018) and SINCERA (Guo et al., 2015) have implemented
unsupervised clustering methods for single-cell RNAseq data.
Although benchmarking studies have examined the performance of
different clustering algorithms (Duò et al., 2018), less attention has
been given to optimizing clustering algorithms for a particular
dataset.

Two main questions exist in this perspective. First, given a set of
selected parameters, how robust is each cluster? Second, what is the
best way to select parameters for a specific dataset? A partial way to
address this problem is clustree (Zappia and Oshlack, 2018), which
plots the clusters as a tree structure to visualize the relationship
among clusters with different resolutions and aid in the determin-
ation of cluster numbers and appropriate parameters. However,
when the cluster number is large, the tree becomes hard to interpret.
Furthermore, it does not provide any quantitative assessment and
requires manual inspections of the trees. While methods have begun

to approach the problem, there remains an urgent need for a data-
driven evaluation of the cluster stability.

2 Materials and methods

To address part of the challenges of evaluating the clustering results,
we deployed a re-sampling method in which we re-sample a subset
of the cells from the population and repeat clustering. The cell iden-
tity is recorded for each re-sampling, and for each cluster, a Jaccard
index is calculated to evaluate cluster similarity before and after re-
clustering. We then repeat the re-clustering for a number of times
and use the mean or median of the Jaccard indices as a metric to
evaluate the stability of the cluster. While the theory behind this
method has been extensively developed (Hennig, 2007; Lun, 2019),
practical implementations are lacking.

We implemented a Snakemake (Köster and Rahmann, 2012)
workflow to perform the subsampling and re-clustering steps while
taking advantage of multiple CPUs available in a high-performance
computing cluster. In addition, we developed a new R package
scclusteval to aid the analysis and visualization of the output from
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the Snakemake workflow. To facilitate the reproducibility of the
workflow, we have created a Docker container for the
Snakemake workflow which includes support for Seurat V3. The
Snakemake workflow generates two rds objects: one contains the
cell identity (cluster id) information before and after the reclus-
tering for the subsampled data and the other contains the cell
identity information for the full dataset for various combinations
of parameters.

The accompanying R package relies extensively on functions
from the tidyverse packages. The fundamental object the scclusteval
package interacts with is a tibble in a tidy format. The input of the R
package is obtained directly from the Snakemake pipeline output.

To explore the cell identity changes across different parameters
for the full dataset, one can use the PairWiseJaccardSetsHeatmap
function to visualize the pairwise Jaccard index across clusters
(Fig. 1A). Alternatively, one can use the ClusterIdentityChordPlot
function to visualize how the cells switch from one cluster to a dif-
ferent cluster (Fig. 1B).

As a rule of thumb, clusters with a mean/median stability score
less than 0.6 should be considered unstable. Scores between 0.6 and
0.75 indicate that the cluster is measuring a pattern in the data.
Clusters with stability scores greater than 0.85 are highly stable
(Zumel and Mount, 2014). For each subset of cells, we calculate
pairwise Jaccard index of each cluster before and after reclustering
and assign the highest Jaccard as the stability score for each cluster.
The distribution of the Jaccard indices across subsamples measures
the robustness of the cluster. If a cluster is robust and stable, random

subsetting and reclustering will keep the cell identities within the
same cluster. The heart of the visualization is the raincloud plot
(Allen et al., 2019). The plot can be created using the
JaccardRainCloudPlot function. The raincloud plot gives an intui-
tive sense of the stability of clusters (Fig. 1C). Because increasing
resolution always generates more clusters, we also use the percent-
age of cells in the stable clusters to evaluate a particular clustering.
We want to maximize the number of clusters but also want the ma-
jority of the cells to be in stable clusters. The
CalculatePercentCellInStable function can be used to calculate the
percentage of cells in the stable clusters. Finally, a scatter plot to ex-
plore the relationship between the clustering parameters and the
number of total clusters, total number of stable clusters and percent-
age of cells in stable clusters can be made using the
ParameterSetScatterPlot function (Fig. 1D).

To demonstrate the usage of the scclusteval package, we ana-
lyzed two example public datasets: a mixture control dataset (Tian
et al., 2019) and a 5k PBMC dataset. These analyses are available at
website https://crazyhottommy.github.io/
EvaluateSingleCellClustering/index.htm, powered by the workflowr
(Blischak et al., 2019) R package. All the processed datasets can be
downloaded from https://osf.io/rfbcg/.

3. Discussion

Identifying cell clusters in a single-cell experiments is challenging be-
cause there typically is not one correct clustering for any dataset,
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Fig. 1. Visualizations methods from the scclusteval R package. (A) A pairwise Jaccard index heatmap to visualize the clusters’ relationship between two sets of different cluster-

ing parameters for the full dataset. X-axis represents the clusters from parameter set 2, y-axis represents the clusters from parameter set 1. In this example, cluster 0 in the y-

axis split into cluster 0 and 5 in the x-axis; cluster 4 in the y-axis split into cluster 4 and 6 in the x-axis. (B) A cluster chord diagram showing cell identity switching between

two different clustering parameters with additional information of the cluster size compared to (A). (C) A Jaccard Raincloud plot showing the stability of each cluster. A box-

plot with a half-side violin plot showing the distribution of the Jaccard indices (highest Jaccard index used for matching clusters for each subsample) before and after re-cluster-

ing across 100 subsamples. The dotted lines are Jaccard cutoffs of 0.6 and 0.75. (D) A line plot showing the relationship between different parameters, and the total number of

clusters (blue line) and number of stable clusters (red line). The x-axis represents the k parameter, the y-axis represents the number of clusters. The columns are split by the

number of PCs and rows are split by different resolutions.
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and no principled way to select a single best clustering. There are
usually cells in different cell cycle stages in typical cell cultures, and
cells with different ploidies in cancer cell lines. Moreover, the con-

cept of cell identity is evolving with the advance of the scRNAseq
technology (Morris, 2019; Xia and Yanai, 2019). The end cluster

results need to be confirmed by our understanding of the biology,
and making sense of the novel clusters/cell-types/cell states is import-
ant. Nevertheless, our new Snakemake workflow and R package

provide valuable guidance in choosing parameters for clustering and
facilitate the biological interpretation of the clusters derived from

scRNAseq data.
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