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Abstract

In metastatic cancer, the degree of heterogeneity of the tumor-immune microenvironment 

and its molecular underpinnings remain largely unstudied. To characterize the tumor-immune 

interface at baseline and during neoadjuvant chemotherapy in high-grade serous ovarian cancer 

(HGSOC), we performed immunogenomics analysis of treatment-naive and paired pre/post

chemotherapy treated samples. In treatment-naive HGSOC, we find that immune cell-excluded 

and inflammatory microenvironments co-exist within the same individuals and within the same 

tumor sites, indicating ubiquitous variability in immune cell infiltration. Analysis of tumor 

microenvironment cell composition, DNA copy number, mutations and gene expression showed 

that immune cell exclusion was associated with amplification of Myc target genes and increased 

expression of canonical Wnt signaling in treatment-naive HGSOC. Following neoadjuvant 

chemotherapy, increased natural killer cell infiltration and oligoclonal expansion of T cells were 

detected. We demonstrate that the tumor-immune microenvironment of advanced HGSOC is 
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intrinsically heterogeneous and that chemotherapy induces local immune activation, suggesting 

that chemotherapy can potentiate the immunogenicity of immune-excluded HGSOC tumors.

The complex interplay between tumor cells and the tumor microenvironment (TME) affects 

treatment outcome in cancer1–3; however, it is unclear how this occurs in ovarian cancer4,5. 

Studying the interplay between tumor progression, the TME and treatment response in an 

advanced stage multisite disease is challenging due to the difficulty of obtaining tumor 

samples from multiple sites from the same individual, which frequently harbor distinct 

immune microenvironments5–8. Moreover, interactions between different cell populations of 

the TME are plastic and change depending on extrinsic perturbations such as therapy9.

High-grade serous ovarian cancer (HGSOC) typically presents with multisite peritoneal 

tumors, and is uniformly treated with either upfront surgical debulking or delayed primary 

surgery after neoadjuvant chemotherapy (NACT)4. Thus, HGSOC exemplifies the ideal 

disease to study the characteristics of the TME at multiple sites in the same patient and 

quantify changes following perturbation with therapy. In HGSOC, the relatively low somatic 

point mutation load, high aneuploidy levels and high copy-number alterations have been 

associated with low immunogenicity4,5. It has been shown that T cell infiltration (CD3+/

CD8+) plays a major role in predicting survival in HGSOC in a primary disease setting10,11. 

Recent studies have started to define the interplay between mutational intra-tumor 

heterogeneity (ITH) and T cell interactions5, as well as the potential effect of chemotherapy 

on T cell infiltration in HGSOC12. However, the extent of TME heterogeneity, its underlying 

mechanisms, and its impact on therapeutic response remain unknown. To address these 

questions, we here performed systematic immunogenomic analyses of HGSOC samples 

from two different patient cohorts: (i) a treatment-naive cohort consisting of 49 samples 

from 10 patients, and (ii) a paired pre/post neoadjuvant chemotherapy cohort consisting of 

40 patients with 80 paired samples.

RESULTS

Intrapatient transcriptomic heterogeneity is largely explained by immune-related gene 
signatures.

To investigate the TME of HGSOC in a treatment-naive setting, we analyzed the 

transcriptome of 38 primary and metastatic tumor samples from 8 out of 10 patients 

collected prospectively (Fig. 1a,b and Supplementary Table 1 a,b). To provide accurate 

sampling, ovarian tumor masses and peritoneal metastases were resected and placed on 

lesion-specific 3D molds designed from tumor segmentation data from high resolution 

T2-weighted magnetic resonance (MR) images. Tumor sampling was performed according 

to imaging-based phenotypically distinct “habitats”, as previously defined13 (see Methods 

and Supplementary Note). We first performed clustering analysis of the whole transcriptome 

and independently the protein-coding transcriptome. The overall gene expression of tumor 

samples was highly patient specific, irrespective of anatomical site or tumor cellularity (the 

fraction of tumor cells in the admixture of cells in a sample) using t-distributed stochastic 

neighbor embedding (t-SNE) or hierarchical clustering (Fig. 1c and Supplementary Fig. 1a). 

To focus on well-defined biological processes and signaling pathways, we performed single 
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sample gene-set enrichment analysis (ssGSEA)14 using the 50 hallmark gene sets15 as well 

as stromal and immune gene signatures, and tumor cellularity based on bulk tumor mRNA 

using the ESTIMATE method16. Tumor cellularity derived from mRNA correlated with 

the whole-exome sequencing (WES) derived tumor cell fraction (Supplementary Fig. 1b, 

Pearson’s rho correlation coefficient = 0.78, P = 1.49 x 10−6), estimated from copy number 

alteration (CNA) with TITAN17. We categorized the MSigDB hallmark gene sets into 

five classes: oncogenic, cellular stress, immune, stromal, and other. Principal component 

analysis (PCA) showed that most of the gene set enrichment variation between samples 

(62% of variation from the two first PCs) could be explained by oncogenic, immune, and 

stroma-associated gene sets (Fig. 1d and Supplementary Fig. 1c). In contrast to the full 

transcriptome analysis, patient-specific clustering was less evident, indicating that tumors 

from different patients share common patterns of pathway activation and non-cancer cell 

related gene sets. To investigate which gene sets explained the observed variance, we 

computed the principal component feature loadings and displayed them in a variable 

factor map (Fig. 1e). This analysis showed that PC1 (47% of variation) is explained by 

tumor cellularity, since immune and stromal gene set vectors had an opposite direction to 

oncogenic vectors (Fig. 1e inset and Supplementary Fig. 1d). Unsupervised hierarchical 

cluster analysis corroborated sample clustering as a function of tumor cellularity, and 

separated clustering of oncogenic and immune gene sets despite low overlapping of genes 

within hallmark classes (Supplementary Fig. 1e,f).

Since differential expression of immune-related gene signatures explained much of the 

variation between the samples, we further investigated the extent of intrapatient immune 

heterogeneity by computing the ESTIMATE immune score for each sample16. We compared 

the immune scores of the samples collected with the HGSOC case study that we previously 

published7, and immune scores of 307 treatment naive ovarian cancer samples from The 

Cancer Genome Atlas (TCGA)18. Overall, the immune scores of our cohort fell within the 

expected range (Fig. 1f), suggesting that the immune characterization is representative at 

the population level. Some patients (01, 04, 10, and the case study) showed an intrapatient 

variation comparable to the inter-patient variation observed at the population level by the 

TCGA ovarian cancer samples, which indicates that, within a single individual, distinct 

immune microenvironments can co-exist at diagnosis of HGSOC. Consistent with our 

prior report7, we recapitulate the observation that tumors with high immune infiltration 

(ESTIMATE immune score) and immunosuppressive Wnt signaling tend to be mutually 

exclusive (Supplementary Fig. 1g, Kendall’s tau correlation coefficient = −0.34, P = 

0.003) with case 04 showing a negative correlation (Supplementary Fig. 1g, Pearson’s rho 

correlation coefficient = −0.95, P = 0.015). When samples were divided into low and high 

WES-derived tumor cellularity using the median value as a cut-off, we corroborated that 

samples with high tumor cellularity have a higher ssGSEA normalized enrichment scores 

(NES) of Wnt signaling (Supplementary Fig. 1h, two-sided Mann-Whitney rank test, P = 

0.01).
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Co-existence of distinct tumor-immune microenvironments and spatial T cell infiltration 
heterogeneity in HGSOC.

To further characterize the tumor microenvironment of HGSOC, we performed multicolor 

immunofluorescence (IF) staining and quantification of CD4+, CD8+, and regulatory T 

cells (CD4+ FOXP3+) in at least 10 tumor sections excluding stromal areas in each 

sample leading to a compendium of 440 imaged and quantified tumor sections (Fig. 2a,b, 

Supplementary Fig. 2a,b, and Supplementary Table 2a). This multi-region and multi-site IF 

analysis shows that treatment-naive HGSOC patients have variation in T cell infiltration in 

tumor sites, ranging from less than 1% (e.g. patient 06) to more than 10% of total cells in 

some sites (e.g. patient 10). Furthermore, some patients’ tumor sites demonstrated marked 

variation in T cell infiltration within the same tumor site across different imaging habitats 

(e.g. patient 01). Using hierarchical random-effect models (see Methods and Supplementary 

Table 2b), we found higher variability of T cell infiltration between and within habitats (i.e. 

within the same tumors site) than across tumor sites and across patients in CD8+, CD4+ and 

Tregs (Fig. 2a and Supplementary Fig. 2a–c, bootstrap P-values < 0.01), suggesting that the 

spatial intra-lesion variation of T cell infiltration is greater than the variation across sites and 

individuals.

