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Abstract

Introduction: Studies that examine the role of rare variants in both simple and complex disease 

are increasingly common. Though the usual approach of testing rare variants in aggregate sets 

is more powerful than testing individual variants, it is of interest to identify the variants that are 

plausible drivers of the association. We present a novel method for prioritization of rare variants 

after a significant aggregate test by quantifying the influence of the variant on the aggregate test of 

association.

Methods: In addition to providing a measure used to rank variants, we use outlier detection 

methods to present the computationally efficient Rare Variant Influential Filtering Tool (RIFT) to 

identify a subset of variants that influence the disease association. We evaluated several outlier 

detection methods that vary based on the underlying variance measure: interquartile range (Tukey 

fences), median absolute deviation and standard deviation. We performed 1000 simulations for 

50 regions of size 3kb and compared the true and false positive rates. We compared RIFT 

using the Inner Tukey to two existing methods: adaptive combination of p-values (ADA) and a 
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Bayesian hierarchical model (BeviMed). Finally, we applied this method to data from our targeted 

resequencing study in idiopathic pulmonary fibrosis (IPF).

Results: All outlier detection methods observed higher sensitivity to detect uncommon variants 

(0.001 < MAF > 0.03) compared to very rare variants (MAF < 0.001). For uncommon variants, 

RIFT had a lower median false positive rate compared to the ADA. ADA and RIFT had 

significantly higher true positive rates than that observed for BeviMed. When applied to two 

regions found previously associated with IPF including 100 rare variants, we identified six 

polymorphisms with the greatest evidence for influencing the association with IPF.

Discussion: In summary, RIFT has a high true positive rate while maintaining a low false 

positive rate for identifying polymorphisms influencing rare variant association tests. This work 

provides an approach to obtain greater resolution of the rare variant signals within significant 

aggregate sets; this information can provide an objective measure to prioritize variants for follow

up experimental studies and insight into the biological pathways involved.
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Introduction

The number of studies that investigate the role of rare genetic variants in complex diseases 

has been steadily increasing. This is in part due to the hypothesis that rare variant effects 

might account for the discrepancy between estimated heritability for complex traits and that 

accounted for by common variant associations [1]. In addition, sequencing technologies 

have become less expensive such that more studies have the ability to study rare variation in 

large numbers of individuals or families. A study of circulating adiponectin levels found that 

among Hispanics, low frequency variants explained more variation in the trait than common 

variants [2]. Rare variants have been shown to have modest [3] or large effect sizes [1,4]. 

Rare variants can be associated with increased [5] or decreased risk of disease [6]. Often 

rare variants influencing a trait are only observed in a few families [7]. Thus, rare variants 

exhibit a range of association patterns and can exhibit an important contribution to human 

trait variation.

Studies of rare variation often require either whole genome sequencing or targeted 

sequencing on large study populations. Even with large sample sizes, there often remains 

insufficient power for testing rare and uncommon variants individually [8,9]. This is due to 

the low frequency of observations as well as the higher testing burden, as there are far more 

rare variants compared to common variants in the genome. To overcome this issue, methods 

for testing rare/uncommon variants often involve aggregating information across a genomic 

region [10]. Variants may be grouped into sets based on genomic information (e.g. gene 

bodies, exons), linkage disequilibrium blocks, association windows, or into overlapping 

sliding windows of a fixed size in terms of physical distance or number of rare variants 

included. Methods for testing rare variants in aggregate fall into three main types: burden 

tests, variance component tests, and combined burden and variance component tests. The 

underlying assumption of burden tests is that the effects of the rare variants within a given 
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set are in the same direction. Variance component tests ease this constraint and have higher 

power to detect disease association with a mixture of protective and deleterious rare variants. 

Given the underlying model by which rare variants are associated with disease in a given 

region is unknown, tests which combine the burden and variance component approaches 

weight the given contributions of the burden and variance components to improve power.

Once a set of variants is found to be associated with a phenotype of interest, a logical next 

step is the identification of the plausible drivers of the association that might be the best 

statistical candidates for functional studies. Experimental validation of all rare variants in a 

significant set is generally unreasonable based on time and expense. The ability to narrow 

down the list of rare variants to those most likely to be contributing to the association 

signal could help target experimental validation. Additionally, reporting the rare variants 

most likely to be causal within a significant set of variants focuses functional efforts and can 

aid in comparison of results across studies.

