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Emerging evidence indicates an association between gut microbiome and arthritis diseases including gout. However, how and
which gut bacteria affect host urate degradation and inflammation in gout remains unclear. Here we performed a metagenome
analysis on 307 fecal samples from 102 gout patients and 86 healthy controls. Gout metagenomes significantly differed from those
of healthy controls. The relative abundances of Prevotella, Fusobacterium, and Bacteroides were increased in gout, whereas those of
Enterobacteriaceae and butyrate-producing species were decreased. Functionally, gout patients had greater abundances for genes
in fructose, mannose metabolism and lipid A biosynthesis, and lower for genes in urate degradation and short chain fatty acid
production. A three-pronged association between metagenomic species, functions and clinical parameters revealed that decreased
abundances of species in Enterobacteriaceae were associated with reduced amino acid metabolism and environmental sensing,
which together contribute to increased serum uric acid and C-reactive protein levels in gout. A random forest classifier based on
three gut microbial genes showed high predictivity for gout in both discovery and validation cohorts (0.91 and 0.80 accuracy), with
high specificity in the context of other chronic disorders. Longitudinal analysis showed that uric-acid-lowering and anti-
inflammatory drugs partially restored gut microbiota after 24-week treatment. Comparative analysis with obesity, type 2 diabetes,
ankylosing spondylitis and rheumatoid arthritis indicated that gout metagenomes were more similar to those of autoimmune than
metabolic diseases. Our results suggest that gut dysbiosis was associated with dysregulated host urate degradation and systemic
inflammation and may be used as non-invasive diagnostic markers for gout.
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INTRODUCTION

Gout is an inflammatory arthritis disease that primarily involves
the joints and is considered a risk factor for hypertension and
cardiovascular disease'. Gout is more common in males than
females?, with a rise in prevalence due to changes in diet and

abundance of Bacteroides caccae and B. xylanisolvens was
significantly enriched in gout patients, whereas the abundance
of Faecalibacterium prausnitzii and Bifidobacterium pseudocatenu-
latum was decreased'®. Gut microbial functions including purine
metabolism were also altered in gout patients'®. Another study

lifestyle3. The reported prevalence of gout in the US was 3.9% in
2015-2016% while in European countries it was ranged between 1
and 4% from 2003 to 2014°. A meta-analysis of 30 studies revealed
the prevalence of gout in mainland China was ~1.1% from 2000 to
2016. Despite a relatively lower prevalence of gout in China, it
shows an ascending trend by year®.

Gout is known to be primarily caused by an abnormal increase
in uric acid and the crystallization of monosodium urate (MSU)
crystals. In healthy people, there are two routes to excrete uric
acid from the body: the kidney, which is responsible for
discharging 70% of uric acid, and the intestine, which excretes
the remaining 30%’. Recent studies have shown that the gut
microbiota dysbiosis is related to arthritis diseases, including
ankylosing spondylitis (AS)®°, rheumatoid arthritis (RA)'>'" and
psoriasis'>'3, yet the association between gut microbiota and
gout remains poorly characterized. A previous study showed the

combining microbiome and metabolome showed opportunistic
pathogens in Bacteroides, Porphyromonadaceae, Rhodococcus,
Erysipelatoclostridium, and Anaerolineaceae were increased, along
with altered metabolites in uric acid excretion and purine
metabolism in gout patients'. Although insightful, most of these
studies had small sample size without or with only a few samples
for independent validation so their generalizability was limited.
Additionally, the interactions between gut microbiota and gout-
associated clinical parameters, and the response of gut microbiota
to therapeutic interventions in gout remained unexplored.
Additionally, the relationship between gut microbiota and key
gout-associated clinical parameters, and the response of gout
microbiota to therapeutic interventions remained unexplored. As
such, a comprehensive view of how and which gut microbes may
impact the key pathophysiological processes such as host urate
degradation and systemic inflammation in gout is lacking, and
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Table 1. The baseline characteristics of subjects in discovery and validation cohorts.
Characteristics® Discovery control  Discovery gout Discovery Validation control Validation gout Validation Total

(n=63) (n=77) P value® (n=25) (n=23) P value® (n=188)
Age, years 40.0+12.1 39.9+129 0.965 383+136 41.9+14.4 0.227 40.0+12.9
BMI, kg/m? 235+3.0 25.0+25 <0.001 224+23 258+29 <0.001 243+29
CRP, mmol/L 20+3.2 24.5+299 <0.001 1.5+2.1 21.8+18.5 <0.001 14.5+23.6
eGFR, ml/min 99.7+154 90.6 +22.8 0.01 104.7 £ 20.6 96.5 +20.8 0.286 95.9+20.8
ESR, mm/h 88+75 30.4+24.6 <0.001 127 +£11.7 329+154 <0.001 21.9+209
SCr, pmol/L 823+12.2 95.1+21.2 <0.001 83.7£16.0 88.5+223 0.502 88.7+19.0
SUA, pmol/L 361.4+504 539.2+118.7 <0.001 350.8+57.8 555.2+156.8 <0.001 458.7 £136.6
Urea, mmol/L 50+1.1 48+15 0.129 50+1.3 46+1.7 0.149 49+14
2data are mean * s.d; BMI body mass index, CRP C-reactive protein, eGFR estimated glomerular filtration rate, ESR erythrocyte sedimentation rate, SCr serum
creatinine, SUA serum uric acid.
bp values were obtained by Wilcoxon rank-sum test.

warrants investigation in further longitudinal studies with detailed
characterization of patient clinical parameters.

Here we conducted a large-scale metagenomic analysis on the
gut microbiome of 307 samples collected longitudinally from gout
patients and healthy controls. Utilizing both discovery and
validation cohorts, we sought to investigate the taxonomic and
functional signatures of gut microbiome in gout, its association
with gout-related clinical parameters such as serum uric acid (SUA)
and inflammation, its response to therapeutic intervention, and
the gout-related microbiome signatures in relation to the broader
autoimmune and metabolic disorders.