Transcriptional analysis points to Wnt and Myc pathways enriched in high tumor cellularity 
samples.

To evaluate the infiltration levels of immune and stromal cell types other than T cells, 

we compared different TME cell deconvolution methods and cell-type specific signatures 

(Supplementary Note). We benchmarked seven different methods and ConsensusTME 

(Supplementary Fig. 3a,b)19 using WES-derived tumor cellularity (TITAN) and T cell 

counts from our HGSOC cohort as well as WES-derived tumor cellularity (ABSOLUTE) 

and leukocyte methylation scores from TCGA HGSOC samples. ConsensusTME consistently 

performs as one of the top three methods in the different benchmarks tested (Fig. 3a,b, 

Supplementary Fig. 3c, and Supplementary Table 3). We applied ConsensusTME to the 

treatment-naive HGSOC transcript data to explore if cell types besides CD8+, CD4+ and 

Tregs had noticeable patterns of infiltration across the samples. We first visualized the 

variation across samples using the NES of estimated ConsensusTME gene sets of cells 

and corroborated the intra-patient TME heterogeneity with highly and lowly infiltrated 

tumors of different cell-types (Fig. 3c and Supplementary Fig. 3d). As expected, PC1 

separated samples by tumor cellularity explaining 74% of variance (Supplementary Fig. 

3e,f). Analyzing the next principal components (PC2 and PC3), the cell-types explaining 

most of the variation were cytotoxic, NK cells and T cells (opposite to tumor cellularity), 

and fibroblasts and endothelial cells (toward tumor cellularity) (Fig. 3c,d and Supplementary 

Fig. 3d).

We next assessed whether specific genes or transcriptional programs were associated with 

variability in immune infiltration. We used the median WES-derived tumor cellularity 

(TITAN) of the cohort to classify high and low tumor cellularity samples as an orthogonal 

tumor cellularity quantification (see Methods). We performed a differential expression 

analysis leveraging sample-patient dependency (i.e. considering that multiple tumor samples 

come from the same individual) to increase statistical power20. As expected, genes related 
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to immune activation were highly expressed in low tumor cellularity samples, but only 

four genes (BAIAP2L1, RCC2, CLDN12, PRKAA2) were highly expressed in high tumor 

cellularity samples (Fig. 3e). Gene ontology (GO) enrichment analysis showed that genes 

with higher expression in low tumor cellularity samples are enriched in inflammation-related 

processes such as humoral response, response to IFNγ, and leukocyte activation (false 

discovery rate (FDR) < 0.05) (Fig. 3f). No significant GO enrichment was found with the 

genes significantly highly expressed in high tumor cellularity.

To investigate which molecular signaling pathways or TME cell-types were more highly 

enriched in high tumor cellularity samples, we performed ssGSEA using the t-statistic of the 

differential expression analysis. As expected, immune and stromal signatures were highly 

enriched in low tumor cellularity samples, as well as IFNγ and IFNα response. In contrast, 

Myc and Wnt signaling appeared to be highly enriched in high tumor cellularity (Fig. 3g and 

Supplementary Table 3b). We corroborated the mutual exclusivity between immune and Wnt 

signaling scores in TCGA ovarian cancer samples (Supplementary Fig. 3g, Kendall’s tau 

= −0.17, P = 9.2 x 10−6) and found the same trend for Myc signaling (Supplementary 

Fig. 3g, Kendall’s tau = −0.17, P = 5.2 x 10−6). In our treatment-naive cohort, Myc 

signaling showed a consistent negative trend with the immune signature across all patients 

(Supplementary Fig. 3h, Kendall’s tau = −0.38, P = 0.001) and was enriched in high 

cellularity tumors (Supplementary Fig. 3i, independent t-test P = 0.006). Considering the 

TME, only monocytes appeared more prevalent in high tumor cellularity samples (Fig. 3h 

and Supplementary Table 3c). These observations suggest that high Myc and Wnt signaling 

could be considered at least partially independent of tumor proliferation and may contribute 

to immune cell exclusion as suggested by previous studies21–25.

Integrated transcription and mutation analysis support Myc and Wnt signaling associated 
with immune cell exclusion.

We next performed whole-exome sequencing (WES) to characterize the mutational 

landscape of immune exclusion in these tumors. In total, 47 tumor samples from 10 

patients with treatment-naive multi-site HGSOC were sequenced (Fig. 1a) along with 10 

normal samples and analyzed for single-nucleotide variations (SNVs) and small insertions 

and deletions (see Methods). Furthermore, we used TITAN to infer DNA copy-number 

alterations (CNAs), tumor ploidy, cellularity, and subclonality (Supplementary Fig. 4a)17. As 

expected, we found a negative correlation between WES copy-number derived cellularity 

estimates (TITAN) and the ESTIMATE immune cell score used in the prior analyses 

(Supplementary Fig. 4b, Pearson’s rho = −0.82, P = 9.96 x 10−10). We found that WES

derived tumor cellularity calculated by TITAN was positively correlated with ASCAT26 

(Supplementary Fig. 4c, Kendall’s tau = 0.69, P = 1.01 x 10−12) and negatively correlated 

with IF-based estimates of T cell infiltration (Supplementary Fig. 4d, CD8+ T cells 

Kendall’s tau = −0.25, P = 0.028).

As expected18,27, TP53 mutations were detected in almost all patients (9 of 10, 

Supplementary Table 4) as well as frequent amplification (≥ 6 copies) of KRAS and MYC 
(Fig. 4a). In agreement with KRAS driving cell proliferation via MAP kinase signaling28, 

KRAS-amplified samples were more highly enriched in cell cycle-related G2M checkpoint 
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(Supplementary Fig. 4e, Welch’s test, P = 0.03), which was further supported by Ki67 

staining (Supplementary Fig. 4f, Kendall’s tau = 0.34, P = 0.006). This suggests that the 

G2M checkpoint program in high cellularity tumors is a by-product of KRAS amplification 

rather than a driver of immune exclusion. No associations were observed between tumor 

cellularity and mutations in HGSOC tumor suppressor genes or oncogenes18 (Fig. 4a), nor 

were mutations in HLA genes detected (Polysolver), in line with a previous analysis in 

primary HGSOC samples29.

In ovarian cancer, copy-number aberration and chromosomal instability can be 

driven by distinct mutational processes such as BRCA1-BRCA2-related homologous 

recombination deficiency (HRD), gene breakage events and amplification-associated 

foldback inversions30–32. To assess such processes, we quantified previously defined copy 

number signatures constructed from features including breakpoint counts, change in copy 

number, and segment size. This enabled us to quantify exposure to mutagenic cellular 

processes contributing to genomic instability in ovarian carcinoma (Supplementary Fig. 4g 

and Supplementary Note)32. We then applied this same WES-based copy-number signature 

analysis on the treatment-naive cohort with high confidence purity and ploidy fits based 

on TITAN (n = 42, Supplementary Table 1c). In agreement with our previous study32, 

we found that signatures 1 and 4 had high mean exposure (both 30% in our cohort, 

Fig. 4b). Signature 1 reflects oncogenic Ras-MAPK signaling, telomere shortening, and 

amplification-associated fold-back inversions, while signature 4 associates with oncogenic 

PI3K and Myc signaling, and whole-genome duplication. In addition, we found evidence of 

mutagenesis due to homologous recombination deficiencies BRCA1-BRCA2-related HRD 

signature 3 (mean exposure of 6%) and non-BRCA1-BRCA2-related HRD signature 7 

(mean exposure of 19%). As expected, the germline mutant BRCA2 patient 04 had relatively 

high mean exposure of signature 3 (14% compared to 6% of the full cohort).

We next asked whether specific copy-number signatures associated with immune cell 

infiltration. Samples with high exposure of signature 4 associated with low ESTIMATE 

immune score (Fig. 4c, P = 0.043 Welch’s test). In general, signature 4 and signature 1 

showed opposite trends, with signature 4 correlating negatively and signature 1 positively 

with immune score, also after accounting for the compositional nature of the data using 

isometric log ratio (ILR) transformation33 (Supplementary Fig. 4h–j). These data suggest 

that specific mutational processes in HGSOC may be related to distinct tumor-immune 

microenvironments.