Several methods have been proposed for statistically identifying the most likely causal 

variants [11-15]. One method uses a classic backward elimination procedure; a variant is 

removed from the set if its removal decreases the aggregate test p-value, and this process 

is repeated until no improvement in the p-value from removing a variant is observed [11]. 

Related stepwise procedures could be envisioned that use either the p-value or various 

information criteria (e.g., Bayes information criteria, Akaike information criterion). Another 

method considers the problem of prioritizing variants in aggregate tests as a variable 

selection problem using kernel machine methods [16]. Although this method was developed 

for prioritization of common variants rather than rare variants, conceptually it is reasonable 

for rare variants. There are also previously published methods which test each variant 

individually, such as using a Fisher’s Exact Test and applying the adaptive combination of p

values procedure (referred to as ADA) to the resulting p-values [12]. This method has been 

shown to be more powerful than the backward elimination method proposed by Ionita-Laza, 

et. al., 2014. Most recently, the BeviMed method applies a Bayesian hierarchical model and 

makes inference on whether a rare variant is causal based on power posteriors [15]. Methods 

like the backward elimination method and adaptive combination of p-values are iterative 

in nature and therefore computationally intensive. In addition, the Bayesian approach is 

developed for genome-wide testing of rare variant associations in rare Mendelian disorders 

under specific (unknown) modes of inheritance rather than being more broadly applicable.

We present a novel method for prioritization of rare variants within a given set of variants 

after the set of variants is found to be significant using aggregate testing methods. Building 

on the rich outlier-detection statistical literature, we present a computationally efficient 

approach to be applied following identification of a set of variants that is agnostic to 

putative function. Our approach, which we refer to as RIFT for Rare Variant Influential 

Filtering Tool, leverages the influence of the variant on the aggregate test of association by 

quantifying the change in the aggregate test when that variant is removed. It is particularly 

well suited for rare and uncommon variants, the most common applications of aggregate 

tests, but is applicable to aggregate testing of variants of all frequencies. When applied to 

a significant set of rare/uncommon variants, RIFT provides a scheme for quantifying the 

contribution of an individual variant to the overall association signal, while adjusting for 
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covariates. This method also provides a quantitative measure by which to rank variants for 

further investigation and several visualizations to aid in evaluation of a region of interest.

Methods

Overview

We present the Rare Variant Influential Filtering Tool (RIFT) to quantify the effect of 

each variant on an aggregate test of association (Figure 1). In our simulations, we consider 

variants with a minor allele frequency (MAF) of <3% (i.e., rare and uncommon), but note 

that the method is directly applicable to any set of variants, including common variants 

or mixtures of rare and common variants. First, we describe our jackknife (leave-one-out) 

approach to obtain a score for each variant when applied to a set of rare variants from 

an aggregate test. We then describe several outlier detection methods that aim to identify 

influential variants (IVs) when applied to the variant scores within a set. We perform 

simulations to evaluate the jackknife scores and the ability of the outlier detection methods 

to identify variants simulated to be associated with the outcome. Finally, we apply RIFT to 

recently published rare variant regions found to be significantly associated with idiopathic 

pulmonary fibrosis [17].

Localization Approach

For a given set of rare variants, we define the p-value resulting from the aggregate test as 

p(0). For rare variant j, we calculate the p-value from the aggregate test of the variants within 

the set excluding variant j and refer to this p-value as p(−j). P-values are transformed into 

chi-square statistics (df = 1) using the inverse cumulative distribution function (CDF) of the 

chi-square distribution (Equation 1), where χ( − j)
2  corresponds to p(−j) and χ(0)

2  corresponds 

to p(0). For each rare variant j, we calculate a delta chi-square score, denoted Δχ( − j)
2 , which 

represents the change of the chi-square statistic when the rare variant j is removed (Equation 

2). For variant j, Δχ( − j)
2  provides a relative measure of how the results of the aggregate test 

compare with and without variant j. Larger negative values indicate larger contributions to 

the overall test statistic.