RESULTS AND DISCUSSION
Overview of gut metagenome in gout patients and controls

We performed metagenomic shotgun sequencing for 307 fecal
samples collected from 188 individuals. At baseline, there were
140 samples in discovery cohort collected during 2016-2017,
including 77 gout patients and 63 healthy controls. There were
48 samples in validation cohort collected in the year of 2018,
consisting of 25 gout patients and 23 healthy controls. In addition,
70, 40, and 9 fecal samples were collected from gout patients in
discovery cohort longitudinally at three follow-up time points
(week 2, 4, and 24 post-baseline), to assess the effects of
therapeutic intervention on the gut microbiome in gout patients.
All patients’ information is summarized in Supplementary Data 1.
Compared with controls, gout patients had elevated levels of
inflammation and renal indices, including C-reactive protein (CRP),
erythrocyte sedimentation rate (ESR), SUA, and serum creatinine
(SCr) (Table 1). There was a higher body mass index (BMI) in gout
patients, in accordance with the view that gout was associated
with obesity's. In addition, CRP, ESR, SUA, and other gout-
associated indices including visual analog scale (VAS), arthralgia,
joint swelling scores and joint tenderness scores declined in gout
patients following treatment (Supplementary Data 1).

Consistent with previous findings'>, gout patients had lower
microbial gene richness and diversity compared to healthy
controls both in discovery (as shown in rarefaction analysis
[paired Wilcoxon rank-sum test for median gene counts: P=
5.6e-12, Fig. 1a], the actual number of genes observed: [gene
number, Wilcoxon rank-sum test, P=0.0024, Fig. 1b], and alpha
diversity: [Shannon index, Wilcoxon rank sum-test, P = 0.0016, Fig.
1c]) and validation (gene number, Wilcoxon rank-sum test, P =
0.016; Shannon index, Wilcoxon rank-sum test, P = 0.091; Supple-
mentary Fig. 1a, b) cohorts. Beta-diversity analysis showed a small,
significant increase in dissimilarity in microbial community
between samples in gout and control groups than those within
each group (discovery cohort: P=0.0069, mean: 0.796 vs 0.803,
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median: 0.805 versus 0.810, Fig. 1d; validation cohort:
P=1.618e-11, mean: 0.541 vs 0.565, median: 0.536 versus 0.560,
Supplementary Fig. 1c). Considering that enterotype was reported
to be disease-related'”"'®, we examined enterotype of all samples
in discovery cohort (Supplementary Fig. 2a). Enterotype was a
main factor explaining the variability of the gut microbial
composition of samples (PERMANOVA P < 1e-04, R? = 0.046) and
the first principal coordinate (PC) was significantly associated with
enterotype (Wilcoxon rank-sum test, P = 2.16e-20). However, no
significant difference in enterotype distribution was observed
between gout patients and controls (P=0.8541, Fisher's exact
test; Supplementary Fig. 2b). When samples were ordinated by the
second and third PCs, there was a significant association between
gut microbial composition and gout both in discovery (PERMA-
NOVA, P < 0.001, R* = 0.035; Fig. 1e) and validation (PERMANOVA,
P<0.001, R?>=0.063; Supplementary Fig. 1d) cohorts. And the
third PC was significantly associated with gout in discovery cohort
(Wilcoxon rank-sum test, P =2.01e-07). These results suggested
that when enterotype was accounted for, disease status became
one major factor associated with gut microbiota. Among all
demographic factors (age, BMI, alcohol drinking, probiotics use,
vegetarian diet) that may influence gut microbiome, only BMI was
significantly different between gout patients and healthy controls
so it was included as a confounder in statistical analyses. The
overall gut microbiome was not significantly associated with BMI
using PERMANOVA (P =0.2006, R?>=0.008). MaAsLin analysis
using all demographic factors indicated that Geodermatophilus
was associated with BMI, Paraburkholderia and Histophilus were
associated with alcohol drinking, and Varibaculum, Dakarella, and
Suterrella were associated with probiotics (FDR P < 0.25). Among
them, only Sutterella was differentially abundant between gout
patients and controls (FDR P < 0.05), suggesting its association
with gout may be attributed to probiotic use.

Taxonomic alternation of gut metagenome in gout

Next, we identified gut microbial taxa associated with gout. In
discovery cohort (n=140), a total of 18 phyla, 415 genera and
861 species were identified (Supplementary Fig. 3a, b and
Supplementary Data 1). At the phylum level, Bacteroidetes (FDR
P=0.022) and Fusobacteria (FDR P=0.0183) were increased in
gout patients, whereas Proteobacteria (FDR P=0.0183) was
decreased (Fig. 1g). The ratio of Bacteroidetes to Firmicutes was
higher in gout patients (P=0.0098; Fig. 1f). 110 genera and
223 species were significantly different in abundance between
gout patients and controls (FDR P<0.05; Fig. 1h, i and
Supplementary Data 1). All differential species in Bacteroides
(3 species), Prevotella (13 species), and Fusobacterium (4 species)
were enriched in gout patients. Bacteroides was reported to be
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enriched in the gut microbiota of gout patients'. P. copri (FDR P
=0.0169) was increased in RA and was pro-inflammatory in a
mouse model of colitis'®. F. nucleatum (FDR P = 0.0035) was also
pro-inflammatory and conducive to the development of colorectal
cancer?®. In comparison, several butyrate-producing species, such
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as Roseburia spp. (3 species), Coprococcus spp. (3 species),
Eubacterium spp. (3 species), F. prausnitzii and butyrate-
producing bacterium SS3/4 were enriched in healthy controls;
many of these species were reported with potential anti-
inflammatory  effects?’?2  In  addition, members  of
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Fig. 1

