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A B S T R A C T   

Recent studies demonstrate that air quality improved during the coronavirus pandemic due to the imposition of 
social lockdowns. We investigate the impact of COVID-19 on air pollution in the two largest cities in Taiwan, 
which were not subject to economic or mobility restrictions. Using a difference-in-differences approach and real- 
time data on air quality and transportation, we estimate that anthropogenic air pollution from local sources 
increased during working days and decreased during non-working days during the COVID-19 pandemic. This led 
to a 3–7 percent increase in CO, O3, SO2, PM10 and PM2.5. We demonstrate that the increase in air pollution 
resulted from a shift in preferred mode of travel away from public transportation and towards personal motor 
vehicles during working days. In particular, metro and shared bicycle usage decreased between 8 and 18 percent, 
on average, while automobile and scooter use increased between 11 and 21 percent during working days. Similar 
COVID-19 prevention behaviors in regions or countries emerging from lockdowns could likewise result in an 
increase in air pollution. Taking action to reduce the transmissibility of COVID-19 on metro cars, trains and buses 
could help policymakers limit the substitution of personal motor vehicles for public transit, and mitigate in
creases in air pollution when lifting mobility restrictions.   

1. Introduction 

In order to reduce the spread of the SARS-CoV-2 virus that causes 
COVID-19, many regions and countries have implemented significant 
restrictions on business operations and the mobility of consumers 
(Cheng et al., 2020a). For example, stay-at-home orders and social 
distancing reduce travel and provide barriers to employment and the 
acquisition of consumer goods. The closure of restaurants, retail estab
lishments, and non-essential businesses likewise limit movement and 
reduce economic output. There is significant interest in determining 
how these unprecedented restrictions and the associated behavioral 
responses affected air quality. 

Studies of changes in air pollution initially focused on the strict 
lockdown of Wuhan and mobility restrictions put in place throughout 
China thereafter. For example, Xu et al. (2020), Wang and Su (2020), Shi 
and Brasseur (2020), Cole et al. (2020), Fan et al. (2020), and Almond 
et al. (2020) all find that lockdowns and restrictions on economic ac
tivities in the city of Wuhan and other regions of China significantly 

reduced air pollution. Shi and Brasseur (2020) calculates that surface 
PM2.5 and NO2 levels decreased by 35 % and 60 %, respectively, in 
northern China during the pandemic, while Wang et al. (2021) finds 
reductions in six ambient air pollutants in the Beijing-Tianjin-Hebei 
region and Yangtze River Delta.1 Most studies also find that O3 
increased by as much as a factor of 2 due to reductions in nitrogen ox
ides. Despite the offsetting effects of these pollutants, both He et al. 
(2020) and Chen et al. (2020) estimate that the improvement in China’s 
air quality could lead to as many as 36,000 fewer premature deaths per 
month. 

Investigations of the association between COVID-19 restrictions and 
air pollution in Europe (Baldasano, 2020; Menut et al., 2020; Bauwens 
et al., 2020; Collivignarelli et al., 2020), Egypt (Mostafa et al., 2021), 
South Korea (Bauwens et al., 2020) and India (Mahato et al., 2020), are 
generally consistent with those from China. For example, Menut et al. 
(2020) estimates reductions in NO2 pollution across locations in Western 
Europe of 30 %–50 %, and reductions in PM10 and PM2.5 of 5 %–15 %. 
Mahato et al. (2020) finds a 53 % drop in NO2 and reductions of 60 % 
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1 Hua et al. (2021) note that while the lockdown in the Beijing area resulted in large reductions in NO2 and PM2.5, a large fraction of the surface concentrations of 
these pollutants was offset by meteorology, allowing haze pollution in Beijing to persist. 
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and 39 % in PM10 and PM2.5, respectively, during the lockdown in Delhi, 
India. In addition, Mahato et al. (2020) finds concomitant increases in 
ground-level ozone in Delhi, as does Menut et al. (2020) in Western 
Europe. 

Estimates from U.S. data are more mixed than in other countries. 
Brodeur et al. (2020) determines that stay-at-home orders reduced levels 
of PM2.5 by 25 %, while Bauwens et al. (2020) reports reductions of NO2 
in the northeastern cities of New York, Philadelphia, and Washington D. 
C. of 21 %–28 %. In contrast, Bekbulat et al. (2020) does not find that 
PM2.5 and O3 concentrations in the U.S. fell outside the normal range of 
statistical variability. Zangari et al. (2020) likewise reports no signifi
cant differences in PM2.5 and NO2 during the 2020 New York City 
shutdown relative to the same weeks in 2015–2019. 

Finally, Dang and Trong (2020) compiles data from 178 different 
countries and confirms the finding from most individual country or city 
studies that lockdowns decreased air pollution. They also conclude that 
decreases in mobility following the lockdowns likely reduced air 
pollution. Elsaid et al. (2021) conducts a similar worldwide review, and 
finds that lockdowns dramatically decreased COX, NOX, SOX and PM 
emissions, but increased O3 due to reductions in nitrogen emissions. 