Equation 1: Inverse CDF function of the chi-square distribution (df = 1) can be written in 

terms of the inverse CDF of the normal distribution, N(0,1) denoted as Φ−1.

χ( − j)
2 = Φ−1 p( − j) + 1

2
2

(1)

Equation 2: Delta chi-square score

Δχ( − j)
2 = χ( − j)

2 − χ(0)
2 (2)
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Outlier Detection for Identifying IVs

The delta chi-square score provides a quantitative measure to rank the rare variants within a 

significant set according to the impact of that variant on the aggregate test of association. In 

addition to ranking, it is also desirable to identify the subset of polymorphisms influencing 

the set’s statistical association. We considered this as an outlier detection objective, whereby 

unusually large delta chi-square scores across a significant set of variants correspond to 

the set of association influencing polymorphisms. Sample values more extreme than a 

pre-specified cutoff are determined to be outliers. Outlier detection methods are rooted in 

using an estimate of the sample variance that is robust to outliers, and robust measures of 

spread are often applied for that purpose. We considered two non-parametric approaches to 

identifying outliers and compared these to a parametric approach.

Non-parametric variance estimation approaches

In 1977, Tukey defined the commonly-known descriptive univariate boxplot that displays 

the interquartile range (IQR) as a measure of spread (IQR = distance between the first [Q1] 

and third [Q3] quartiles; [18]. Boundaries based on the IQR are referred to as “fences”, 

and observations lying outside the fences are considered outliers. The inner fence is defined 

by Q1 - 1.5*IQR and Q3 + 1.5*IQR; the outer fence is defined by Q1 - 3*IQR and Q3 + 

3*IQR. Note that the outer fence boundary is further away from the median than that of the 

inner fence boundary, and is therefore more conservative in classification of outliers. The 

IQR is robust to extreme values in the data and therefore identification of outliers using 

the IQR are superior to methods that rely on parametric variance estimators in the presence 

of outliers [19]. Additionally, the IQR and corresponding Tukey fences do not make any 

distributional assumptions and have been shown to be effective as long as the data are not 

highly skewed [19].

Another measure of spread that does not assume a parametric distribution for the data is the 

median absolute deviation (MAD). Identification of outliers based on the MAD is provided 

in Equation 3 (further details can be found in Leys, Ley, Klein, Bernard, & Licata, 2013). 

Similar to the IQR, the MAD as a measure of spread is robust to extreme values compared 

to the standard deviation, which is greatly influenced by extreme values. The MAD requires 

specification of a constant and a cutoff; as others have used for criteria in outlier detection, 

we set the constant corresponding to the normal approximation (b = 1.4826) and a cutoff 

value of three; observations more than three MAD away from the median are considered 

outliers [21,22].

Equation 3:

MAD = b ⋅ median ∣ Xj − X ∣ ; X = median(X) (3)

For completeness, we compare the cutoffs based on both the Inner and Outer Tukey fences 

and MAD to that of the standard deviation (SD), in which observations more extreme 

than three standard deviations from the mean are considered outliers. This method is often 

referred to as the three sigma rule [23]. Given that we expect causal variants to reduce the 
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chi-square statistic when removed, we further limited classification of IVs to variants having 

a negative delta chi-square score.

Simulated Data

We follow a previously developed simulation approach to generate rare variant data with a 

binary outcome [24,25]. Specifically, to generate case-control rare variant data under both 

null and alternative hypotheses, we simulated 10,000 haplotypes for a 1MB genomic region 

under a coalescent model with parameters consistent with a European population using the 

software package COSI [26]. We considered 50 different genomic regions of size 3kb and 

included only rare variants with MAF < 0.03. To generate samples of cases and controls 

from the population, we repeatedly selected two haplotypes at random and converted these 

haplotype data to genotypes at each variant location. We determined the probability of 

subject k being a case, defined as pk, based on a logistic regression equation where βk 

represents the coefficient for variant k (Equation 4). Gjk corresponds to number of minor 

alleles carried by subject k for variant j and β0 the disease prevalence. For all simulations, 

the disease prevalence was fixed at 0.05. Case status, Yk, is specified using the Bernoulli 

(pk) distribution.