Gut microbial alterations in gout patients. a The gene rarefaction curves based on the Chao2 estimated gene counts in healthy

controls (n = 63) and gout patients (n = 77) (paired Wilcoxon rank-sum test for median gene counts P = 5.6e-12). b Box and whisker plot of
gene count in the healthy controls and gout patients. Wilcoxon rank-sum test was used to determine significance. **P < 0.01. ¢, d Box and
whisker plots of alpha diversity (Shannon index) and beta diversity (Bray-Curtis distance) at the gene level. Wilcoxon rank-sum test was used
to determine significance. **P < 0.01. To exclude the influence of the various data sizes among the samples, panels a, b, d and d were based on
11 M matched reads per individual. e Principal component analysis (PCA) based on the gene relative abundance profile. The 95% confidence
ellipses were shown for gout and control samples. f The Bacteroidetes/Firmicutes ratio (Wilcoxon rank-sum test; **P < 0.01). The relative
abundance of differential phyla (g top 3), genera (h top 30) and species (i top 30) between gout patient and healthy control groups (FDR
P < 0.05, Wilcoxon rank-sum test). The color bar above genera or species names were colored according to the phylum. For all box and whisker
plots, the center line represents median. The bounds of box represent the first and third quartiles. The upper whisker extends from the hinge
to the largest value no further than 1.5 * interquartile range (IQR) from the hinge. The lower whisker extends from the hinge to the smallest
value at most 1.5 * IQR of the hinge. The notch represents a confidence interval around the median as the median * 1.58*IQR/sqrt(n).

Enterobacteriaceae reported to degrade uric acid®, such as
Escherichia spp. (2 species), Klebsiella spp. (7 species), Enterobacter
spp. (9 species) and Citrobacter spp. (7 species), were enriched in
healthy controls (FDR P < 0.05), possibly helping reduce uric acid
accumulation in healthy individuals. 128 out of 223 significantly
different species were validated in validation cohort (Supplemen-
tary Fig. 1e). As a complement to the gene-based taxonomic
profiling, we performed reads-based taxonomic profiling using
MetaPhlAn3?%, which identified 12 phyla, 194 genera, and
485 species. Of them, 8 phyla, 29 genera and 43 species were
associated with gout (FDR P<0.25 Supplementary Fig. 4,
Supplementary Data 1), including key taxa such as Faecalibacter-
ium, Enterobacter, Klebsiella, Prevotella, Fusobacterium and Escher-
ichia as described above.

Functional alternation of gut metagenome in gout

Principal component analysis (PCA) revealed significantly altered
gut microbial functional profiles in gout patients compared to
controls (PERMANOVA, P < 0.001, R? = 0.036; PC1, P = 0.0008; PC2,
P =0.0043; Supplementary Fig. 5a, b). In total, 2666 out of 7289
KEGG Orthologs (KOs) were differentially abundant between gout
patients and controls (2260 and 406 KOs enriched in controls and
gout patients, respectively; FDR P < 0.05; Supplementary Data 1).
This corresponded to 40 KEGG pathways and 129 KEGG modules
that showed significant difference according to the reporter score
([reporter score| > 1.65) in discovery cohort (Supplementary Fig.
5¢, d and Supplementary Data 1) and 9 of these pathways were
significant in validation cohort (Supplementary Fig. 1f). Overall,
gout patients had higher abundance of carbohydrate metabolism
(4 pathways), energy metabolism (3 pathways), metabolism of
terpenoids and polyketides (3 pathways) and biosynthesis of other
secondary metabolites (3 pathways), whereas healthy controls
were enriched in pathways in cell motility (2 pathways) and
xenobiotics biodegradation and metabolism (2 pathways).
Previous studies suggested that gut microbiota was involved in
dysregulated urate degradation in gout patients'*', We observed
that healthy controls had a higher abundance for genes in urate
degradation (FDR P <0.05; Fig. 2a, b) and the major microbial
contributor was Enterobacteriaceae spp. (FDR P < 0.05, Spearman’s
rank correlation; Fig. 2c and Supplementary Data 1) in which
Klebsiella showed the highest correlations with the urate
degradation KOs (mean Spearman’s rank correlation =0.53). In
addition, SUA was negatively correlated with Enterobacteriaceae (r
= —0.24, P =0.0043, Spearman’ rank correlation) and Klebsiella (r
= —0.23, P=0.0057, Spearman’ rank correlation; Fig. 2d), support-
ing that members of Enterobacteriaceae may contribute to uric
acid degradation. Despite with the same trends, these correlations
were not statistically significant within gout or healthy individuals
(Supplementary Fig. 6). Previous study showed that the ability to
degrade uric acid as a source of nitrogen and carbon was widely
distributed among the Enterobacteriaceae species®>°. Corre-
spondingly, we profiled the distribution of KOs in urate degrada-
tion pathways among 1135 complete bacterial genomes in KEGG
(Supplementary Fig. 7 and Supplementary Data 1). Proteobacteria
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(706 species) was the predominant contributor, within which the
largest family with urate-degrading KOs was Enterobacteriaceae
(119 species). These results suggested that Enterobacteriaceae spp.
may be involved in uric acid degradation in the gut and maintain
the stability of uric acid in human body.

Dietary fiber can be fermented by the gut microbiota to
generate SCFAs. Other than the chronic inflammatory diseases
such as inflammatory bowel disease?%, asthma?’, and allergies®® in
which SCFAs were extensively studied, SCFAs may also exert
influence on the inflammation in gout. For example, butyrate was
reported to be able to suppress acute gout arthritis by inhibiting
histone deacetylases and decrease MSU-induced production of IL-
1B, IL-6, and 1L-8%°. Acetate was also shown to promote resolution
of the inflammatory response induced by MSU in a mouse model
of gout®®. As SCFA-producing species was enriched in healthy
controls in our cohorts, we analyzed the abundance of genes
encoding key enzymes in SCFA production and found that the
relative abundance of genes responsible for propionate and
butyrate biosynthesis were higher in healthy controls, whereas
genes for acetate biosynthesis did not show significant differences
(Supplementary Fig. 8).