While studies hypothesize reductions in industrial production, 
transportation and other human activities are responsible for the lower 
levels of ambient air pollution that occurred during COVID-19 lock
downs, they typically do not make a direct link to specific activities. 
Exceptions include Sahraei et al. (2021) which shows that in 12 coun
tries with lockdowns there was a concurrent decrease in public transit 
usage, and Dang and Trong (2020), which used Google Mobility Reports 
to show lower mobility in locations where government policies were 
more stringent. Likewise, Zeng and Bao (2021) finds that much of the 
decrease in PM10, PM2.5 and NO2 that occurred during lockdowns was 
due to lower levels of human migration. Hua et al. (2021) shows that 
NO2 emissions in Beijing gradually increased as traffic volumes esca
lated following the start of the lockdown and Cicala et al. (2020) pre
dicted a decline in CO2 in a simulation study based on decreased vehicle 
traffic in the U.S. 

We contribute to this literature by examining changes in air pollution 
in Taipei and New Taipei City, the two largest cities in Taiwan, which 
were not subject to the strict lockdowns imposed in many other major 
cities. As a result, we are able to examine how air quality changed during 
the early stages of the pandemic due to residents’ attempts to avoid a 
COVID-19 infection. Using a difference-in-differences framework and 
real-time data on both air pollution and transportation, we draw a direct 
link between higher pollution levels and changes in transportation 
patterns that we ascribe to the COVID-19 prevention behavior of 
residents. 

2. Materials and methods 

2.1. Data 

We compiled data from several administrative sources in order to 
conduct our analysis. We collected data on confirmed cases of COVID-19 
from the Taiwan Center for Disease Control (CDC); several air quality 
measures from the Environmental Protection Agency (EPA); metro 
usage from the Taipei Rapid Transit Corporation; shared bicycle usage 
from the Taipei City Government, and motor vehicle traffic data from 
the Ministry of Transportation and Communication.2 Our study period is 
January 1 - March 31, 2017–2020. 

2.1.1. COVID-19 case counts 
The first confirmed case of COVID-19 in Taiwan was identified in 

Taipei City on January 22, 2020. We compiled the number of the 
confirmed cases of COVID-19 registered in both Taipei and New Taipei 
City during each day between January 22, 2020 and March 31, 2020. 
Confirmed cases are those that have been validated by medical testing, 
whereas unconfirmed cases are suspected by physicians to be COVID-19 
based on patient-reported symptoms. We use the former because 
confirmed cases are listed on the CDC website and reported to the public 
during CDC press conferences. From these data we created two variables 
to measure COVID-19 cases. The first is a binary indicator for the period 
when confirmed COVID-19 cases existed in Taiwan (=1 if January 22 - 
March 31 of 2020; = 0 otherwise), while the second is a continuous 
measure of the cumulative number of the confirmed cases in each day of 
the sample period in each of the two cities. 

For the analysis of all outcome variables we defined the treatment 
and control groups in 2020 and 2017–2019, respectively. In each year, 
the post-treatment period corresponds to January 22 - March 31 and the 
pre-treatment period is January 1 – January 21. 

2.1.2. Air quality measures 
We obtained measures of air quality from 19 air quality monitoring 

stations located across Taipei and New Taipei City (see Fig. 1, panel A) 
and two monitoring stations on islands under the control of Taiwan 
(Matsu and Kinmen County) that are just off the coast of mainland China 
(see Fig. 1, panel B). The stations monitor major pollutants, including 
PM2.5, PM10, COX, NOX, SO2, O3, and hydrocarbons. Due to the direction 
of prevailing winds and the close proximity of Taiwan to mainland 
China, residents of Taipei and New Taipei City are often subject to sig
nificant air pollution from China (Lee et al., 2020). It is therefore 
important to account for pollution from China when investigating the 
effect of behavioral change among residents of northern Taiwan on 
localized air pollution. 

We analyzed the same criteria pollutants regulated by the EPA under 
the U.S. Clean Air Act, with the exception of lead, which is not moni
tored. These include PM10, PM2.5, NO2, SO2, CO, and O3. The level of 
each pollutant is calculated as the average concentration at the given 
station over a 24-h period. We used the pollution measures derived from 
monitoring stations in Taipei and New Taipei City as outcome variables 
in our empirical models and pollution measures from the two stations 
near China as control variables. We merged the COVID-19 variables into 
the air quality dataset using city and date. In total, the air quality data 
from Taipei and New Taipei City consist of 5,741 station-day observa
tions across both the treatment and control periods, of which 1,190 
occurred in the 2020 post-treatment period (i.e., the period corre
sponding to the COVID-19 outbreak). 

2.1.3. Metro ridership and U-bike rentals 
The Taipei metro system includes 119 stations that serve all sections 

of Taipei and New Taipei City. We excluded 11 stations from our anal
ysis because they opened on January 31, 2020, right after the beginning 
of our treatment period. For each of the remaining 108 stations, we 
collected data on the number of people who departed from and exited 
the station on every day during our treatment and control periods. In 
total, our sample of metro ridership contains 38,772 station-day obser
vations, of which 7,452 occurred in the 2020 post-treatment period. 

From the same metro database we created several indicator variables 
to measure characteristics of the stations and their surroundings. These 
include variables that indicate whether the station is a terminal station, 
connected to other metro lines, on an airport route or at an airport, 
connected to a high speed rail station, and whether a school or a 
traditional night market is near the station. 