Equation 4:

logit(pk) = β0 + ∑
j = 1

J
βjGjk

Y k ∼ Bernoulli(pk)
(4)

Consistent with previously published simulation of rare variant data, we defined the 

coefficient for variants under the alternative (Equation 5) to be a function of the population 

minor allele frequency (MAFj) for variant j [24,25]. This relationship between the 

coefficient and the population MAF results in larger odds ratios for more rare variants. The 

constant, c, defines the strength of association between the causal variants and the outcome.

Equation 5:

βj = c log10MAFj (5)

With c set to 0.4, this corresponds to an odds ratio of 3.32 for a variant with a MAF of 0.001 

and 7.39 for a variant with a MAF of 0.00001. After determining case status for a large 

sample of individuals, we sub-sampled to obtain a specified number of cases and controls. 

As expected, the sub-sampling of the population results in some variants (both under the null 

and alternative) to be no longer observed in a given sample.

Note that our approach can be applied to any such aggregate test (for a review of methods 

for rare variant aggregate tests, please see Seunggeung Lee, Abecasis, Boehnke, & Lin, 

2014). For exposition of the method, we use a combined burden and variance component 

test, the Sequence Kernel Association Optimal Unified Test (SKAT-O), due to its popularity 

in rare variant analyses [25]. We used the recommended settings – including a linear 
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weighted kernel, estimation of p-values using the “davies” method and the variant weights 

as a function of the MAF using the Beta(1,25) distribution. If the SKAT-O p-value met 

the significance level (here, alpha level of 0.05), we then applied our localization method 

to obtain a chi-square statistic and delta chi-square score for each variant. We considered 

the proportion of the total 1000 samples with a SKAT-O p-value that met the significance 

as an estimate of the power of SKAT-O for that region. SKAT-O performs a grid search 

to determine the optimal value of the parameter ρ that weights the relative influence 

of the burden and variance statistic. The parameter ρ determined to be optimal for the 

full data was then fixed when calculating the leave-one-out p-values. This insured that 

within a significant set, the jackknife p-values and corresponding chi-square statistics are 

comparable. To identify IVs, we applied the previously described outlier detection methods 

to the resulting delta chi-square scores. For every variant, we calculated the proportion 

of times it was labelled as an IV across the samples it was observed; for variants under 

the alternative, this corresponds to a true positive rate and for variants under the null, this 

corresponds to a false positive rate.

Comparison with existing methods

We compared the performance of RIFT to that of ADA and BeviMed by applying 

both methods to simulated datasets. Due to the superior performance and computational 

efficiency of ADA compared to the backward selection procedure, we chose to limit our 

comparisons to these two methods [12]. We followed our simulation approach above, where 

we simulated 50 genomic regions of size 3kb with 10% of rare variants under the alternative 

and effect size parameter of 0.4. Given RIFT is developed for regions which are previously 

found to be associated via an aggregate test of association, we restricted our comparisons 

of methods to regions where the SKAT-O was significant at 0.05. We performed ADA 

using the default parameters: 1) a MAF threshold of 0.05, 2) calculation of p-values using 

Fisher’s exact test, 3) assuming an additive model and 4) 1000 permutations for calculation 

of the final region ADA test p-value. For each replicate, the final set of variants (per-site 

p-value smaller than the optimal value) were classified as IVs. We applied BeviMed using 

the default parameters: 1) for each variant, a prior probability of association of 0.01 and b) 

prior probability of a dominant model of inheritance of 0.5. BeviMed returns the posterior 

probability of association for both the dominant and recessive models of inheritance. For 

each of these models, we classified any variant with a posterior probability greater than 0.9 

as a IV. We compared the above methods to our localization method (RIFT) using both 

the Inner Tukey and MAD criteria applied to the delta chi-square scores (referred to as 

RIFT:Inner Tukey and RIFT:MAD). To compare the performance of the above methods, we 

calculated the true positive rate and false positive rate across samples in which a variant was 

observed.