To investigate whether specific pathway related SNVs associate with tumor cellularity, we 

performed mutation enrichment analysis controlling for sample mutation load and patient 

dependency (see Methods). We detected functionally relevant mutations in apoptosis (FDR 

= 0.0004), reactive oxygen species (FDR = 0.0004), stromal (FDR = 0.0031) and Wnt 

signaling (FDR = 0.0097) gene sets, which were enriched in tumors with high tumor 

cellularity (Fig. 4d, Supplementary Fig. 4k, and Supplementary Table 4bₓe; likelihood 

ratio test and Benjamini, Hochberg and Yekutieli false discovery rate). We then evaluated 

whether the functional mutation enrichment (non-silent SNVs divided by the total number 

of genes in that gene set) affects the expression of pathway genes and found that the 

stromal gene set showed a negative correlation (Kendall’s tau = −0.35, P = 0.008) and Wnt 
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signaling a positive correlation (Kendall’s tau = 0.32, P = 0.01) with their respective NES 

(Supplementary Fig. 4I). The mutations in the Wnt signaling pathway found to be highly 

damaging as predicted by PolyPhen-234 were DKK1K211N (PolyPhen-2 = 1), PTCH1F826L 

(PolyPhen-2 = 0.972), and a truncating mutation in NKD1Q241*, all of which encode 

for negative regulators of Wnt signaling35–37. These mutations were enriched in multiple 

tumor samples with high tumor cellularity (Supplementary Table 4) and high NES of Wnt 

signaling pathway (Supplementary Fig. 4I). Together, these results suggest that higher levels 

of Wnt signaling can be a consequence of functional mutations in regulators of the Wnt 

pathway, although these are rare mutations in primary tumors.

To assess gene expression regulation from tumor cells with CNAs, we integrated 

transcriptomic, genomic and tumor cellularity data. In brief, for a given gene, a positive 

correlation of gene expression with CNA and tumor cellularity indicates that the gene is 

expressed predominantly in cancer cells as opposed to non-cancerous cells (e.g. immune, 

stromal, etc.). We computed these correlations genome-wide and performed GSEA on 

the ranked correlation coefficients of genes belonging to hallmark gene sets (Fig. 4e 

and Supplementary Fig. 4m). As expected, immune- and stroma-related gene sets show 

a negative correlation of gene expression with CNAs and tumor cellularity (e.g. EMT, 

inflammatory pathway, TNF-α). In contrast, Myc targets have a positive correlation between 

gene expression CNAs and tumor cellularity, indicating overexpression of Myc targets is 

cancer-derived and induced by CNAs. However, MYC transcription factor amplification 

was not significantly (P > 0.05) associated with mRNA expression, nor did MYC mRNA 

expression correlate with tumor cellularity (Supplementary Fig. 4n, similarly for MYCN). 

Our integrated transcriptomic, CNA and IF analysis provides clues to the interpretation of 

tumor gene expression as Myc target genes may be selectively amplified and overexpressed 

during tumor development.

Chemotherapy induces immune activation in HGSOC.

To investigate the effect of chemotherapy on the TME and evaluate whether the intra-patient 

TME heterogeneity described above could be a potential confounding factor, we studied 

the transcriptome of 18 site-matched and 38 site-unmatched tumors before and after 

treatment with neoadjuvant platinum and taxane chemotherapy (9/17 site-matched cases, 

19/23 site-unmatched cases with transcriptome data, Fig. 5a,b and Supplementary Table 

5a–c). Using t-SNE dimensionality reduction on the whole transcriptomes, we found that 

treated and untreated samples clustered separately (Fig. 5c and Supplementary Fig. 5a), in 

contrast to the samples of the treatment-naive cohort that cluster in a patient-specific manner 

(Fig. 1c and Supplementary Fig. 1a). Using the ssGSEA NES of the hallmark gene sets, 

we observed that pre- and post-treatment sample groups were separated by the two first 

principal components (Fig. 5d and Supplementary Fig. 5b,c). Only site-matched samples 

showed that PC1 values (52% variation) were higher in pre-treatment samples relative to 

post-treatment ones (Fig. 5d, paired t-test test, P = 0.038), with higher PC1 values positively 

associated with oncogenic pathways, while immune/stromal hallmarks were negatively 

associated (Supplementary Fig. 5c). In addition, immune signature NES showed a negative 

association with Myc signaling (Kendall’s tau correlation coefficient = −0.39, P = 0.025) 

and a similar trend with Wnt signaling (Kendall’s tau correlation coefficient = −0.31, P = 
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0.075) in site-matched samples (Supplementary Fig. 5d). Using ConsensusTME, pre- and 

post-treatment samples clustered separately for site-matched but not site-unmatched samples 

(Fig. 5e and Supplementary Fig. 5e,f).

Intra-patient TME heterogeneity masks chemotherapy-induced immune activation.

To evaluate differences between pre- and post-treatment samples, we performed an 

exploratory analysis leveraging paired comparisons using the Hallmark and ConsensusTME 

gene set NES’s independently for site-matched and site-unmatched samples (Fig. 6a). 

Site-matched samples showed an increase of immune related hallmark gene sets and 

ConsensusTME estimated immune cells in post-treatment samples, while site-unmatched 

samples showed an increase of cellular stress pathways reflecting cellular and metabolic 

stress after cytotoxic drug exposure, but no difference of ConsensusTME gene sets. We 

performed multivariate analysis on innate, adaptive, and cytotoxic cells (CD8+ and NK cells) 

comparing pre- and post-NACT samples (Supplementary Fig. 6a). Only an increase of NK 

cells and the cytotoxic gene set following NACT in the site-matched samples was detected, 

while no difference was observed in the site-unmatched samples (Fig. 6b and Supplementary 

Fig. 6b). There was no significant difference in CD8+ and cytotoxic cells, suggesting that 

NK cells infiltrate and become active after NACT.

NK cells are enriched after cisplatin treatment in preclinical ovarian cancer models.

The ConsensusTME analysis of the site-matched samples suggested that cytotoxic NK 

cells infiltrated after chemotherapy. To experimentally validate this finding, we employed 

two syngeneic ovarian cancer models: UPK1038 and ID839. Phenotypically, implantation 

of UPK10 into the peritoneal cavity leads to large tumors with minimal ascites, while 

intraperitoneal ID8 cell implantation results in carcinomatosis and ascites. We generated an 

aggressive ID8 cell line clone by sequential passaging through immune competent mice. 

The resulting cell line leads to rapid development of carcinomatosis and ascites, allowing 

for early assessment of therapy efficacy (Supplementary Fig. 6c–e). To assess the impact 

of cisplatin in these complementary models, tumor-bearing C57BL/6 mice were treated 

with cisplatin or PBS as control, and tumors (UPK10) or peritoneal washings (ID8) were 

collected and processed for multi-parameter flow cytometry (Fig. 6c,d). NK cells were 

significantly enriched after cisplatin treatment in the peritoneal fluid of the ascites ID8 

model (P = 0.004) with similar trend observed in the UPK10 tumors, although not meeting 

statistical significance (P = 0.083). No significant increases in other immune populations 

were observed in both models (Supplementary Fig. 6f,g). These observations are in line with 

ConsensusTME predicted changes in the site-matched samples as only the combination of 

NK and cytotoxic gene set scores in the multivariate analysis (Fig. 6b and Supplementary 

Fig. 6a,b) was significantly enriched after NACT (multivariate T2 test: P = 0.0437; logistic 

regression: P = 0.012).

Chemotherapy induces oligoclonal expansion of T cell subsets across patients.

To evaluate T cell infiltration and oligo-clonal expansion between pre- and post-NACT 

samples, we performed TCR sequencing. Since T cell activation leads to clonal expansion 

of particular T cell clonotypes, TCR clonality measures can be used as a surrogate for 

T cell activation upon (neo)antigen recognition7,40,41. TCR oligoclonal expansion was 
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significantly higher in post-NACT site-matched samples (Fig. 7a, paired test P = 0.001), 

but no significant difference was observed in site-unmatched samples (paired test P = 0.19). 