In 2011 the Taipei city government created a bike sharing system 
called U-bike to provide transportation to and from public trans
portation. The program has grown to 966 stations that serve most of 
Taipei and New Taipei City. U-bike stations are located at metro stations 

2 Our data cover the most popular methods of commuting in Taipei and New 
Taipei City. Based on commuting patterns in 2014–2016, scooters are the most 
widely used form of commuting (30 %), followed by buses (22 %), cars (19 %), 
the metro (17 %), walking (6 %), and bicycles (3 %) (Ministry of Transportation 
and Communications, 2018). 
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Fig. 1. Geographic location of the air quality monitoring stations.  
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and bus stops as well as strategic locations near places of business and 
high density residential areas. The initial cost of bike rental is only five 
New Taiwan dollars, making the use of U-bikes very popular among 
metro and bus users.3 In May 2020 the turnover rate of U-bikes was 5.6 
times per bike per day (Cheng et al., 2020b). We excluded 10 stations 
that were opened in 2020. For the remaining 956 stations, we collected 
data on the number of departures and exits from each U-bike station (i.e. 
U-bike rentals) in each day of our treatment and control periods as well 
as information on the characteristics of U-bike stations. The latter 
include the year the station opened and the number of bike docks at each 
station. There are 222,007 rental-day observations in the U-bike data, 
48,540 of which occurred in the 2020 post-treatment period. 

2.1.4. Automobile and scooter traffic 
There are 35 traffic monitoring stations along the main bridges that 

connect Taipei and New Taipei City. Since many people live in New 
Taipei City and work in Taipei, the monitors effectively capture 
commuting patterns for all types of motor vehicles. We collected infor
mation on the number of cars, vans/trucks/buses and scooters passing 
through each traffic monitor during every hour of the treatment and 
control periods.4 In total, our motor vehicle samples contains 309,400 
station-hour observations, of which 60,460 are in the 2020 post- 
treatment period. 

2.1.5. Other variables 
We collected additional data on three district-level characteristics 

that may explain variation in the outcome variables: the geographic area 
of each district, monthly population, the wind speed in each district, and 
the daily rainfall in each district.5 For inclusion in our traffic analysis, 
we also collected information on the daily gasoline price, and for the air 
pollution models we collected data on the amount of coal used in power 
generation in metric tons per day.6 Finally, we include in all of our 
models a control for the number of daily inbound visitors to Taiwan.7 

2.2. Econometric analysis 

We use a difference-in-differences model (DiD) to identify the causal 
effect of confirmed COVID-19 cases on air quality, motor vehicle usage, 
metro usage, and U-bike rentals using panel data (Wooldridge, 2010). 
The pre-treatment period is January 1 – January 21 and the 
post-treatment period is January 22 – March 31. The control group is 
composed of observations in 2017–2019 and the treatment group is 
observations in 2020.8 Because the air quality, public transportation and 
shared bicycle outcome variables are right-skewed, we implemented the 
following log-linear specification: 

log(y1ijt)= α1 + γ1⋅COVIDjt + β1
′

X1ijt + υj + tm + ty + ε1ijt, (1)  

where y1ijt is the outcome variable for station i in city j during time t. 
Station is either air monitoring station, metro station or U-bike station, 
and time is day. COVIDjt is either our discrete or continuous measure of 
confirmed COVID-19 cases in city j at time t. X1ijt is a vector of the 
explanatory variables associated with the outcome variable, υj, tm, and ty 

are fixed effects for city, month and year, and ε1ijt is the random error 
term.9,10 

In the case of motor vehicle traffic, all of the traffic monitoring sta
tions are located on main bridges that connect Taipei and New Taipei 
City, which means that there is no city-level variation in the dependent 
variable. In addition, the outcome variable has some zero values, so we 
estimated the following DiD model: 

y2it =α2 + γ2⋅COVIDt + β2
′

X2it + tm + ty + ε2it. (2) 

In equation (2) the time index denotes the 1 hour period used to 
collect traffic data, and COVIDt is either our discrete or continuous 
measure of confirmed COVID-19 in both cities combined at time t. 

In equation (1), 100 times the parameter γ1 is a semi-elasticity that 
measures the effect of COVID-19 on the outcome variable in percentage 
terms. In equation (2), γ2 measures the effect of COVID-19 on 100s of 
cars, vans/trucks/buses or scooters per hour traveling between Taipei 
and New Taipei City. Both γ1 and γ2 are identified by comparing dif
ferences in outcome variable before and after the advent of COVID-19 
(or across the pre- and post-COVID-19 level of infections) within the 
same calendar month in the control period (2017–2019) and the treat
ment period (2020).11 We computed the standard errors in all models 
using the two-way-cluster-robust variance approach proposed by 
Cameron and Miller (2015) to cluster on both station and day. 

3. Results 

In panel A of Table 1 we report the mean values of all of the outcome 
variables in the air quality, motor vehicle traffic, metro usage, and U- 
bike and models in the pre- and post-COVID-19 period in the treatment 
year (2020) and the control years (2017–2019). While the level of most 
air pollutants in 2020 increased in the COVID-19 period relative to the 
pre-period, air pollution also increased through the first quarter of the 
calendar year in 2017–2019. As a result, the unadjusted DiD estimates 
for all pollutants, with the exception of SO2 are negative. The unadjusted 
DiD estimates for air pollution coming from mainland China reported in 
panel B generally follow the same pattern as pollution in Taipei and New 
Taipei City. 

The unadjusted DiD estimates for transportation measures reported 
in panel A of Table 1 indicate that the use of automobiles and scooters 
increased during the COVID-19 period, while metro and U-bike use 
decreased. We also note that rainfall during the COVID-19 period 
(Table 1, panel C) was 36 % higher than usual, which could have 
affected the popularity of metro transportation when paired with U-bike 
rental. Another notable change during the COVID-19 period was the 70 
% reduction in inbound visitors to Taiwan that occurred as a result of 
travel restrictions imposed by the government. 