Impact of Varying Sample Characteristics on RIFT Performance

To determine the robustness of RIFT performance to varying characteristics of a given 

sample, we performed additional simulations that varied the following parameters: # 

haplotypes simulated (1,000 and 100,000), sample size (5,000 cases and 5,000 controls), 

region size (0.75kb), disease prevalence (10%), coefficient of disease association (c = 0.8) 

and proportion of alternative variants (20%). For each, we simulated 500 samples for each 
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of 10 regions while fixing the other simulation parameters to those used in the comparisons 

with the ADA and BeviMed methods. We summarized these different conditions by the 

structure of the resulting genotype data (number of variants, etc.), number of samples 

meeting SKAT-O significance level (power of SKAT-O) and finally in the performance of 

RIFT such as the relationship between delta chi-square score, MAF and true positive rate 

(Supplemental Table 1).

Application to Rare Variant Regions Associated with IPF

We applied our leave-one-out localization method to data from a recently published targeted 

resequencing study in idiopathic pulmonary fibrosis (IPF) [27] as part of the Global 

IPF Collaborative Network (http://www.ucdenver.edu/academics/colleges/medicalschool/

departments/medicine/GlobalIPF/Pages/GlobalIPF.aspx). We applied RIFT with the goal of 

identifying rare variants within regions associated with IPF to focus follow-up experimental 

validation studies. We report results for two regions, each containing 50 rare variants. 

To provide insight into putative function, we include functional annotation information 

obtained from SNPDOC (https://wakegen.phs.wakehealth.edu/public/snpdoc3/index.cfm) 

and HaploReg v4.1 [28].

Results

Characteristics of simulated regions

Among the 50 simulated 3kb regions, each region included between 43 and 73 rare 

variants (MAF < 3%) with a median of 58.5 variants. Though we explored a range of 

the proportion of variants assumed to be under the alternative, we report the results for 

simulations where 10% of the variants in a given region were simulated to be under the 

alternative. Results are qualitatively very similar for higher proportions of variants under the 

alternative (Supplemental Table 2). After drawing random samples and selecting 1000 cases 

and 1000 controls to reflect the sampling process, the average proportion of variants under 

the alternative across the 50 regions ranged from 9.7% to 15.2% with a median of 12.3%. 

Samples for a given region often contained higher than 10% alternative variants due to the 

over-sampling of cases to obtain an equal number of cases and controls (Supplemental Table 

2). We applied our localization method to samples that had a SKAT-O p-value less than 

0.05. With the low proportion of variants (10%) simulated under the alternative and effect 

size parameter, c, of 0.4, the observed median power of SKAT-O across the 1000 simulated 

samples was 22.0%. As expected, increasing the effect size parameter to 0.8 for the same 50 

regions dramatically increased the median power of SKAT-O to 99.1% (Supplemental Table 

2).

Performance of Our Localization Methods

Across all regions, we found an interesting relationship between the delta chi-square score 

and the MAF (Figure 2). Delta chi-square scores were more extreme (and more variable) 

for variants with smaller odds ratios and correspondingly higher MAFs. The delta chi-square 

score is most sensitive to uncommon variants (0.03 > MAF ≥ 0.001) with modest effect 

sizes and least sensitive to rare variants (MAF < 0.001) with stronger effect sizes. Positive 

delta chi-square scores were observed for some variants under the alternative; however, the 
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average delta chi-square score was negative for all but three variants out of a total of 288 

variants simulated under the alternative across the 50 regions. The general directionality 

of the delta chi-square score is consistent with what we expect for causal variants, where 

the removal of a causal variant results in a larger p-value, smaller chi-square statistic and 

therefore a negative delta chi-square score. The relationship between the delta chi-square 

score and MAF was consistent when varying the number of haplotypes simulated; however, 

we observed an even stronger relationship when increasing the sample size from 1,000 cases 

and controls to 5,000 cases and controls (Supplemental Figure 2).