T cell fraction was also significantly higher in post-NACT site-matched samples (paired test 

P = 0.03), while a slightly lower T cell fraction was observed in site-unmatched post-NACT 

tumors, potentially as a result of the variability of immune infiltration between omentum 

metastases (pre-NACT biopsies) and primary tumors (post-NACT debulking surgery). We 

explored whether features of unique vs. shared TCR sequences across patients could provide 

further nuance in the observed effects of chemotherapy on T cell expansion. In the site

matched patient group, there was a higher number of shared TCRs between pre- and post

treatment samples compared to the site-unmatched group (11,032 vs. 6,524, chi-squared test 

of independence of variables P < 2.22 x 10−308, Fig. 7b). Moreover, the number of samples 

sharing the same TCRs was higher in post-NACT compared to pre-NACT samples (Fig. 

7c, one-way chi-squared test P = 2.8 x 10−75). We compared the number of shared TCRs 

before and after NACT, as well as the number of unique pre- and post-NACT TCRs per 

patient. The number of unique TCRs post-NACT was higher than the number of unique 

pre-NACT TCRs in site-matched samples (Fig. 7d top, Nemenyi post-hoc test q = 0.07), 

while in unmatched samples no difference was observed between pre- and post-treatment 

unique TCRs (Nemenyi post-hoc test q = 0.464). The majority of the new TCRs do not 

present a clonal expansion shown by their productive frequency (Fig. 7d bottom). We did 

not identify statistically significant associations between pre-treatment gene signatures and 

NACT-induced increase of TCR clonality in site-matched samples although some trends 

were observed (Supplementary Fig. 7d,e). Together, these results provide evidence that 

NACT induces an immune activation in the local TME of HGSOC, and that intra-patient 

inter-site TME heterogeneity can obscure this clinically relevant observation among tumor 

sites within patients.

DISCUSSION

Despite advances in treatment, the prognosis for patients with HGSOC remains poor, 

with frequent development of resistance to therapy. Genetic and molecular analyses of 

asynchronous and disseminated tumors within patients have recently started to shed light on 

tumor clonal dynamics and evolutionary properties of different tumor types42–44; however, 

the extent of TME heterogeneity in advanced HGSOC has only begun to be revealed5,7,45. 

We explored the main sources of variation in the transcriptomic space among treatment

naive samples and detected that transcriptomic pathway heterogeneity is mainly explained 

by the presence or absence of immune and stromal cells. The degree of immune signature 

variation within patients was similar to the extent we observed in a case study of metastatic 

HGSOC, where different tumor immune microenvironments were associated with clinical 

outcome7. In the present study, all patients presented at least one tumor with low immune 

infiltration, suggesting that HGSOC is characterized by distinct microenvironmental niches, 

which could underpin primary and acquired resistance to therapies9,46,47. Integration of 

transcription, copy-number and tumor cellularity analysis revealed that Myc target genes are 

amplified and overexpressed in immune cell-excluded samples with high tumor cellularity, 

while functional mutation enrichment analysis found mutations in negative regulators of 

Wnt signaling, both providing plausible mechanistic explanations for immune cell exclusion 
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given the known immunosuppressive functions of Myc and Wnt signaling21,22,25,48. Taken 

together, TME heterogeneity is an intrinsic feature of HGSOC, which spans across 

patients, tumors within patients and within tumors in treatment-naive, metastatic disease. 

Furthermore, we found that intra-patient TME heterogeneity can mask the immune 

activation generated by treatment with cytotoxic chemotherapy. These analyses provide 

evidence of an immunogenic effect of chemotherapy in HGSOC, and the finding of 

chemotherapy-induced NK cell expansion provides a translational path for new treatment 

strategies combining chemo- and immunotherapy.

The availability of multiple tumor samples from the same patients enabled differential 

expression analysis between high and low tumor cellularity tumors. Pathway analysis of the 

differentially expressed genes showed that Wnt signaling and Myc target gene signatures 

were more enriched in samples with high tumor cellularity (Supplementary Table 6), 

consistent with emerging data in HGSOC and other tumors and models6,23,25,49,50. Analysis 

of orthogonal WES data further suggested a link between Myc target gene activation and 

lower immune cell infiltration as (1) MYC was amplified (≥ 6 copies) in approximately one 

third of the analyzed tumors, (2) copy-number signature 4, which is characterized by MYC 
alterations and whole-genome duplications events, was negatively correlated with immune 

score, and (3) expression level of Myc target genes is significantly correlated with both 

their copy number amplification and tumor cellularity. We did not find associations between 

inflamed or immune-excluded TME phenotypes and MYC expression, and it remains an 

open question whether activity of MYC itself beyond its targets genes contributes to the 

observed differences in TMEs.

There are clinical implications from understanding the effect of chemotherapy on the TME 

and the molecular drivers of TME heterogeneity51. Previous studies found a decrease of 

Tregs and a trend towards higher cytolytic activity in tumors after NACT12 as well as 

increased MHC class I expression, antigen presentation, T cell infiltration and PD-L1 

expression in preclinical models52. Using ConsensusTME, we observed an increase of 

cytotoxic immunogenic activity after NACT in matched tumor samples but not in site

unmatched samples from the same patient. These data were supported by our preclinical 

findings that NK cells become more abundant after cisplatin treatment in ovarian cancer 

models. Employing TCRseq, we found a significant increase in T cells and TCR clonality in 

matched samples, but no significant difference was detected in unmatched pairs. Comparing 

post-NACT site-matched and site-unmatched samples indicated that the observed change 

in TCR clonal expansions was driven by chemotherapy independent of potential effects 

of biopsy itself (Supplementary Note). Finally, we found an increased number of shared 

TCRs between patients after chemotherapy compared to pre-treatment, which suggests 

chemotherapy may induce or unmask preexisting common (neo)antigens in the patients.

Disentangling the actual mechanisms using human tumor samples represents a challenge 

since tissue samples are limited, inter-patient variability is prominent and mechanistic 

experimental validation is prohibitive. Given these constraints, this study is descriptive in 

nature and relies heavily on observations derived by independent studies using mouse tumor 

models.
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The present study shows that the TME of HGSOC is intrinsically heterogeneous within 

patients and within tumors, posing an important barrier for the successful application 

of therapies that target the TME, like checkpoint blockade immunotherapy. The induced 

immunogenicity following NACT was only unmasked after taking into account the TME 

heterogeneity, which acts as a confounding variable. Despite high rates of response to initial 

treatment, HGSOC has a high recurrence rate and has yet to show significant response 

to available immunotherapeutic agents. Exploring new combination therapies and novel 

therapeutic targets based on a greater understanding of the TME has the potential to change 

the current paradigm of treatment and improve clinical outcomes in this disease.

METHODS

Patients.

All study participants were patients at Memorial Sloan Kettering Cancer Center (MSKCC) 

and had stage IIIC or IV high grade serous ovarian cancer as assessed by a pathologist 

specialized in gynecologic malignancies. Patients signed written consent to Institutional 

Review Board (IRB)-approved protocols at MSKCC, which was compliant with the Health 

Insurance Portability and Accountability Act (HIPAA).

Treatment-naïve cohort.

For the treatment-naive cohort, 25 patients were consented to the study between August 

2014 and March 2016. Out of these patients, 17 were excluded as they either (i) withdrew 

from the study (n = 3); (ii) the final pathology was not HGSOC (n = 5); (iii) patients had 

disease progression upon review of study imaging and underwent neoadjuvant chemotherapy 

instead of primary cytoreductive surgery (n = 5); (iv) inadequate image-guided tissue 

sampling due to friable tissue (n = 2); (v) research imaging studies not performed due 

to patient cancellation (n = 2). The final study population consisted of 10 patients with 

histopathologically-confirmed diagnosis of HGSOC (Supplementary Table 1a,b). Each 

patient underwent multi-parametric MRI (mpMRI) of the abdomen and pelvis and whole

body 18F-FDG PET/CT within 7 days immediately preceding the primary cytoreductive 

surgery, as previously described. All tissue samples were obtained based on imaging 

habitats. Germline BRCA1/2 mutation status was obtained from clinical data.

Neoadjuvant chemotherapy cohort.