3.1. Air quality 

We present semi-elasticity estimates in Table 2 from the full DiD 
model of air quality, as specified in equation (1), and full estimation 
results for the CO equation in Appendix Table A4.12 These models 
control for the relevant measure of air quality from China as well as the 
other variables listed in panel C of Table 1. The estimates reported in 
panel A of Table 2 correspond to the full sample, while those in panels B 3 The exchange rate of New Taiwan dollars ($NT) to U.S. dollars (USD) on 

December 4, 2020 was $NT 1 = 0.035 USD.  
4 We combine vans, trucks and buses into a single category. The scooter 

category also includes motorcycles, but the latter are relatively rare in Taiwan.  
5 There are 12 districts in Taipei and 29 districts in New Taipei City.  
6 Coal is the largest source of electricity generation in Taiwan (U.S. Energy 

Information Administration, 2020).  
7 Visitors are not captured in district population statistics and may use 

different forms of transport than residents.  
8 Our specification of the DiD model is similar to Leslie and Wilson (2020), 

which investigates the effect of directives to social distance during the 
pandemic on domestic violence. 

9 Specifications with an indicator variable for the week of Chinese New Year 
yield similar estimates to those with month and year fixed effects.  
10 We also report estimates from models with station, rather than city, fixed 

effects as a robustness check.  
11 In the case of equation (1), the variation in the continuous measure of 

confirmed COVID-19 cases between the pre- and post-COVID-19 periods is 
measured within each city due to the inclusion of city fixed effects.  
12 Full estimation results for the other pollution measures are available upon 

request from the authors. 

H.-H. Chang et al.                                                                                                                                                                                                                              



Journal of Environmental Management 298 (2021) 113522

5

and C are sub-sample estimates for working days (Monday – Friday 
during non-holiday weeks) and non-working days (Saturday, Sunday, 
and holidays), respectively. In both panels A and B there is a statistically 
significant increase in CO, O3, SO2, and PM2.5 levels in models with a 
COVID-19 treatment effect. The largest increase in pollution during the 
COVID-19 treatment period is a 8.7 % increase in SO2, followed by a 6.8 
% increase in CO, both during working days. 

When we estimate the DiD model with the continuous measure of 
COVID-19 cases, there are statistically significant increases in CO, O3 
and PM2.5 in the full sample and during working days, as well as an 
increase in PM10 during working days. O3 is most responsive to changes 
in the COVID-19 case count, increasing by 2.3 % per additional 
confirmed case (overall and during working days). CO increased by 0.9 
% per additional case, and both PM10 and PM2.5 increased by 0.4 % per 

case during working days. The pattern of air pollution changes is 
fundamentally different for non-working days than working days. In 
particular, there are precisely estimated reductions in both NO2 and 
PM10 and no detectable changes in the other pollutants during non- 
working days. 

We performed several specification and robustness tests of the DiD 
air quality models, which we describe more fully in Appendix A, Section 
1. First, we tested whether the assumption of parallel pre-treatment 
trends in the air quality outcomes is met using the approach devel
oped by Mora and Reggio (2012, 2015). We found that models for CO, 
O3, SO2, NO2, and PM2.5, but not PM10, are consistent with the null 
hypotheses of common parallel linear trends. We then conducted a 
falsification test by using the 2020 COVID-19 discrete indicator and case 
count variables as placebo treatments in 2019, 2018 and 2017, while 

Table 1 
Sample statistics for air quality measures, transportation variables and explanatory variables in the air quality dataset.  

Variable Outcome 2017–2020 2020 2017–2019 DiD DiD % 

Full sample Before 1/22 After 1/22 Before 1/22 After 1/22 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Panel A. Measures of air quality and transportation in Taipei and New Taipei City 
COa Concentration of carbon monoxide (ppb). 0.47 0.22 0.47 0.19 0.46 0.22 0.47 0.20 0.48 0.23 − 0.02 − 3.6 % 
O3

a Concentration of ozone (ppb). 32.60 10.78 29.98 7.45 33.42 10.49 28.20 9.49 33.85 11.16 − 2.21 − 6.8 % 
SO2

a Concentration of sulfur dioxide (ppb). 2.05 1.05 1.61 0.75 1.71 0.82 2.19 1.12 2.18 1.09 0.11 5.3 % 
NO2

a Concentration of nitrogen dioxide (ppb). 16.15 8.92 14.78 7.98 14.94 8.96 15.94 8.17 16.80 9.14 − 0.70 − 4.3 % 
PM10

a Concentration of particular matter <10 
(ug/m3). 

34.03 17.58 26.24 11.22 28.75 13.67 29.76 16.08 36.02 18.70 − 3.74 − 11.0 
% 

PM2.5
a Concentration of particular matter <2.5 

(ug/m3). 
16.96 9.09 14.30 6.73 15.81 8.00 14.12 8.46 17.47 9.52 − 1.84 − 10.9 

% 
Carb No. of hourly cars per station (100). 3.02 6.23 3.00 2.79 3.22 6.55 3.07 7.97 2.94 5.76 0.35 11.6 % 
Van/truck/ 

busb 
No. of hourly vans/trucks/buses per 
station (100). 