LPS is reported to play a crucial role in immune homeostasis>'
and may be involved in gout-associated inflammation32. We
observed enrichment of genes in LPS biosynthesis and lipid A
biosynthesis in gout patients (Supplementary Fig. 9a, b). The major
contributors to lipid A biosynthesis were Bacteroides and
Prevotella, both enriched in gout patients. Conversely, the lipid A
biosynthesis genes from Proteobacteria (FDR P=0.017) species,
including E. coli (FDR P=0.005) and K. pneumoniae (FDR P=
0.014), were elevated in healthy controls (Supplementary Fig. 9c).
It has been recently suggested that lipid A produced from
Enterobacteriaceae have six acyl chains and may be a beneficial
innate immune activator, whereas lipid A produced by Bacteroides
and Prevotella are structurally distinct (i.e. with four or five acyl
chain) and may inhibit innate immune activation and endotoxin
tolerance®>34. Therefore, it is tempting to speculate that there was
a turnover of lipid A biosynthesis between these two different
isoforms that contributed to the inflammation in gout. In support,
E. coli was reported to suppress arthritis through LPS3>36, Klebsiella
spp. were also shown to be depleted in autoimmune diseases,
including RA™® and AS®°,

Gut metagenome associated with gout clinical parameters

Next we sought to understand which gut microbial taxa and
functions were correlated with clinical parameters of gout
patients. PERMANOVA based on the microbial gene-level profile
revealed that disease status (gout versus healthy) was the
strongest factor (in terms of both P values and R? in PERMANOVA;
Supplementary Data 1), followed by SCr, SUA, and CRP (FDR P <
0.05).

We performed a three-pronged correlation analysis between
microbial species, functions and clinical parameters (Fig. 3).
Consistent with PERMANOVA, SUA and CRP exhibited strongest
correlations with microbial species and functional pathways. SUA
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was positively correlated with 25 gout-enriched species, whereas
it was negatively correlated with 22 control-enriched species, 20 of
which belonged to Proteobacteria. CRP exhibited significant
positive correlations with 40 gout-enriched species and negative
correlations with 38 control-enriched species. The Proteobacteria
species, in particular those from Enterobacteriaceae, showed
positive correlations with pathways in amino acid metabolism,
benzoate degradation and cell motility (i.e. flagella assembly and
chemotaxis), which together exhibited inverse correlations with
SUA and CRP. Conversely, the gout-enriched species from
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Firmicutes and Bacteroidetes exhibited moderate correlations with
gout-enriched functional pathways such as carbohydrate meta-
bolism, energy metabolism and lipid A biosynthesis. These results
suggested that the decreased abundances of Enterobacteriaceae
species likely contributed to reduced functional potentials in
amino acid metabolism and environmental sensing, which
together resulted in increased uric acid and systemic inflammation
in gout patients. The depletion of microbial genes in flagellar
assembly and bacterial chemotaxis was consistent with previous
findings in AS® and type 2 diabetes (T2D)*’. The correlation
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Fig.2 Gout-associated microbial gene functions related to urate degradation. a KEGG module for urate degradation. b Relative abundance
of KOs involved in urate degradation. Significantly enriched KOs were identified by Wilcoxon rank-sum test, and the boxes or KO names were
colored according to the direction of enrichment. Green, enriched in healthy controls (FDR P < 0.05). Boxes with no color or KO names with
black, no difference; boxes with gray, not detected in samples. ¢ Correlations between gout-associated genera and urate degradation-
associated KOs (red and purple for positive and negative correlation, respectively). Spearman correlation test: ‘plus’ denotes FDR P < 0.05;
‘asterisk’ denotes FDR P < 0.01; ‘hash’ denotes FDR P < 0.001. The enrichment direction and family classification of genera were shown in left
panel and the mean Spearman’s correlation coefficient of each genus with urate degradation-associated KOs was shown in the right panel.
d The associations between SUA and Enterobacteriaceae or Klebsiella. Spearman’s rank correlation was calculated by taking the species relative
abundance and SUA content. An inverse correlation was observed between SUA and Enterobacteriaceae and Klebsiella. For all box and whisker
plots, the center line represents median. The bounds of box represent the first and third quartiles. The upper whisker extends from the hinge
to the largest value no further than 1.5 * interquartile range (IQR) from the hinge. The lower whisker extends from the hinge to the smallest
value at most 1.5 * IQR of the hinge. The notch represents a confidence interval around the median as the median + 1.58*IQR/sqrt(n). hpxO
FAD-dependent urate hydroxylase, uraH 5-hydroxyisourate hydrolase, hpxQ 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase,

allB and hpxB allantoinase.

patterns mostly persisted when controlled for BMI. Two renal
function indicators, SCr and eGFR, were associated with 9 and
8 species, respectively. Few species were associated with ESR, urea
and age.