A previously established institutional database identified 152 patients with HGSOC who 

underwent neoadjuvant chemotherapy between 2008 and 2013. Of these, 149 went on 

to interval debulking surgery, 48 had adequate pre- and post-treatment formalin-fixed 

paraffin-embedded tissue samples available. All pre-treatment specimens were obtained 

either through core biopsy or laparoscopic biopsy, and all post-treatment specimens were 

obtained at the time of laparotomy for interval debulking surgery. Choice of chemotherapy 

was at the clinician’s discretion; all patients in the cohort received a platinum and taxane 

based regimen (Supplementary Table 5a–c). Forty paired samples yielded data for analysis, 

17 were site-matched while 23 were site-unmatched. Gene expression and TCRseq data 

were generated for 28 and 37 pairs, respectively (Supplementary Table 5b). Samples with 
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very low TCR sequences (n = 5 samples, 10 pairs) were not included in the downstream 

analyses as the confidence of TCR clonality is low.

Image acquisition, custom 3D molds and habitat-guided sampling.

Imaging habitats were defined based on mpMRI and 18F-FDG PET/CT derived quantitative 

parameters (Supplementary Note). To establish coherence across patients (i.e. to label each 

cluster with the α, β, and γ Greek letters, such that across patients clusters would have 

similar imaging features), the intra-cluster distance was calculated for each cluster. For each 

patient, custom made 3 dimensional (3D) molds13 and habitat-guided specimen samples 

were performed (Supplementary Note).

Immunofluorescence and immunohistochemistry.

The immunofluorescence was performed at the Molecular Cytology Core Facility of 

Memorial Sloan Kettering Cancer Center using Discovery XT processor (Ventana Medical 

Systems). The tissue sections were deparaffinized with EZPrep buffer (Ventana Medical 

Systems), antigen retrieval was performed with CC1 buffer (Ventana Medical Systems). 

Sections were blocked for 30 min with Background Buster solution (Innovex), followed by 

avidin-biotin blocking for 8 min (Ventana Medical Systems). Multiplex immunofluorescence 

stainings were performed as previously described53 (see Supplementary Note). Stained 

slides were digitized using Pannoramic Flash 250 (3DHistech, Hungary) using 20x/0.8NA 

objective. Regions of interest were drawn on the scanned images using Pannoramic Viewer 

(3DHistech, Hungary) and exported into tiff images. ImageJ/FIJI was used to segment 

DAPI-stained nuclei and count the cells with positive signal. Ki67 was quantified according 

to the recommendations for breast cancer54, where the percentage of positively stained 

nuclei is quantified among the total number of malignant cells as previously described13.

Nucleic acid isolation and quantification.

Frozen sections from the tumor and normal tissues were stained with nuclear fast red 

and microdissected using a sterile needle under a stereomicroscope (Olympus SZ61), to 

enrich for tumor cells and that the normal tissue was devoid of any neoplastic cells, and 

subjected to DNA extraction using the DNeasy Tissue and Blood kit (Qiagen), as previously 

described55. Following review of the H&E slides by a gynecologic pathologist, RNA was 

extracted from tumor tissues/ sections, and microdissection performed if required, using the 

RNeasy (Qiagen) assay. DNA of microdissected tumor and normal samples was subjected 

to whole-exome sequencing at MSKCC’s Integrated Genomics Operation (IGO) on a HiSeq 

4000 exome capture Agilent SureSelect V4, as previously described13,56, and RNA to the 

human Affymetrix Clariom D Pico assay (Thermo Fisher Scientific). For WES data, we 

obtained a median sequence coverage of 230.57 (range 169.42-307.68) of 47 samples from 

10 patients with treatment-naive multi-site HGSOC along with 10 normal samples with a 

median sequence coverage 121.67 (range 81.69-154.48).
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T-cell receptor sequencing.

High-throughput in situ sequencing of the T cell receptors present in the samples and 

blood of the patient was performed using the immunoSEQ assay platform (Adaptive 

Biotechnologies).

Cell lines, mouse experiments, and flow cytometry.

Cell lines (ID8 and UPK10), mouse experiments and flow cytometry were performed as 

described in the Supplementary Note.

Treatment-naive gene expression.

RNA expression was assessed using the human Affymetrix Clariom D Pico assay. Arrays 

were analyzed using the SST-RMA algorithm in the Affymetrix Expression Console 

Software. Expression was determined by using the Affymetrix Transcriptome Analysis 

Console. Locally weighted scatterplot smoothing (LOESS) normalization across samples 

was implemented using the affy R package version. 1.58.057. Tumor cellularity and total 

immune component in the tumor samples were analyzed using the ESTIMATE algorithm 

method version 1.0.1316 on the gene expression data, in R version 3.5.0. The t-distributed 

Stochastic Neighbor Embedding (t-SNE) and principal component analysis dimensionality 

reduction methods were implemented in python version 3.6.5using the sklearn version 

0.19.1 package58.

Single-sample gene set enrichment.

Single-sample gene set enrichment analysis59, a modification of standard GSEA60, was 

performed on RNA measurements for each sample using the GSVA package version 

1.28.014 in R version 3.5.0. Normalized enrichment scores were generated for the hallmark 

gene sets15, immune and stromal signatures16, TME cell gene sets obtained from previous 

publications61,62, as well as the ConsensusTME gene sets (Supplementary Fig. 3a). Hallmark 

gene sets were obtained from MSigDB database version 6.163.

Hallmarks PCA-Factors map two-stage cluster bootstrap inference.

We used a two-stage non-parametric cluster bootstrap with 10,000 replicates to evaluate 

the significance of differences between the means of the loadings of defined Hallmark 

classes (Oncogenic, Immune, Stromal, Stress, Other) on the PCA dimensions of interest 

(Supplementary Note).

Tumor cellularity differential expression.

Tumor samples from the treatment-naive cohort were divided into high and low tumor 

cellularity classes taking as a cutoff the median of tumor cellularity calculated for the tumor 

samples using TITAN17. Then a differential expression analysis, taking patient dependency 

into account, was performed using the R packages limma_3.36.164 and Biobase_2.40.065. 

Gene ontology analysis of significantly up- or downregulated genes was performed using 

the Gene Ontology Consortium66,67 web server selecting only biological processes (http://

www.geneontology.org/). Fisher’s exact test FDR P-value corrections as calculated by the 

Benjamini Hochberg procedure were calculated for this analysis.
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ssGSEA of differential expression.

Further, the t-statistic for each gene was retrieved and the list of genes with their associated 

t-statistic was used to calculate Hallmark and ConsensusTME normalized enrichment 

scores (NES) through ssGSEA. Hallmark gene sets’ NES were normalized by taking the 

exponential function. ConsensusTME gene sets’ NES approached normality by taking the 

natural logarithm. Modified z-score was employed to detect outliers in the hallmarks and 

ConsensusTME NES independently, as the modified z-score uses the median and the median 

absolute deviation (MAD) to robustly measure central tendency and dispersion in small data 

sets68.

modified z − score = (0.6745 * (y − median))/MAD

T cell infiltration across cases, sites, and habitats.

A hierarchical-random mixed effects model analysis was performed to evaluate if there 

were significant differences in the variation (i.e. heterogeneity) of T cell infiltration subsets 

between patients, sites within patients, and habitats within tumors (Supplementary Note).

TME cell estimation.

Cell estimation methods were used to estimate levels of non-cancerous cells in the TME. 

The methods employed were CIBERSORT69, MCP-counter70, TIMER71, xCellL72, as well 

as gene sets collected from two previous publications61,62. CIBERSORT analysis was 

performed using the CIBERSORT R implementation version 1.04.MCP-counter analysis 

was performed using the R implementation version 1.1.0. The TIMER web server (https://

cistrome.shinyapps.io/timer/) was used for deconvolution of TME cells73. The xCell web 

server version 1.1 (http://xcell.ucsf.edu/) was used for deconvolution of TME cells. For 

the Bindea et al. and Davoli et al. gene sets, standard ssGSEA analysis was performed as 

previously described.

T cell subsets immunofluorescent staining benchmark.

We correlated the CD8, CD4, Tregs infiltration counts with the estimation scores generated 

by CIBERSORT, MCP-counter, Bindea et al., Danaher et al., Davoli et al., TIMER, xCell, 

and the ConsensusTME scores. For the immune score comparison, all the genes used for 

the estimation for each method were aggregated together into one single gene set per 

method except for CIBERSORT. CIBERSORT deconvolution −log10(P-values) were used 

as a metric for immune score comparison. CD8, CD4, and Treg counts from IF data 

were summed and used for the comparison. Because the methods have different scoring 

systems and ranges, we standardized (z-score) the scores to be able to compare the results 

across methods together. For each tumor, multiple IF-stained sections were quantified for 

tumor infiltrating lymphocytes (TILs), and we correlated all the regions quantified with 

the estimation scores of each tumor, explaining the vertical patterns observed in Figure 3a. 