0.64 5.69 0.51 0.94 0.62 5.78 0.63 7.72 0.72 5.21 0.02 3.1 % 

Scooterb No. of hourly scooters/motorcycles per 
station (100). 

1.11 10.95 0.93 7.16 1.20 13.02 1.11 12.68 0.96 9.88 0.42 38.0 % 

Metroc No. of daily departures & exits per station 
(10,000). 

1.87 1.82 2.08 1.96 1.58 1.43 1.93 1.83 1.92 1.90 − 0.49 − 26.1 
% 

U-biked No. of daily departures & exits per station 
(100). 

1.99 2.87 2.34 3.23 2.02 2.78 1.96 2.88 1.94 2.85 − 0.30 − 15.3 
% 

Panel B. Measures of air quality in mainland China 
CO_China Concentration of carbon monoxide (ppb). 0.36 0.10 0.40 0.09 0.33 0.09 0.40 0.11 0.36 0.09 − 0.02 − 5.9 % 
O3_China Concentration of ozone (ppb). 41.21 10.62 35.76 7.88 41.32 10.42 34.08 10.26 43.79 9.89 − 4.14 − 9.5 %  

Variable Outcome 2017–2020 2020 2017–2019 DiD DiD % 

Full sample Before 1/22 After 1/22 Before 1/22 After 1/22 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Panel B. Measures of air quality in mainland China, con’t 
SO2_China Concentration of sulfur dioxide (ppb). 2.61 0.98 2.03 0.44 1.84 0.59 3.20 0.87 2.79 0.96 0.21 7.7 % 
NO2_China Concentration of nitrogen dioxide (ppb). 9.01 3.96 9.64 3.04 7.80 4.61 10.94 3.95 8.83 3.56 0.27 3.1 % 
PM10_China Concentration of particular matter <10 

(ug/m3). 
49.84 22.96 39.34 13.17 36.99 18.55 53.42 24.08 54.63 22.78 − 3.55 − 6.5 % 

PM2.5_China Concentration of particular matter <2.5 
(ug/m3). 

27.40 12.05 23.17 9.94 23.06 12.26 28.64 13.01 29.07 11.38 − 0.54 − 1.9 % 

Panel C. Other explanatory variables in the air quality dataset 
COVID-19 (0/1) If 1/22/20 - 3/31/20 (0/1). 0.07 0.26 0 0 0.36 0.48 0 0 0 0 – – 
COVID-19 cases Daily cumulative number of COVID-19 

cases. 
0.24 1.04 0 0 1.15 2.05 0 0 0 0 – – 

Visitors No. of daily inbound visitors (100,000 
person). 

1.26 0.45 1.48 0.13 0.58 0.55 1.34 0.15 1.47 0.17 − 1.03 − 70.1 
% 

Wind Wind speed in district (km/hour). 2.37 1.40 2.38 1.36 2.19 1.32 2.52 1.46 2.39 1.41 − 0.06 − 2.5 % 
Coal Coal use (1 million mt/day). 0.07 0.01 0.05 0.00 0.06 0.00 0.07 0.00 0.07 0.01 0.01 14.4 % 
Area District area (km2). 39.20 31.22 40.20 30.95 40.23 30.89 38.65 31.05 38.87 31.43 − 0.18 − 0.5 % 
Population District population density (10,000 

person/km2). 
1.33 1.12 1.27 1.12 1.27 1.11 1.34 1.13 1.35 1.13 − 0.01 − 0.7 % 

Rainfall Rainfall in district (mm/hour). 0.69 1.26 0.62 0.70 0.75 1.77 0.75 1.14 0.64 1.07 0.23 36.3 % 
Non-working 

day 
Weekend day or holiday (0/1). 0.36 0.48 0.34 0.47 0.37 0.48 0.34 0.47 0.36 0.48 0.02 5.9 % 

N⋅T  5741 354 1190 932 3265   

Note: The sample period is January 1 - March 31 in each year. 
a Drawn from the air quality dataset. 
b Drawn from the motor vehicle traffic dataset (see Table A5). 
c Drawn from the metro use dataset (see Table A7). 
d Drawn from the U-bike rental dataset (see Table A8). 
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retaining the remaining 2 years as the control group. All models passed 
the falsification test except some formulations of PM10 model. Finally, 
we increased the flexibility of our DiD specification to allow for differ
ential linear pre-treatment trends across the two cities and estimated 
models with station fixed effects. Semi-elasticity estimates for all out
comes are robust across these different specifications. Overall, the 
sensitivity analyses suggest a small bias in the semi-elasticity estimates 
from the PM10 models. 

3.2. Motor vehicle, metro and U-bike use 

Because motor vehicle traffic is a major source of pollution in Taipei 
and New Taipei City, we investigated whether the change in pollution 
levels due to COVID-19 could have resulted from a shift in trans
portation patterns. Table 3 contains marginal effect estimates from our 
DiD model for car, van/truck/bus, and scooter traffic.13 For all three 
types of motor vehicles, the COVID-19 treatment effect and case count 
variables are statistically insignificant in the full sample, but these es
timates mask heterogeneous effects across different types of days. In 
particular, behavioral change among city residents during the COVID-19 
period reduced traffic during non-working days, but increased traffic 
during working days. Traffic decreased by 52.2 cars/hr (19.7 %) and by 
20.2 scooters/hr (23.3 %) during non-working days, but increased by 
62.5 cars/hr (16.4 %) and 21.6 scooters/hr (21.1 %) during the regular 
commuting hours of working days. Van, truck and bus traffic increased 
by 2.7 motor vehicles/hr (3.5 %) during commuting hours. COVID-19- 
related changes in transportation preferences also increased all types 
of motor traffic during the non-commuting hours of workdays, but to a 
lesser extent, particular in the case of scooters. Estimates from the 
models with the continuous measure of COVID-19 indicate that in
creases and decreases in motor vehicle traffic both increase in 

Table 2 
Semi-elasticity estimates of the impact of COVID-19 on air quality.  