Consistent with what was observed for the delta chi-square score, all outlier detection 

methods observed higher sensitivity to detect uncommon variants (0.03 > MAF ≥ 0.001) 

compared to very rare variants (MAF < 0.001). The Inner Tukey fence had the highest true 

positive rate (correctly labeling a variant under the alternative as an IV) compared to other 

methods (Figure 3). For variants with a MAF ≥ 0.001, corresponding to an odds ratio less 

than 3.32, the Inner Tukey observed a median true positive rate of 0.60 (IQR: 0.51, 0.87) 

compared to the SD method having a median of 0.30 (IQR: 0.10, 0.59; Supplemental Table 

4). Among the 288 variants under the alternative, the Inner Tukey fence obtained the highest 

true positive rate 94.1% of the time and obtained a higher true positive rate than the other 

three methods 74.7% of the time. The false positive rate (inaccurately labeling a null variant 

as an IV) was remarkably low across all four methods, with the SD method having the 

lowest rate. For variants with MAF ≥ 0.001, the SD method had a median false positive rate 

of 0 (IQR: 0, 0) and the Inner Tukey a median of 0.09 (IQR: 0.06, 0.18; Supplemental Figure 

1, Supplemental Table 4). Taken together, the Inner Tukey has the best characteristics for 

correctly labeling a variant as an IV, as evidenced by the high true positive rate and low false 

positive rate. The SD method was substantially more conservative in labeling variants as IVs 

under the alternative, especially for those variants having a MAF ≥ 0.0001.

Comparison with existing methods

Similar to RIFT, we observed a trend among existing localization methods in terms of 

having increased ability to identify IVs at uncommon allele frequencies compared to rare 

(Figure 4, Table 1). While comparing the ADA and the BeviMed to the Inner Tukey and 

MAD, the ADA had the highest true positive rate across the entire MAF spectrum we 

considered, whereas BeviMed (dominant and recessive) observed the lowest true positive 

rate. For uncommon variants (MAF ≥ 0.001), the ADA had a median true positive rate of 

0.92 (IQR: 0.78, 0.98) compared to BeviMed under the dominant model having a median 

of 0.12 (IQR: 0.00, 0.35). The higher sensitivity of the ADA to correctly label IVs for rare 

MAFs is at the cost of having a high false positive rate (Figure 5; median false positive rate 

of 0.22 [IQR: 0.17, 0.34]). As described above, the Inner Tukey observed a lower median 

false positive rate of 0.09 (IQR: 0.06, 0.18). In summary, both of our leave-one-out methods 

(Inner Tukey and MAD) produced a high true positive rate for rare variants with MAF > 

0.001 (comparable to ADA) while maintaining low false positive rates across the entire 

spectrum of MAF.
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Influential Variants in IPF Associated Loci

In a rare variant analysis of targeted sequencing in 3,017 idiopathic pulmonary fibrosis (IPF) 

cases and 4,093 controls, we found several sets of rare variants associated with IPF. Rare 

variants were grouped into gene-sets or sliding windows and tested for association using 

SKAT-O. We applied RIFT to two significant rare variant windows, each of which contained 

50 rare variants. The most significant window is located on chromosome 5 and spans the 5’ 

UTR, exon 1 and intronic regions of the TERT gene.

This window had a Bonferroni-adjusted SKAT-O p-value of 9.21x 10−16 after adjusting 

for sex and the most strongly association common variant in the region, rs4449583. After 

applying RIFT, there were three variants called outliers by both the Inner Tukey fence and 

MAD cutoffs (Figure 6). Annotation with SNPDOC found the variant with the largest delta 

chi-square (−28.7) to have unknown function and the second ranked IV (delta chi-square = 

−17.5) to be in a non-coding RNA transcript in the 5’ untranslated region of TERT (Table 

2). We additionally applied the localization method to a window with a less significant 

association (SKAT-O Bonferroni-adjusted p-value = 0.0215; adjusted for sex only as there 

is not a top common variant in the region) as an example of a region with a more moderate 

aggregate rare variant association signal. This window is located in the RTEL gene on 

chromosome 20 spanning both exons and introns. Our localization method identified 3 IVs 

by both the Inner Tukey fence and MAD cutoffs with the most outlying variant having a 

negative delta chi-square score = −6.77 (Figure 7; Table 2). This variant was annotated to be 

located in an intron of the RTEL gene and based on annotation with HaploReg, has enhancer 

histone marks identified in 8 tissues including lung and a lung carcinoma cell line. The 

other two IVs were each annotated to be in the coding region of RTEL and are nonsense 

mutations.