Kendall’s rank correlation was performed for each comparison and FDR P-value correction 

was applied.
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DNA sequencing alignment and copy-number inference.

We initially aligned raw sequence reads from the whole exome sequencing (WES) to the 

reference genome GRCh37 (hg19) using the Burrows-Wheeler Aligner (BWA 0.7.15)74. 

Next, we performed local realignment, duplicate read removal and base quality score 

recalibration using the Genome Analysis Toolkit (GATK 3.7)75. To quantify copy-number 

alterations (CNA), we first assessed read depth of the aligned WES data captured at 

targeted exome regions of the genome (SureSelect v4 S03723314). We then fitted a 

mixture model using TITAN v1.19.117 to pairs of tumor and normal read depth, taking 

into account estimates of tumor ploidy, cellularity, and clonality. We used the TITAN 

Snakemake pipeline with a depth-correction method from ichorCNA76, binSize = 10,000, 

alphaK = 2,500, alphaR = 2,500, normalInit = 0.5, and all other arguments at default 

values. We fitted multiple models with fixed numbers of subclones ranging 1-5 and initial 

average ploidy 2-3, selecting the best fit according to maximum likelihood. In addition 

to CNA, TITAN estimates loss of heterozygosity (LOH); we used HapMap 3.3 as a 

reference for common human genetic variants. The resulting copy-number events were 

mapped to genome annotations from TxDb.Hsapiens.UCSC.hg19.knownGene using the 

GenomicRanges Bioconductor package. Absolute copy-numbers were assessed at the gene 

level with a Euclidean distance metric to hierarchically cluster tumor samples. In parallel, 

we compared tumor cellularity and ploidy estimates with results from ASCAT26 run on 

the same tumor-normal pairs. Further supporting the agreement between TITAN and other 

methods for CNA analysis, a prior report found significant correlation between TITAN and 

ABSOLUTE for estimating ploidy and tumor cellularity using both WES and whole-genome 

sequencing data (WGS)76.

DNA copy-number signatures.

To assess CNA signatures, we evaluated seven genomic signatures constructed from features 

such as breakpoint counts, change in copy number, segment size, and chains of oscillating 

copy numbers, which had previously been detected in ovarian cancer using non-negative 

matrix factorization32. CopywriteR was used to adjust read counts in exome capture regions 

to match the depths seen in off target regions. These data were then processed as previously 

described32 to obtain segmented relative copy number. This was transformed to absolute 

copy number using TITAN purity and ploidy estimates. FACETS was also used to estimate 

purity and ploidy77. Only samples that agreed between FACETS and TITAN ploidy/purity 

estimates were retained for further analysis (difference in ploidy < 1.5 and difference in 

purity < 0.1). In addition, the TITAN fits for these discrepant samples were manually 

investigated and some included nonetheless, based on reasons of parsimony with regards to 

genome duplication and copy-number profiles observed in other sites from the same patient. 

Copy number signature exposures were computed using the signature definitions provided 

by Macintyre et al. 2018 and the YAPSA package.

To account for the compositional nature of the copy-number signatures (they sum to one), 

we performed the isometric log ratio (ILR) transform in a sample-wise manner; the signature 

exposure fraction was compared to the geometric mean of all other parts of the composition 

by a log-ratio transformation33, followed by linear regression with tumor cellularity as the 

Jiménez-Sánchez et al. Page 16

Nat Genet. Author manuscript; available in PMC 2021 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



target variable for visualization. For determining statistical significance, we used a partial 

correlation using Kendall’s tau, to take into consideration any between-patient correlations.

Copy-number and tumor cellularity associations.

To validate CNA-based (TITAN) tumor cellularity estimates, we compared it with the 

mRNA-based tumor cellularity estimates and to tumor infiltrating leukocyte (TIL) counts 

from immunofluorescence measurements of CD8, CD4, and Foxp3, averaged over multiple 

independent slides from the same tumor site. At the gene level, we used Spearman’s 

correlation to detect association between absolute copy numbers and gene expression 

(CNA-mRNA) and between tumor cellularity and gene expression. To be robust against 

deviation to bivariate normality and linear relationship, in this analysis (related to Fig. 4e 

and Supplementary Fig. 4m) Spearman rank correlation method was chosen. Based on the 

ranking of correlation coefficients, we carried out gene set enrichment analysis (GSEA 

3.0)60,78 of hallmark gene sets with 10,000 random permutations as background.

Mutation calling.

Somatic mutation calls were performed as previously described13,56,79. Briefly, somatic 

single nucleotide variants (SNVs) were called using MuTect (1.1.7)80 and small insertions 

and deletions (indels) were identified using Strelka (1.0.15)81, VarScan2 (2.3.7)82, Lancet 

(1.0.0)83,84 and Scalpel (0.5.3)84, and further curated by manual inspection. SNVs and 

indels outside of target regions were filtered out, as were SNVs and indels for which 

the variant allele fraction (VAF) in the tumor sample was <5 times that of the paired 

normal VAF as previously described84. Finally, SNVs and indels found at >5% global minor 

allele frequency in dbSNP (build 137) and >5% global allele frequency in ExAC (0.3.1) 

were discarded. We separately also performed manual inspection of genome alignment 

at the TP53 loci, which, for a single patient, contained a frameshift deletion filtered 

by the mutation caller. Mutations and copy-numbers from selected oncogenes and tumor 

suppressors were visualized using oncoprint from the ComplexHeatmap R package.

SNV and tumor cellularity association.

Using the called SNVs, we considered mutations other than silent mutations as functionally 

relevant. A functional mutation enrichment score per gene set was derived by dividing 

the number of functional SNVs by the number of genes in the gene set (same results 

are obtained when raw functional SNV counts are used, but the normalized version is 

used for visualization purposes). Using a multiple linear regression model approach, we 

tested for association between tumor cellularity and functional mutations in pathways. Since 

sample tumor cellularity can affect the frequency of mutations called, we accounted for 

this using sample mutation load as a covariate in the linear model. Similarly, samples from 

the same patient are likely to share many mutations, therefore patient dependency was 

also incorporated as a covariate in the linear model. We evaluated whether functional SNV 

enrichment and WES-derived tumor cellularity (TITAN) were associated for each of the 52 

gene sets analyzed in this study. Benjamini, Hochberg, and Yekutieli multiple test correction 

was calculated for all the 52 tests. Further, Polymorphism Phenotyping v2 (PolyPhen-2)34 

was used to evaluate potential damaging missense mutations detected in the Wnt signaling 

pathway (Supplementary Table 4b).
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HLA mutation calling.

To detect mutations in the polymorphic regions of HLA loci we utilized the polymorphic 

loci resolver (POLYSOLVER v4) algorithm29. This required us to initially perform patient 

specific HLA typing for the three major MHC class I regions (HLA-A, −B and −C) using 

the previously aligned WES of the normal samples for each patient. Once inferred, we 

carried out POLYSOLVER-based mutation detection incorporating Mutect80 and Strelka81 

for calling point mutations and indels, respectively, using the default read filtering criteria 

for the pipeline29.

Paired volcano plots.

For each of the 52 hallmark and 18 ConsensusTME gene sets, paired comparisons before 

and after NACT were performed. Equality of variance (Bartlett’s test or Levene’s test) 

and normality (Shapiro test, Kolmogorov-Smirnov test, and D-Agostino-Pearson’s test) 

assumptions were checked to select the corresponding paired test (Paired t-test, Welch’s 

t-test, or Wilcoxon signed-rank test).

Unpaired volcano plots.

For each of the 18 ConsensusTME gene sets, unpaired comparisons between matched and 

unmatched NACT samples were conducted. Equality of variance (Bartlett’s test or Levene’s 

test) and normality (Shapiro test, Kolmogorov-Smirnov test, and D-Agostino-Pearson’s test) 

assumptions were checked to select the corresponding test (Independent t-test, Welch’s 

t-test, or Mann-Whitney rank test). The analysis was performed under python 3.6.5 and 

scipy 1.1.0 (http://www.scipy.org/) ecosystem85.

Multivariate analyses.

Multiple linear regression analysis was performed to evaluate the difference of normalized 

enrichment scores before and after NACT of biologically related cell types (stromal, 

myeloid, lymphoid, and cytotoxic) using R version 3.5.0.