A classifier using gut metagenomic genes for gout

The distinct microbial differences between gout patients and
healthy controls prompted us to investigate if the gut microbiome
had the potential to discriminate gout patients from healthy
controls. A disease classifier was constructed based on the
microbial gene-level profile using a random forest model in the
discovery cohort. The top 100 differentially abundant genes were
included in the disease classifier. After feature selection based on
10-fold cross-validation (see methods), three genes (gene ID:
15049 [exo-alpha-sialidase], 415936 [N-6 DNA methylase],
1697136 [relaxase/mobilization nuclease domain-containing pro-
tein]) were retained with optimal performance, based on which a
classification model was established (Fig. 4a and Supplementary
Data 1). All three genes were significantly enriched in gout
patients in discovery cohort (Fig. 4b, FDR P < 3.76e-7) and two of
them (15049 and 415936) showed increasing trend in validation
cohort (FDR < 0.09). The area under the receiver operating curve
(AUCQ) reached 0.91 and 0.80 for discovery and validation cohorts,
respectively (Fig. 4c, d and Supplementary Data 1). To assess gout
specificity for these markers, we retrieved public case-control
metagenomic sequencing data for AS (n=211), RA (n = 169), T2D
(n=268) and obesity (OB, n=200) (see methods), processed
these datasets using the same pipeline and assessed the
discriminating potential of the three genes between patients
and controls. The AUCs in these cohorts were ranged between
0.50-0.54, suggesting the three-gene signature was gout-specific
(Fig. 4e). The three genes were taxonomically annotated to F.
mortiferum (species-level), Bacteroides (genus-level) and Bacter-
oides (genus-level) respectively. F. mortiferum was significantly
elevated in gout (FDR P = 5.53e-4, Supplementary Data 1) and all
differential Bacteroides spp. were also gout-enriched, supporting
possible relevance of the gene markers in gout biology. In
comparison, feature selection identified 13 species-level markers
for gout, which had reduced AUCs of 0.86 and 0.63 for discovery
and validation cohorts, respectively (Supplementary Fig. 10). These
results suggest that gout-specific microbial genes have the
potential as diagnostic markers for the disease.

Effect of uric-acid-lowering and anti-inflammatory
interventions on gut metagenome in gout

Previous studies have demonstrated the influence of therapeutic
drugs on gut microbiota®®, We assessed the gut microbiome
dynamics for a subset of gout patients receiving therapeutic
intervention at 2-week (2W, n = 61), 4-week (4W, n = 38), and 24-
week (24W, n=7) post-baseline time points. Most patients
received uric-acid-lowering and anti-inflammatory drugs (Supple-
mentary Fig. 11a and Supplementary Data 1). We excluded 9, 2,
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and 2 fecal samples from 2W, 4W, and 24W groups, respectively,
due to nonconventional medication use. The microbial gene
number and Shannon index were not significantly altered in gout
patients over the period of drug intervention (Supplementary Fig.
11b, ). However, principal coordinate analysis (PCoA) showed the
samples at 24W were separated from the rest of patient samples
and closer to healthy controls (Fig. 5a). Likewise, samples at 24W
had significantly higher Bray-Curtis dissimilarity from the baseline
samples compared to those at 2W or 4W (OW-2W vs OW-24W, P
=0.0023; OW-4W vs 0W-24W, P =0.0017; Fig. 5¢), indicating a
greater impact by intervention on the gut microbiome at 24 weeks.
Considering that the unmatched sample size at different time
points may bias the results, we selected five gout patients whose
fecal samples were collected at all four time points and the results
were consistent with those using all samples (Fig. 5b; Supple-
mentary Fig. 11d, e). Compared with baseline, the abundance of
22 bacterial species, including 9 gout-enriched species, were
decreased at 24W, whereas 8 species, including 2 control-enriched
species, were increased (Fig. 5d). Functionally, 10 KEGG pathways
that were significantly altered in gout patients versus controls at
baseline showed significant reversing trends at 24W (Fig. 5e).
There results suggested that uric-acid-lowering and anti-
inflammatory drugs may partially restore the gut microbes at
24-week treatment. The medications for gout, including benz-
bromarone, allopurinol, colchicine, celecoxib, and etoricoxib, have
been shown to impact gut bacterial growth in vitro by single drug
inhibition experiment®®. Considering the drugs interaction for
most gout patients receiving both uric-acid-lowering and anti-
inflammatory drugs in this study, there may be a more
sophisticated relationship in vivo between these drugs and gut
microbiota. Due to the observatory nature of our study, the impact
of specific drugs on the gut microbiome needs to be further
studied in interventional clinical trials of larger cohorts.

Comparison of gut metagenome between gout and other
autoimmune and metabolic disorders

To better understand the role of gut microbes in gout in the
context of broader chronic disorders, we compared the gut
microbial signature of gout with those of AS, RA, T2D, and OB
using public case-control metagenomic datasets, of which the
former two are autoimmune diseases, and the latter two are
metabolic diseases. The P value distribution of all genes in case-
control comparison within each dataset suggested that the
degree of overall gut microbial dysbiosis was intermediate in
gout patients compared with the other four diseases (Wilcoxon
rank-sum test, Fig. 6a). Similar results were observed when
controlling for the study sample size (Supplementary Fig. 12).
The differential bacterial species and gene families, as obtained in
case-control comparison within each dataset, were then cross-
compared between studies, to assess microbial taxonomic and
functional signatures for each type of disease. For taxonomic
signature, gout was most similar to AS patients as they shared 40
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tion in photosynthetic organisms

map00350 Tyrosine metabolism
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map03440 Homologous recombination

map02020 Two-component system
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map00360 Phenylalanine metabolism
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map00710 Carbon fi
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differential species (Fig. 6b and Supplementary Fig. 13a), whereas
RA was clustered with metabolic diseases OB and T2D. For
microbial functions, gout was clustered with both RA and AS (Fig.
6¢ and Supplementary Fig. 13b). Specifically, genes in oxidative
phosphorylation, alanine, aspartate and glutamate metabolism,
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biosynthesis were commonly enriched in gout, AS and RA
patients, whereas genes in bacterial chemotaxis and flagellar
assembly were depleted in all three disorders. These results
provide evidence that the dysbiosis signature of gout is likely
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Fig. 3 The three-pronged association heatmap of bacterial species, KEGG pathways and clinical parameters. The left panel denotes the
significant Spearman correlations (FDR P < 0.05) between bacterial species and clinical indices with or without adjustment for BMI, colored by
positive (red), negative (blue), or nonsignificant correlation (gray). The top panel denotes the significant association (Wilcoxon rank-sum test,
FDR P < 0.05) between KEGG pathways and clinical indices with or without adjustment for BMI. The bottom panel denotes the functional
category and directionality of enrichment in gout and controls for KEGG pathways colored by healthy control-enriched (green), gout patient-
enriched (red) or no significant difference (gray). The right panel denotes the family-level taxonomy and directionality of enrichment in gout
and controls for species colored by healthy control-enriched (green), gout patient-enriched (red), or no significant difference (gray). The
centered heatmap denotes the median Spearman correlation coefficient between each species and all KOs within a given KEGG pathway,
adjusted for background distribution by subtracting the median Spearman correlation coefficient between the species and all other KOs
outside the pathway (red: positive correlation; purple: negative correlation). A Wilcoxon rank-sum test was performed between Spearman
correlation coefficients between each species and all KOs within a given KEGG pathway and Spearman correlation coefficients between the
species all other KOs outside the pathway. Wilcoxon rank-sum test: ‘plus’ denotes FDR P < 0.05; ‘asterisk’ denotes FDR P < 0.01, ‘hash’ denotes