Discussion

The delta chi-square score we outline here provides an estimate of the contribution of a 

given variant to the aggregate test statistic for a set of variants. This measure can be used 

to rank variants in order to prioritize follow-up studies. We also compared several outlier 

detection methods to identify variants as having a disproportionate impact on the aggregate 

test of association, likely increasing the probability of capturing a causal variant. We found 

the inner Tukey fence to have the greatest sensitivity, and we recommend this method 

to obtain a set of variants most likely to be driving the aggregate signal. As expected, 

our method has higher sensitivity to detect uncommon variants (0.001 < MAF > 0.03) 

compared to extremely rare variants (MAF < 0.001). This underscores the difficulty in 

detecting extremely rare variants individually and thoughtful alternative weighting schemes 

might provide leverage to better capture very rare variants. The ADA method obtained the 

highest sensitivity for uncommon variants; however, this was at a cost of low specificity. We 

found BeviMed lacked sufficient sensitivity in the classification of IVs under our simulation 

framework. We recognize this may be due to using their recommended parameter of 0.90 

posterior probability for classification of IVs. However, it is unclear how to determine an 

optimal value for the posterior probability, which likely depends on the features of each 

region (e.g., number of true causal variants, effect size of the variants, total number of 
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variants tested). Without requiring user optimization or selection of parameters, RIFT with 

the Inner Tukey classification approach achieves higher sensitivity and specificity to ADA 

and BeviMed, respectively.

The rare variants identified by our method to have the greatest evidence for influencing 

the association with IPF have been previously found to be associated with other diseases 

(Table 2). Common, non-coding variants in the promoter region of the TERT gene have 

been found in several human cancers [29,30]. Specifically, the two IVs with the largest delta 

chi-square score (rs398123017 and rs373740199) have been identified in studies of familial 

and sporadic melanoma and thyroid cancer [31-34]. These mutations have been found to 

increase transcription of TERT and maintain telomerase activity resulting in long telomeres, 

thereby promoting tumorigenesis [35].

On chromosome 20, two of the three rare variants identified by our method are missense 

mutations in the RTEL gene and have been previously identified in dyskeratosis congenita 

and the related Hoyeraal-Hreidarsson syndrome, both of which are diseases that result due 

to failures in telomere maintenance [36-38]. Though extensive research was not performed 

for all variants within our significant sets (as we’ve previously noted is often prohibitive), 

identification of these variants in other diseases supports the ability of our approach to detect 

plausible impactful rare variants that drive our observed association with IPF.

Though we have only evaluated the delta chi-square statistic and corresponding outlier 

detection methods for data containing unrelated individuals, RIFT is not restricted to 

aggregate tests for this specific study design. Although we illustrated our approach using 

SKAT-O in a case-control framework, the methods are widely applicable to other aggregate 

tests and study designs. For example, the method could be applied using tests developed for 

samples of related individuals such as famSKAT [39].

Unlike many other localization methods, RIFT does not rely on outside functional 

information and is able to distinguish among variants with no known function that may 

be contributing to disease risk. We recognize that incorporating functional information can 

increase the power to identify causal rare variants. RIFT is applicable if variants were 

selected for aggregate testing based on putative function as RIFT maintains, and perhaps 

even improves, sensitivity for smaller numbers of variants included in the aggregate test 

(Supplemental Table 5). However, methods which rely on functional information are limited 

by the depth and accuracy of the annotation. Our method complements methods that utilize 

functional information to provide increased coverage in capturing plausible causal rare 

variation. Therefore, we recommend not filtering to variants with putative function either 

before or after aggregate testing, but instead applying RIFT agnostic of putative function 

and, if desired, further prioritizing those identified IVs based on putative function.