Logistic regression and Hotelling’s T2 test (multivariate t test) were performed as a 

sensitivity analysis on cytotoxic cells (NK and CD8 T cells) since the model comprising 

NK cells + Cytotoxic genes sets was found as significantly different between pre- and 

post-NACT in the multiple linear regression analysis. Logistic regression was performed 

using the glm function with the binomial distribution (Supplementary Fig. 6b). Chi-squared 

test was employed to test significance against the null hypothesis. Multivariate two-sample 

Hotelling’s T2 test was performed to compare differences of CD8, NK, and cytotoxic 

ConsensusTME gene sets NES between pre- and post-NACT tumors.

TCR sequencing analysis.

Analysis of the sequences was performed on the immunoSEQ ANALYZER 3.0 (Adaptive 

biotechnologies). T cell counts and TCR clonality were retrieved for statistical comparisons. 

T cell counts are derived from quantitative immunoSequencing of the TCRB loci, in which 

the internal controls allow precise quantitation of sequence counts based on reads. Nucleated 

cell counts are determined by sequencing housekeeping genes. The fraction of T cells is 
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determined by dividing the T cell count by the nucleated cell counts. Values for TCR 

productive clonality range from 0 to 1. Values near 1 represent samples with one or a few 

predominant rearrangements (monoclonal or oligoclonal samples) dominating the observed 

repertoire. TCR productive clonality values near 0 represent more polyclonal samples. TCR 

productive clonality is calculated by normalizing productive entropy using the total number 

of unique productive rearrangements and subtracting the result from 1.

Analyses shown in Figure 7b–d were performed using the TCR amino acid sequences; 

however, the same conclusions were obtained with the DNA sequences. One-way chi-square 

test was conducted with expected frequencies set as the pre-NACT distribution and the 

observed frequencies set as the post-NACT distribution. For comparison between shared, 

pre- and post-NACT unique TCRs the Friedman ranking test—where the hypothesis that in 

a set of k dependent samples groups (where k ≥ 2), at least two of the groups represent 

populations with different median values—was calculated86,87. To detect which groups were 

different, the Nemenyi post-hoc test using the pivot quantities obtained by the Friedman 

ranking test was calculated. The Nemenyi post-hoc test evaluates the hypothesis that the 

ranking of each pair of groups are different88.

LASSO regression.

Least absolute shrinkage and selection operator (LASSO) regression analysis was 

performed using the glmnet R package89. Post-selection inference was conducted with the 

selectiveInference R package90,91. Hallmark and ConsensusTME cell type NES of pre-NACT 

samples were used together and independently as explanatory variables, and the log2 of the 

ratio post/pre NACT TCR clonality as response variable.

Normality and homoscedasticity tests.

All statistical tests presented were selected according to whether normality and 

homoscedasticity assumptions were met. To test normality the Shapiro test and Kolmogorov

Smirnov test were conducted. To test equality of variance Bartlett’s test or Levene’s test 

were conducted according to normality of the data. Shapiro test with P-value < 0.01 as a 

threshold and the Breusch-Pagan test to test equality of variance were used in Figure 4c and 

Supplementary Figure 4b,c.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Immune-related gene signatures contribute to the majority of the transcriptional 
variance observed across multiple tumor samples from treatment-naive HGSOC patients.
a, Presence, absence and replicate indication of samples and data types for treatment-naive 

samples (Cohort I). Metastases other than omentum were defined as “Other”. Samples 

from the same tumor are indicated with a connecting horizontal line (Supplementary 

Fig. 2a). Pseudoreplicates are samples from the same tumor and habitat, but from a 

different region within the habitat (see Methods). Age, age at diagnosis; BRCA, BRCA1/2 
mutation status (Neg, negative; NA, data not available); WES, whole exome sequencing; 

IF, immunofluorescent staining. Extended clinical data can be found in Supplementary 

Table 1a,b. b, Flowchart of sample acquisition and analysis, c, t-SNE analysis of overall 

transcription profiles of multiple HGSOC tumor samples per patient, d, PCA of ssGSEA

based analysis of cancer hallmark gene sets, e, Principal component feature loadings 

(magnitude and direction) of c are shown in the variables factor map. Vectors are colored 
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according to a major biological classification of cancer hallmark gene sets. Variation across 

classes in the PCs is shown in Supplementary Fig. 1c. Directionality of ESTIMATE’S tumor 

cellularity is represented with the map compass (n = 38 samples from n = 8 independent 

patients). Inset shows 95% non-parametric bootstrap confidence intervals for the means of 

loadings per hallmark gene set for PC1 (n = 36 samples from n = 8 independent patients). 

Approximated bootstrap P-values were calculated (see Methods) *P < 0.05, **P < 0.01 

(immune vs. oncogenic P ≈ 0.01, stroma vs. oncogenic P ≈ 0.008). f, ESTIMATE immune 

score across patients and samples. The Case Study samples were taken from ref. 7. Box 

plots show median, interquartile range (25th and 75th percentiles) and 1.5x interquartile 

range. All samples are plotted. Abdomen image by Wenjing Wu/© 2018 Memorial Sloan 

Kettering Cancer Center.
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Fig. 2 |. T cell infiltrate variation across patients, within patients, and within tumors.
a, Multi-tumor sampling from 8 HGSOC patients are shown with each dot representing 

the percentage of T cell subsets in a quantified area within a given tumor section stained 

with multicolor IF for CD8, CD4 and FOXP3. Stromal areas were excluded based on H&E 

stains. Patient cases are indicated by different colors. Imaged-based phenotypic habitats are 

defined by the Greek letters α, β and γ. Habitats from the same tumor sample are indicated 

by connecting lines at the bottom (see Supplementary Fig. 2a for detailed examples). Box 

plots are sorted according to the median of CD8 T cell infiltration across patients, sites and 

habitats. Box plots show median, interquartile range (25th and 75th percentiles) and 1.5x 

interquartile range. All samples’ regions are plotted. The two pseudoreplicates in case 5 

are indicated with a diagonal line in the tumor site symbol (n = 440 observations of n = 8 

independent patients with 38 total samples, see Supplementary Table 2). b, Representative 

images of a.
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Fig. 3 |. Unbiased analysis of tumor microenvironment heterogeneity in treatment-naive HGSOC 
tumors.
a, Treatment-naive cohort correlation between (i) total TME cell estimation scores and 

WES-derived tumor cellularity (TITAN), and (ii) percentage of CD8+, CD4+, and Tregs 

determined by immunofluorescent staining, b, TCGA ovarian cancer cohort correlation 

between total TME cell estimation scores for each method and WES-derived tumor 

cellularity (ABSOLUTE), and fitted multiple linear regression analysis using TCGA 

leukocyte methylation score as response variable and estimated immune cell types as 

explanatory variables (see Supplementary Note and Supplementary Table 3a). Adjusted R2, 

Akaike information criterion (AIC), and Bayesian information criterion (BIC) values were 

calculated to compare both goodness of fit and model simplicity. Kendall’s tau correlation 

coefficients and P-values were calculated for a and b with exact Kendall’s tau-b two-sided 

test. See below for significance levels. Normality and homoscedasticity assumptions were 

tested for all statistical comparisons, c, PCA of ssGSEA-based analysis using ConsensusTME 

estimations (n = 38 samples from n = 8 independent patients), d, Principal component 

feature loadings (magnitude and direction) of c. Vectors are colored according to cell-types 

as shown in Supplementary Fig. 3a, for example monocytes and macrophages M0, M1, M2 

(orange), B cells and plasma cells (light blue), and CD8 and cytotoxic cells (yellow), e, 

Differential expression analysis of high and low tumor cellularity classified tumors using 

the WES-derived tumor cellularity (TITAN) score median of the cohort as a cutoff. Patient 

dependence was used as a covariate (n = 36 samples which have both WES and mRNA 

data, n = 8 independent patients). Limma moderated two-sided t-statistics by empirical 

Bayes moderation. Benjamini-Hochberg (BH) FDR corrected. FDR < 0.05 was considered 

differentially expressed, f, Gene ontology enrichment analysis of 28 significantly highly 
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expressed genes in low tumor cellularity samples. Two-sided Fisher’s exact test, BH FDR 

corrected (Supplementary Table 3d). g,h, ssGSEA analysis of differentially expressed genes 

using hallmarks and ConsensusTME normalized enrichment scores (NES). Gene sets on 

the x-axes were ranked according to their NES (Supplementary Table 3b,c). High NES 

reflects high tumor cellularity. Dashed red lines indicate median and ±1.96 median absolute 

deviations (modified z-score). Kernel density plots of observed and fitted normal distribution 

are shown in the right margin. No significant difference between observed and fitted 

distribution was detected (Shapiro-Wilk test, D’Agostino’s K2 test, and Anderson-Darling 

test for normality distribution). ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 