FDR P < 0.001.

more similar to those in autoimmune than metabolic diseases,
which implies that gut microbiota may exert common influence
on the development of autoimmune diseases. However, how gut
microbiota interact with host in autoimmune diseases remains
unclear and warrants investigation in mechanistic studies.

CONCLUSION

In summary, we identified taxonomic and functional signatures in
the gut microbiome associated with gout, and proposed a
hypothetical model of how gut microbes may influence the
development of gout based on our results (Supplementary Fig.
14). The enrichment of species in Bacteroides and Prevotella over
those in Enterobacteriaceae in gout may contribute to an altered
biosynthesis of six-acyl-chain lipid A to those with four or five acyl
chains, and together could exhibit negative effects in host
immune stimulation and endotoxin tolerance. Meanwhile, deple-
tion of Enterobacteriaceae species may contribute to dysfunction
in uric acid degradation which lead to increased systemic uric acid
accumulation and inflammations in gout. Other microbial func-
tions such as SCFA production and flagellar assembly may help
maintain a healthy gut microenvironment and their depletion in
gout may result in increased local and systemic inflammations
through modifying their host receptors. Our results showed a
dysbiosis of gut microbiome in gout that was associated with
increased SUA and systemic inflammation and may be partially
restored by uric-acid-lowering and anti-inflammatory drug inter-
ventions over time. Future multi-omic studies on larger long-
itudinal cohort, together with animal model experiments, are
needed to validate our findings toward a better understanding on
the underlying mechanisms of gut microbiota in gout.

METHODS

Subjects and sample collection

This study was approved by the Medical Ethics Committee of the Second
Affiliated Hospital of Guangzhou University of Chinese Medicine (B2016-
103-01). All participants provided written informed consent. Patients were
diagnosed with gout as determined by the 2015 ACR/EULAR classification
criteria®® and suitability for the treatment in this study. Patients and
healthy controls had to meet the following criteria: (1) 15-69 years of age;
(2) no antibiotics and glucocorticoid use within 3 months and 1 month,
respectively; (3) no gastrointestinal diseases, such as gastrointestinal
surgery, Crohn’s disease, ulcerative colitis, or acute diarrhea; (4) no history
of severe, progressive or uncontrolled cardiac, hepatic, renal, mental, or
hematological disease; and (5) no history of drug abuse. All participants
were informed about the purpose of this study and provided written
informed consent.

Between May 2016 and September 2018, we recruited 102 male acute
gout patients (SUA, 543.1+128.4umol/L) and 86 age-matched male
healthy controls (SUA, 358.6 £52.3 umol/L) for this study. 140 subjects
were recruited from 2016 to 2017 and used as discovery cohort. An
additional 48 subjects were recruited in 2018 as validation cohort. For
discovery cohort, after collecting fecal samples at baseline, gout patients
were treated with uric-acid-lowering (benzbromarone, allopurinol,
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febuxostat) and anti-inflammatory drugs (colchicine, celecoxib, etoricoxib,
betamethasone, voltaren), and fecal samples were collected after drugs
treatment for 2 weeks (2W, n = 70), 4 weeks (4W, n = 40), and 24 weeks
(24W, n=9). A total of 307 fecal samples were collected and frozen at
—80°C. Food frequency questionnaire was collected from all participants
to assess dietary differences between two groups and showed no
significant difference on specific dietary habits, including alcohol drinking,
probiotics/prebiotics and completely vegetable-based diet (Supplementary
Data 1).

Blood samples were collected and frozen at —80 °C until analysis. SUA,
SCr, urea nitrogen, CRP, and estimated glomerular filtration rate (eGFR)
were measured using the Cobas 8000 modular analyzer (Roche, Switzer-
land), and ESR was measured using the Test-1 analyzer (Alifax, Italy).

DNA extraction and library construction

The collected fecal specimens were centrifuged at 12000 x g at room
temperature for 5 min and the supernatant was discarded. 200 mg pellet
was weighted from each sample and used for total bacterial DNA
extraction with the E.Z.N.A Stool DNA Kit (OMEGA Bio-tek, USA) according
the manufacturer’s instructions. The quality of DNA was analyzed using
Qubit (Invitrogen, USA) and 1% agarose gel electrophoresis. The detail of
DNA library construction was described in Supplementary File 1. The final
DNA library was determined the average insert size using the Agilent 2100
Bioanalyzer (Agilent Technologies, USA) and quantified by ABI StepOne-
Plus Real-Time PCR system (Applied Biosystems, USA).

Metagenomic sequencing

Paired-end metagenomic sequencing was performed on the lllumina
HiSeq 4000 platform with an insert size of 350 bp and paired-end (PE)
reads of 150 bp for each sample. After removing adaptors, low quality and
ambiguous bases from the raw reads, the remaining reads were aligned to
human genome reference (hg19) by SOAPaligner (v2.22, parameters: -m
280 -x 420 r 1 -l 32 -s 75 -c 0.9) to remove human host DNA
contamination. The average rate of host contamination was 0.52 + 2.06%.
Finally, 2768.76 Gb of high-quality PE reads for the 307 samples were
acquired with an average of 9.02 Gb per sample (Supplementary Data 1).