RIFT is available as an R package from https://github.com/rachelzoeb/RIFT. The time to 

complete an analysis with RIFT is dependent on the computation time of the aggregate 

test used. SKAT-O is fast for sets with a relatively small number of variants (e.g., < 100 

rare variants) and requires parallelization for large significant sets. Future work will require 

optimization of RIFT for larger groups of variants such as sets based on gene boundaries.
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Greater resolution of rare variant signals within significant sets of variants can provide 

valuable insight into the mechanism of disease and narrow the number of variants to 

prioritize for follow-up experimental studies. Often, aggregate tests contain such a large 

number of rare variants that follow up of each rare variant within the set would be 

prohibitive, even after filtering down to variants with functional evidence for causality. 

In addition, filtering to variants with known function precludes the ability to identify new 

variants with as-yet unknown functional roles. In addition to being agnostic to functional 

information, RIFT can be applied after application of any aggregate test, including those that 

include common variants. The ease and flexibility of this approach will aid investigators in 

post-aggregate association testing in a wide range of genetic studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Flow chart of RIFT.
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Figure 2. Delta chi-square score more sensitive to the more frequently observed rare variants 
with correspondingly smaller effect sizes.
Mean delta chi-square score plotted by odds ratio for variants simulated under the alternative 

across all 50 regions. Data were simulated to have 10% variants under the alternative with 

effect size parameter c = 0.4 (see Equation 5).
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Figure 3. True positive rate (proportion correctly labeled IV) for variants under the alternative 
for each outlier detection method of RIFT as a function of MAF.
Corresponding odds ratio is also provided for reference. Smoothed line and confidence 

band provided by the loess method. Data were simulated to have 10% variants under the 

alternative with effect size parameter c = 0.4 (see Equation 5).
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Figure 4. True positive rate (proportion correctly labeled IV) for variants under the alternative 
for each localization method as a function of MAF.
Corresponding odds ratio is also provided for reference. Smoothed line and confidence 

band provided by the loess method. Data were simulated to have 10% variants under the 

alternative with effect size parameter c = 0.4 (see Equation 5).
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Figure 5. False positive rate (proportion incorrectly labeled IV) for variants under the null for 
each localization method as a function of MAF.
Smoothed line and confidence band provided by the loess method. Data were simulated to 

have 10% variants under the alternative with effect size parameter c = 0.4 (see Equation 5).
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Figure 6. Chi-square (top and delta chi-square scores (bottom) by genomic position for the 
IPF-associated rare variant loci on chr5 (bp: 1294397-1295255).
Color for the top plot corresponds to SNP-DOC functional annotation and for the bottom 

plot, color corresponds to outlier by the Inner Tukey method and shape corresponds to 

outlier by the MAD method.
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Figure 7. Chi-square (top and delta chi-square scores (bottom) by genomic position for the 
IPF-associated rare variant loci on chr20 (bp: 62324166-62324601).
Color for the top plot corresponds to SNP-DOC functional annotation and for the bottom 

plot, color corresponds to outlier by the Inner Tukey method and shape corresponds to 

outlier by the MAD method.
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Table 1.
Summary of true positive and false positive rates, stratified by MAF for each localization 
method.

The outlier detection methods for RIFT (MAD and Inner Tukey) were applied to the delta chi-square scores. 

Simulation included 1000 samples per region, across 50 regions. Data were simulated to have 10% variants 

under the alternative with effect size parameter c = 0.4 (see Equation 5).

Method
True Positive Rate - Median (IQR) False Positive Rate – Median (IQR)

MAF < 0.001 MAF ≥ 0.001 MAF < 0.001 MAF ≥ 0.001

RIFT: MAD 0.03 (0.01, 0.11) 0.54 (0.43, 0.85) 0.00 (0.00, 0.01) 0.08 (0.04, 0.15)

RIFT:Inner Tukey 0.04 (0.01, 0.15) 0.60 (0.51, 0.87) 0.00 (0.00, 0.01) 0.09 (0.06, 0.18)

BeviMed:DOM 0.00 (0.00, 0.00) 0.12 (0.00, 0.35) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)

BeviMed:REC 0.00 (0.00, 0.00) 0.02 (0.00, 0.27) 0.00 (0.00, 0.00) 0.00 (0.00, 0.01)

ADA 0.17 (0.08, 0.35) 0.92 (0.78, 0.98) 0.01 (0.00, 0.05) 0.22 (0.17, 0.34)
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