Key variable COVID-19 (0/1) COVID-19 cases 

Dependent variable (in log) Semi-elas. S.E. Semi-elas. S.E.  

Panel A. Full sample (N*T = 5741) 

CO 0.039*** 0.012 0.010*** 0.002 
O3 0.072** 0.032 0.023*** 0.002 
SO2 0.056* 0.031 0.005 0.008 
NO2 − 0.011 0.027 − 0.006 0.004 
PM10 0.001 0.026 0.007 0.005 
PM2.5 0.032** 0.015 0.007* 0.004  

Panel B. Working days (N*T = 3705) 

CO 0.068*** 0.011 0.009*** 0.002 
O3 0.073*** 0.011 0.023*** 0.002 
SO2 0.087** 0.036 0.003 0.008 
NO2 0.015 0.020 0.005 0.004 
PM10 0.019 0.019 0.004* 0.003 
PM2.5 0.011** 0.004 0.004* 0.002  

Panel C. Non-working days (N*T = 2036) 

CO 0.009 0.022 0.002 0.007 
O3 0.055 0.041 0.020 0.035 
SO2 0.014 0.052 0.016 0.012 
NO2 − 0.030* 0.015 − 0.004* 0.002 
PM10 − 0.001* 0.000 − 0.032*** 0.007 
PM2.5 − 0.049 0.030 − 0.009 0.006 

Note: The full list of variables in each regression is composed of the relevant 
pollution measure in panels B and the explanatory variables in panel C of 
Table 1. Standard errors are clustered by day and air quality monitoring station. 
***,**, * indicate significance at the 1 %, 5 % and 10 % level, respectively. 
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13 Descriptive statistics for the control variables in these models and full 
estimation results for the car traffic model are contained in appendix Tables A5 
and A6, respectively. 
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magnitude with the number of confirmed cases in each city when the 
sample is split between working and non-working days. 

While transportation by personal motor vehicle increases air pollu
tion, the use of the metro system and U-bikes reduces pollution by 
decreasing the combustion of fossil fuels associated with vehicle travel. 
We present the results for the use of metro and U-bikes together because 
the latter are often used jointly with the metro in order to travel the first 
and last miles of a journey. Table 4 contains semi-elasticity estimates of 
COVID-19 on metro departures and exits and on U-bike rentals.14 Using 
the full sample, we find that metro departures and exits decreased 17.7 
% during the COVID-19 period and 0.2 % per additional confirmed case 
of COVID-19 (Table 4, panel A). When we split the sample into working 
and non-working days, we find that metro use decreased more during 
the latter than the former. In particular, metro departures and exits went 
down 25.2 % due to COVID-19 during non-working days, but only 
decreased by 11.2 % during working days. 

U-bike rentals also decreased due to behavioral change among resi
dents during the COVID-19 period, but to a lesser extent than the 
reduction in metro use. The overall decrease in U-bike rentals was 8.1 % 
during the COVID-19 period, or 0.1 % per confirmed case of COVID-19 
(Table 4, panel B). Similar to metro use, U-bike rentals decreased more 
during non-working days than working days. In particular, rentals 
decreased 15.6 % due to COVID-19 during non-working days, but 3.1 % 

during working days. 
As a robustness check, we re-estimated all of our transportation 

models with station-level fixed effects using the full sample in each 
dataset. The estimates, reported in appendix Table A11, are similar to 
the main DiD estimates. 

3.3. Sensitivity of air pollution results to manufacturing activity 

The increase in motor vehicle use and decrease in metro and U-bike 
use that we identify is consistent with the increase in air pollution levels 
during working days in the COVID-19 period. In addition, the reduction 
in motor vehicle use during non-working days is consistent with the 
decrease in NO2 and PM10 we find during non-working days. However, it 
is possible that the changes in industrial pollution could have also 
affected air pollution. Because Taiwan did not impose a social lockdown 
or implement restrictions on business activities, we suspect that differ
ences in industrial pollution across the pre- and post-COVID-19 period 
were minor. Nonetheless, industrial output could have been affected by 
shifts in demand during the pandemic. Most heavy industries in Taiwan 
are located in the southwestern part of the island, while Taipei and New 
Taipei City are in northern Taiwan. Prevailing winds move pollution 
from southern Taiwan into the Pacific Ocean, so the main sources of 
industrial pollution in Taipei and New Taipei City are located in China 
(which we control for) or from the limited industrial base around the 
two cities. 

We investigated the sensitivity of our air pollution results to changes 
in manufacturing by re-estimating our DiD models while controlling for 
manufacturing sales in each city. Due to limitations on data availability, 
we could only access manufacturing sales data in 2020 and 2019. 
Therefore, we use observations in 2019 as the control group in these 
models. Table 5 contains our baseline estimates from Table 2 in panel A, 
and the semi-elasticity estimates from the models controlling for 
manufacturing sales in panel B. Both sets of estimates are very similar, 
with the only notable difference being that the impact of an additional 
COVID-19 case on PM10 becomes statistically significant when control
ling for manufacturing sales. Overall, the estimates suggest that our 
findings are unlikely to be affected by changes in industrial pollution. 