Construction of gene, phylum, genus, species and KO profiles

The clean reads were aligned to the 11,446,577 genes in the reference
gene catalog*' using SOAPaligner (v2.22, parameters: -m 200 -x 1000 -r 2 -v
13-132-575-c 0.95), and 72.79 + 2.89% reads (n = 307) were mapped. The
gene abundance profile was calculated according to Wen et al8, with
minor modifications. Specifically, two types of alignments were considered
for calculation of gene abundance: (1) both pairs of reads matched to the
same genes with the correct insert-size; (2) one of the paired-end reads
matched to the end of the genes, while the other was located outside of
the gene. The matched reads were then split into two parts: (1) U: reads
match this gene only; and (2) M: reads also match another gene. The gene
abundance was also split into two parts, Ab(U) and Ab(M). The unique part
Ab(U) was calculated as the number of reads divided by the length of the
gene. For the multiple part Ab(M), each of the reads in set M was assigned
to several parts according to the unique abundance of genes with which
the reads matched. For a given sample, the relative abundance of gene i
was calculated using below procedure.

Step 1: Calculation of the abundance of uniquely matched reads (Ab(U)):

Ab(U) =~ D)
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Fig. 4 The gut metagenomic classifier for gout. a The model was trained using relative abundance of microbial genes in discovery cohort.
All microbial genes were first ranked based on their variable importance and then added sequentially into the model. The error curves were
plotted for the five trials of 10-fold cross-validation in random forest classification as the number of genes increased. The black curve indicates
the average cross-validation error of the five trials (in gray). The minimum error in the averaged curve plus the standard deviation at that point
was used as the cutoff for feature selection. The model containing the smallest number of genes with an error below that cutoff was chosen as
the optimal classifier. The red line marks the number of genes in the optimized model. b The relative abundance of three microbial gene
markers in discovery and validation cohorts. Wilcoxon rank-sum test: ‘asterisk’ denotes FDR P < 0.05; ‘double asterisks’ denote FDR P < 0.01;
‘triple asterisks’ denote FDR P < 0.001. ¢ Receiver operating curve (ROC) for the discovery samples. d ROC for the validation samples (healthy
control, n=23; gout patient, n = 25). e ROCs for gout and four public case-control metagenomic datasets for ankylosing spondylitis (AS),
obesity (OB), rheumatic arthritis (RA), and type 2 diabetes (T2D) using three gout-associated gene markers. The AUC for each disease was
shown in parenthesis. For all box and whisker plots, the center line represents median. The bounds of box represent the first and third
quartiles. The upper whisker extends from the hinge to the largest value no further than 1.5 * interquartile range (IQR) from the hinge. The
lower whisker extends from the hinge to the smallest value at most 1.5 * IQR of the hinge. The notch represents a confidence interval around
the median as the median * 1.58*IQR/sqrt(n).

genus and >95% for species), according to the scheme in Li et al.*2. The
relative abundances of phyla, genera, species and KOs were calculated

Step 2: Calculation of the abundance of multiple matched reads (Ab(M)):

Ab(U
Co= # ) by aggregating the relative abundance of the genes that were assigned
>_in1 Ab(Uy) to the corresponding taxonomic or functional ranks. MetaPhlAn3 was
used for reads-based taxonomic profiling to complement with the above
M x Co 24
Ab(M) = 3 (3) results**.

Step 3: Calculation of the relative abundance of gene (Ab(G)):
Ab(U) + Ab(M)
25(Ab(U) + Ab(M))

U: The number of reads that were uniquely matched to gene i.
L: The length of gene i.

Rarefaction curve, gene counts and biodiversity analysis

Rarefaction analysis was performed to assess the gene richness in the
healthy controls and gout patients. For a given number of samples, we
performed random sampling 100 times in the cohort with replacement
and estimated the total number of genes that could be identified from

Ab(G) =

M: The number of reads that were non-uniquely matched to gene i.
N: The number of different genes to which the read in M was aligned.

After removing genes detected in less than 10% of the discovery
samples (n=259), 1,564,977 genes remained. To improve the gene
taxonomy annotation, genes were aligned to the National Center for
Biotechnology Information (NCBI) microbial reference genomes (includ-
ing 5847 microbial genomes, v20171114) and NT database (v20170924)
using BLAT (v.36) and Megablast (v2.2.26) with default parameters,
respectively. The alignments of each gene with at least 70% gene length
coverage and 65% identity were retained. Each gene was assigned the
taxonomy of the alignment(s) with 50% or higher consensus above the
similarity threshold for taxonomic rank (>65% for phylum, >85% for

Published in partnership with Nanyang Technological University

these samples by the Chao2 richness estimator®. The total gene counts in
each sample were calculated as the number of genes in reference gene
catalog that were mapped by the reads**. The alpha diversity and beta
diversity were estimated by the Shannon index and Bray—Curtis distance,
respectively. To adjust for the effect of the various data sizes among the
samples, these analyses were based on the gene profile that was randomly
sampled to 11 million matched reads.

Gene function analysis

Differentially enriched KEGG pathways and modules were identified
according to reporter score® from the Z-scores of individual KOs (KEGG
database release 79). Pathways or modules were considered significantly
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Fig. 5 Alternation of gut microbiota by therapeutic intervention in gout. a PCoA based on Bray-Curtis distance at gene level of healthy
controls and gout patients before and after treatment (OW, n=77; 2W, n=61; 4W, n=38; 24W, n=7). The 95% confidence ellipses were
shown for all subgroups. b PCoA based on Bray—Curtis distance at gene level of healthy controls and five time point paired gout patients. The
95% confidence ellipses were shown for all subgroups. ¢ Box and whisker plot of beta diversity of gout patients between before and after
treatment. Wilcoxon rank-sum test: Double asterisks denote P<0.01. d The relative abundance of bacterial species was modulated after
24 weeks treatment (P < 0.05, paired Wilcoxon rank-sum test, n = 7). Bacterial species in color green and red indicate healthy control-enriched
and gout patient-enriched in discovery cohort, respectively. e Microbial gene functions were changed after treatment. Purple, enriched in
healthy controls or patients after treatment; red, enriched in patients before treatment. Asterisk denotes reporter score of pathways > 1.65 or
< —1.65. For all box and whisker plots, the center line represents median. The bounds of box represent the first and third quartiles. The upper
whisker extends from the hinge to the largest value no further than 1.5 * interquartile range (IQR) from the hinge. The lower whisker extends
from the hinge to the smallest value at most 1.5 * IQR of the hinge. The notch represents a confidence interval around the median as the
median £ 1.58*IQR/sqrt(n).