4. Discussion and policy implications 

Cars, vans, trucks, buses and scooters are a major source of air 

Table 4 
Semi-elasticity estimates of the impact of COVID-19 on metro use and U-bike 
rentals.   

Panel A. Metro use 

Full sample (N⋅T = 38,772) 

Variable Semi-elas. S.E. Semi-elas. S.E. 

COVID-19 (0/1) − 0.177*** 0.044   
COVID-19 cases   − 0.002*** 0.001  

Working days (N⋅T = 25,272) 

COVID-19 (0/1) − 0.112*** 0.018   
COVID-19 cases   − 0.002*** 0.000  

Non-working days (N⋅T = 13,500) 

COVID-19 (0/1) − 0.252*** 0.066   
COVID-19 cases   − 0.002*** 0.001  

Panel B. U-bike rentals 

Full sample (N⋅T = 222,007) 

COVID-19 (0/1) − 0.081*** 0.020   
COVID-19 cases   − 0.001** 0.000  

Working days (N⋅T = 144,757) 

COVID-19 (0/1) − 0.031*** 0.006   
COVID-19 cases   − 0.001*** 0.000  

Non-working days (N⋅T = 77,250) 

COVID-19 (0/1) − 0.156*** 0.021   
COVID-19 cases   − 0.005*** 0.000 

Note: The dependent variable in panel A is the log of daily departures and exits 
from each metro station in 10,000s. The full list of explanatory variables in each 
regression in panel A is reported in Appendix Table A7. The dependent variable 
in panel A is the log of daily departures and exits from each U-bike station in 
100s. The full list of explanatory variables in each regression in panel B is re
ported in Appendix Table A8. Standard errors are clustered by day and metro or 
U-bike station. ***,**, * indicate significance at the 1 %, 5 % and 10 % level, 
respectively. 

Table 5 
Semi-elasticity estimates of the impact of COVID-19 on air quality controlling for 
manufacturing sales (2019–2020).  

Key variable COVID-19 (0/1) COVID-19 cases 

Dependent variable (in log) Semi-elas. S.E. Semi-elas. S.E.  

Panel A. Baseline model (2017–2020) 
CO 0.039*** 0.012 0.010*** 0.002 
O3 0.072** 0.032 0.023*** 0.002 
SO2 0.056* 0.031 0.005 0.008 
NO2 − 0.011 0.027 − 0.006 0.004 
PM10 0.001 0.026 0.007 0.005 
PM2.5 0.032** 0.015 0.007* 0.004  

Panel B. Model w/ manufacturing sales (2019–2020) 
CO 0.042*** 0.012 0.011*** 0.002 
O3 0.069*** 0.010 0.024*** 0.002 
SO2 0.049** 0.021 0.003 0.008 
NO2 − 0.006 0.033 − 0.004 0.005 
PM10 0.003 0.022 0.006* 0.003 
PM2.5 0.031** 0.012 0.006* 0.003 

Note: The full list of variables in each regression is composed of the relevant 
pollution measure in panels B and the explanatory variables in panel C of Table 1 
in addition to city-level manufacturing sales per 10 days during 1/1–3/31 in 
2019 and 2020. The number of observations (N⋅T) is 3030. Standard errors are 
clustered by day and air quality monitoring station. ***,**, * indicate signifi
cance at the 1 %, 5 % and 10 % level, respectively. 

14 Appendix Tables A7 and A8 contain descriptive statistics for the control 
variables in the metro and U-bike datasets, respectively, and full estimation 
results for the metro and U-bike models are reported in Tables A9 and A10, 
respectively. 
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pollution in many cities around the world. Collectively, they emit all of 
the primary pollutants we track in our study, and are major contributors 
to the formation of secondary pollutants (Union of Concerned Scientists, 
2018; Zhang and Batterman, 2013; Platt et al., 2014). In Taipei and New 
Taipei City, scooters were the most popular method commuting to work 
prior to the pandemic, accounting for approximately 30 % of trips. 
Scooter engines emit significant amounts of carbon monoxide, nitrogen 
oxides and particulate matter (more per mile than cars), and they are 
regulated less stringently than other types of motor vehicles (Platt et al., 
2014; Carpenter, 2014). Because the use of scooters increased the most 
due to COVID-19, they are likely the single largest source of increased 
air pollution that we identify during the pandemic. 

Given the increase in the level of motor vehicle use and the reduction 
in both metro ridership and U-bike rentals during the COVID-19 period, 
it is likely that the shift in mode of transport was a strategy used by 
individuals to reduce their chances of contracting COVID-19. Clearly, 
the likelihood of infection is far lower in a personal motor vehicle than in 
the confined space of a metro car. Furthermore, the 25 % decrease in 
metro use and significant reductions in the levels of NO2 and PM10 
during non-working days suggest that individuals were limiting their 
mobility on weekends to avoid contracting COVID-19. It is important to 
note that there were no capacity restrictions on metro operations during 
our study period, so the reduction in ridership was a direct result of 
lower consumer demand. 

Our findings have important implications for policy. Existing studies 
from China, Europe and elsewhere almost exclusively show that air 
pollution improved under government-mandated social lockdowns. 
While Taiwan implemented entry restrictions for foreigners (which we 
control for) and a 14-day quarantine protocol for all inbound travelers, 
the promotion of social distancing and mandatory use of facemasks were 
the only domestic policies imposed by the government to limit the 
spread of the virus. As a result, the mobility of citizens within Taiwan 
was relatively unaffected during the initial month of the coronavirus 
pandemic (Wang et al., 2020). 

As vaccines are deployed and other regions or countries emerge from 
lockdowns, they should expect individuals to exhibit similar preferences 
for personal vehicle use that we observe in Taiwan. This could lead to 
congestion and higher levels of pollution. Initiatives to improve the 
safety of public transportation and associated public information cam
paigns could help to limit the avoidance of such cleaner forms of 
transportation. In addition, research suggests that individuals de- 
prioritize environmental protection following periods of high unem
ployment (Kenny, 2019) and there is evidence that rollbacks of envi
ronmental regulations intended to lessen the economic effects of 
COVID-19 could lead to longer term worsening of deadly air pollution 
and result in additional deaths (Persico and Johnson, 2021; Gardiner, 
2020). Our findings suggest that scaling back air pollution regulations 
due to a perceived tradeoff between environmental protection and 
economic growth could compound the deterioration in air quality. 

As the pace of worldwide vaccination effects increases, and COVID- 
19 infection rates begin to decline, governments will face mounting 
pressure to lift restrictions on economic activities intended to reduce the 
spread of COVID-19. For example, China has begun to lift COVID-19 
restrictions in some provinces, while most countries in Western 
Europe are also lifting restrictions (IMF, 2021). However, if individuals, 
particularly those who are unvaccinated, do not feel safe traveling 
among the general population, they may engage in prevention behaviors 
similar to those we identify in Taiwan (Brackett, 2020). Fear of public 
transportation could also result in preferences for work-at-home ar
rangements, which could increase demand for residential energy (Hin
son, 2020). The resulting increase in air pollution from personal motor 
vehicle use and greater time spent at home could compound a rise in air 
pollution from industrial sources as business seek to meet the pent-up 
demand for consumer goods resulting from months of limited access 
to retail outlets. 

In order to reduce avoidance of public transportation, policymakers 

can consider several actions. Scientific reviews indicate that physical 
distancing of 1m or more, facemask use, and eye protection all decrease 
the transmissibility of COVID-19 (Chu et al., 2020; Brooks and Butler, 
2021). Mask mandates on public transportation are among the easiest 
policies to implement and enforce because they involve a low cost to the 
public, and compliance is observable. However, experts agree that 
physical distancing is the most effective public health measure to reduce 
the spread of COVID-19 (IDSA, 2020). Implementing physical distancing 
on metro/train cars and buses reduces the capacity of the public trans
portation system, but it could increase overall ridership if potential users 
feel safer. In addition, policy makers need to evaluate other initiatives to 
implement physical distancing without reducing system use, such as 
increasing (decreasing) fares during peak (off-peak) hours in order to 
smooth demand over the course of the day. Further, ventilation and 
higher rates of air circulation are known to reduce the risk of COVID-19 
transmission (U.S. Environmental Protection Agency, 2021). Aside from 
opening windows of train cars and buses, transportation systems man
agers should evaluate this cost-effectiveness of air purification and 
ventilation systems. 

By taking actions and implementing policies to reduce the risk of 
COVID-19 transmission during the use of public transportation, policy 
makers can limit the avoidance that we identify in Taiwan during the 
early stages of the coronavirus pandemic. Although some measures may 
result in additional costs, our findings suggest the reductions in air 
pollution from encouraging the use of public transport could be sub
stantial. Not only does reducing air pollution lower future disease risks 
of otherwise healthy individuals, it also reduces COVID-19 mortality 
(Persico and Johnson, 2021; Isphording and Pestel, 2020). 

5. Conclusion and research limitations 

This study makes an important contribution to the literature as the 
first to link higher levels of several major air pollutants to a shift in 
transportation patterns from COVID-19 prevention behavior. After 
controlling for pollution from China, we find that measures of four major 
pollutants (CO, O3, SO2, and PM2.5) in the two largest cities in Taiwan 
increased as a result of the COVID-19 pandemic. Using data on mode of 
public and private transportation, we find strong evidence that the in
crease in pollution was due to a shift away from metro and shared bi
cycle use and an increase in motor vehicle use during working days. 
Although all types of transport in Taipei and New Taipei city decreased 
on non-working days due to COVID-19, leading to decreases in NO2 and 
PM10, the net effect of the shift in transportation patterns was to increase 
air pollution during the pandemic. 

This study has some limitations. Although we conducted several 
robustness checks that are consistent with a lack of endogeneity bias in 
our estimates, it is possible that there are omitted factors that are 
correlated with the number of COVID-19 cases and air pollution levels 
that could affect our results. In addition, we do not measure pollution 
directly from industrial sources, so we can only address the impact of 
industrial pollution on our results using a sensitivity test. Finally, our 
results may not generalize to other regions or countries if COVID-19 
prevention behaviors in Taiwan differ from those exhibited elsewhere 
due to differences in infection rates or socioeconomic and cultural fac
tors. For example, the number of COVID-19 cases per capita was rela
tively low in Taiwan during our study period, so avoidance behaviors 
could be stronger in other countries leading to larger increases in air 
pollution. 
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