different if the |reporter score| > 1.65, corresponding to 95% confidence to were aligned to these sequences using BLASTP (v2.2.26, best hit with e-
a normal distribution. value < 1e—5, identity >70% and coverage >70%), and their relative
For analysis of urate degradation genes, species that contain at least one abundance were calculated as KOs.

urate degradation gene in the KEGG database (v79) were collected, and
the corresponding 16S sequences were downloaded from the Ribosomal

Database Project (set14). Then, 16S sequences were aligned by PyNAST Random forest classifier

(v1.2.2), and trees were constructed by fasttree (v2.1.7). The tree and heat We constructed a classifier to discriminate samples of healthy controls and
map were visualized in iTOL?, gout patients based on a random forest model (randomForest 4.6-14

The protein sequences of SCFA-producing enzymes were obtained from package) using the relative abundance of microbial genes'®. A 10-fold
the NCBI database®’. Genes in the reference gut microbiome gene catalog cross-validation approach was employed with five trials to evaluate the
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Fig. 6 Comparison of gut microbiome between gout and other autoimmune and metabolic diseases. a The distribution of P values by
Wilcoxon rank-sum test for all microbial genes in case-control comparison within each of the AS (n=211), gout (n = 140), OB (n =200), RA
(n=169), and T2D (n = 268) datasets. b Comparison of differential species in AS, gout, OB, RA and T2D. Purple, enriched in healthy controls;
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and T2D. Purple, enriched in healthy controls; red, enriched in patients. Asterisk denotes reporter score of pathways > 1.65 or < —1.65.

Published in partnership with Nanyang Technological University npj Biofilms and Microbiomes (2021) 66

11



np)

Y. Chu et al.

12

performance of the prediction model. Feature selection was performed
according to the scheme in Feng et al.'®. Specifically, all microbial genes
were ranked based on their variable importance and added sequentially
into the model. The averaged cross-validation errors were plotted as the
number of genes increased. The minimum error in the averaged curve plus
the standard deviation at that point was used as the cutoff for feature
selection. All gene sets with an error less than the cutoff were listed and
the set with the smallest number of genes was chosen as the optimal set.
The receiver operating characteristic curves (ROC) for both discovery and
validation cohorts were plotted and the area under curve (AUC) was
calculated using the pROC package®.

Comparison of the gut microbiota between gout and other
diseases

Published metagenomic sequencing data of AS (SRP100575 and
ERP005860; 114 healthy controls and 97 patients with AS)®, RA
(ERP006678; 74 healthy controls and 95 patients with RA)'®, type 2
diabetes (T2D) (SRP008047 and SRP011011; 185 healthy controls and 183
patients with T2D)*” and obesity (OB) (ERP013562; 105 healthy controls
and 95 patients with OB)*® was retrieved from NCBI or the European
Bioinformatics Institute (EBI). All sequencing reads were mapped to the
same reference gut gene catalog and analyzed for gene function using the
same pipeline as the gout cohort.

Statistical analysis

All statistical analyses were performed by R (v3.4.0). Differential relative
abundance of genes, taxa and KOs were detected by Wilcoxon rank-sum
test with an adjusted P value (corrected by the Benjamini-Hochberg) <
0.05. Enrichment in healthy controls or gout patients was determined
according to the higher mean rank-sum. The enterotype of each sample in
discovery cohort was identified by the PAM clustering algorithm using the
relative abundance of genus. Calinski-Harabaze (CH) index was used to
assess the optimal number of clusters®®. Permutation multivariate analysis
of variance (PERMANOVA) based on Bray-Curtis distance was performed at
the gene level to assess the impact of the clinical indices on gut
microbiota, and the permutations was set to 9999. The correlations
between the relative abundance of differentially genera and KOs involved
to urate degradation, the relative abundance of species and clinical indices
were calculated by Spearman’s rank correlation coefficient and visualized
by heatmap in R using the ‘complexheatmap’ package. The association
between species, BMI and other confounders was calculated by MaAsLin
with default parameters®’.

Associations between bacterial species, bacterial functions and clinical
indices were characterized according to the method in Pedersen et al.>2
Specifically, to assess association between each species and each microbial
KEGG pathway, a Spearman correlation analysis was performed between
the abundances of the species and each individual KO in the KEGG
pathway, and a Wilcoxon rank-sum test was then performed between the
Spearman correlation coefficients for all KOs within the pathway and all
other KOs outside the pathway (the so-called ‘background distribution’).
The strength of correlation between the species and the KEGG pathway
was denoted as the median Spearman correlation coefficient between the
species and all KOs within the pathway, corrected for background
distribution by subtracting the median Spearman correlation coefficient
between the species and all other KOs outside the pathway. The
association between KEGG pathways and clinical indices was performed
in a similar manner. The association between bacterial species and clinical
indices was performed by standard Spearman correlation. Additional
partial Spearman correlation analyses were performed to adjust for BMI in
associating with clinical indices.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

The metagenomic shotgun sequencing data for all samples have been deposited in
the CNGB Nucleotide Sequence Archive (CNSA) under accession code CNP0000284.
Other data that support the findings of this study are available within the paper and
its Supplementary Information files or from the corresponding author upon
reasonable request.
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