0.0001.
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Fig. 4 |. Mutation patterns in immune-excluded tumors associate with Wnt pathway genes and 
Myc target genes.
a, Coding mutations and copy-number alterations (CNAs) in selected driver oncogenes and 

tumor suppressors based on known drivers in HGSOC. Tumor-normal DNA pairs from n 
= 10 independent patients, 47 independent tumor site samples (and 3 pseudoreplicates), 

were sequenced (whole-exome sequencing, WES) and analyzed for copy-number alterations 

using TITAN, resulting in estimates of tumor ploidy, cellularity, and subclonality. The top 

and side bars represent the summed column-wise and row-wise number of alterations, 
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respectively. *, †, and ‡ indicate pairs of pseudoreplicates (see Fig. 1a). b, DNA copy

number signatures analysis showing tumor-specific exposure to all seven signatures ordered 

by tumor cellularity (TITAN) selecting samples with high confident purity and ploidy 

estimates (n = 42 samples, n = 10 independent patients), c, Copy-number signature 4 

association with immune score. Using samples with both mRNA and WES data (n = 30 

samples), ESTIMATE immune score was compared (Welch’s two-sided t-test) between 

samples with signature 4 exposure below (low s4) and higher than the median exposure 

(high s4). Boxplot with median midline, boxes representing the 1 to 3 quartiles and whiskers 

extending to extreme values at most 1.5 times the interquartile range. d, Functional mutation 

enrichment and tumor cellularity associations per hallmark gene set were tested through the 

Chi-squared likelihood ratio test using the tumor mutation load and the patient dependency 

as covariates. The difference in mean pathway mutation ratio between samples with high 

cellularity versus samples with low cellularity (WES-derived by TITAN, n = 50 samples) 

is plotted against BH FDR corrected P-values (Benjamini, Hochberg, and Yekutieli) from 

multiple linear regression (tumor cellularity~mutation ratio, n = 50 samples), e, Gene set 

enrichment analysis (GSEA) of gene-level correlation between absolute copy-numbers and 

gene expression (CNA~mRNA, per-gene median n = 36 samples), compared to enrichment 

in correlations between gene expression and tumor cellularity (mRNA~tumor cellularity, 

n = 36 samples), both estimated by means of Spearman’s rank correlation method (see 

Methods). BH FDR correction was performed, adjusting for the number of hallmark terms. 

Normality and homoscedasticity assumptions were tested for all statistical comparisons.
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Fig. 5 |. Unbiased signaling pathway and TME cell decomposition analysis of chemotherapy 
treated HGSOC site-matched and unmatched tumor samples.
a, Presence, absence and replicate indication of samples and data types for the pre and post

chemotherapy matched and unmatched samples (Cohort II). Extended clinical data can be 

found in Supplementary Table 5. b, Flowchart of sample acquisition, clinical study design, 

and analysis, c, t-SNE analysis of overall transcription profiles of multiple HGSOC tumor 

samples per patient. d,e, PCA and principal component feature projections (magnitude 

and direction) of ssGSEA-based analysis of hallmark gene sets and ConsensusTME cells. 
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Insets show paired comparison of pre- and post-treatment samples PC1s. Inset violin plots 

represent the full probability density of the data. Paired samples are connected with a line. 

Two-sided paired t-tests were conducted for hallmark, while Wilcoxon signed rank tests 

were conducted for ConsensusTME gene sets PC1 comparison. *P < 0.05. Normality and 

homoscedasticity assumptions were tested for all statistical comparisons. P-values were not 

corrected for multiple testing since the maximum number of tests within analysis was two 

(c). Pelvis image by Wenjing Wu/© 2018 Memorial Sloan Kettering Cancer Center.
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Fig. 6 |. Chemotherapy-induced enrichment of NK cells evident in site-matched samples and is 
supported by preclinical data.
a, Pre/post NACT paired comparisons of hallmark gene sets and ConsensusTME inferred 

cells. Paired t-test, Welch’s t-test or Wilcoxon’s signed-rank test (all two-sided) were 

calculated according to the samples’ distribution and variance (see Methods). BH FDR 

P-value corrections were computed, b, Left histograms, multivariate analysis of cell type 

combinations associated with NACT (two-sided Hotelling’s T2 permutation test) and, 

right, notched box plots comparing pre- and post-NACT for sums (+) of cell scores: 

cytotoxic cells (i.e. signature of cytolytic activity from ConsensusTME), CD8+ T cells or 

NK cells (multiple linear regression without interaction, see Supplementary Fig. 6a). n = 

8 independent patients; top row corresponds to n = 18 matched samples, bottom row to 
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n = 38 unmatched samples. Notched box plots show median and interquartile range (25th 

and 75th percentiles), with paired data points indicated by a connecting line. Violin plots 

are shown in the background representing the probability density of the data. c, Flow 

cytometry analysis of homogenized tumors after UKP10 intraperitoneal inoculation of 8 

weeks old C57/BL6 mice and treatment with 2 mg of cisplatin dissolved in 1 ml of PBS 

or 1 mL PBS as control as indicated. Analyzed immune cell types were CD8+ T-effector 

cells, NK1.1+ NK cells, CD4+ T-helper cells, FOXP3+ T-regulatory cells, CD19+ B cells, 

CD11b+ myeloid cells. Granzyme B (GrB) expression was used as a proxy for activity 

state of cytotoxic cells. Two-sided two-sample independent t-tests were conducted for CD8 

T cells and two-sided Welch’s tests were conducted for NK cells. d, Similar to c, except 

peritoneal fluids of intraperitoneally inoculated ID8 cells were analyzed. CD4+ T-helper 

cells, FOXP3+ T-regulatory cells, CD19+ B cells, CD11b+ myeloid cells are shown in 

Supplementary Fig. 6f,g. Two-sided two-sample independent t-tests were conducted for CD8 

T cells and NKGrB+ out of NK cells, while two-sided Welch’s tests were conducted for the 

rest of NK cell comparisons. Violin plots are shown in the background representing the full 

probability density of the data. All samples are plotted. Normality and homoscedasticity 

assumptions were tested for all statistical comparisons.
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Fig. 7 |. Oligoclonal expansion of T cells and enrichment of shared TCRs after chemotherapy.
a, Comparisons of percentage of productive T cells (top), TCR productive clonality 

(middle), and maximum productive TCR frequencies (bottom) between pre- and post-NACT 

site-matched and site-unmatched samples. Paired (matched samples) parametric (TCR 

clonality and TCR freq.) and non-parametric Wilcoxon (% T cells) two-sided t-tests were 

computed. Unpaired (unmatched samples) non-parametric Wilcoxon (% T cells, TCR 

clonality and TCR freq.) two-sided t-tests were computed. TCR clonality is expressed as 

1-entropy with values near 1 representing samples with one or a few predominant TCR 

rearrangements, while values near 0 represent more polyclonal samples. Notched box plots 

show median and interquartile range (25th and 75th percentiles), with paired data points 

indicated by a connecting line. Violin plots are shown in the background representing 

the full probability density of the data. b, Shared and unique TCR amino acid sequences 

between pre- and post-NACT site-matched and site-unmatched samples. Chi-squared test 

of independence of variables was conducted. c, Distributions of shared TCR amino acid 

sequences between patients pre- and post-NACT samples. One-way chi square test was 

conducted. d, Number of shared and unique TCRs pre- and post-NACT in site-matched and 

site-unmatched samples (top) and their productive frequencies (bottom). Notched box plots 

show median and interquartile range (25th and 75th percentiles), 1.5x interquartile range 

(top) and outliers. Violin plots are shown in the background representing the full probability 

density of the data. Widths of box and violin plots are proportional to the number of samples 

(top) and TCRs (bottom). Friedman ranking tests followed by Nemenyi post-hoc tests with 

associated adjusted p-values (q) were conducted. P-values were not corrected for multiple 

testing since the maximum number of tests within analysis was six (a). Normality and 

homoscedasticity assumptions were tested for all statistical comparisons.
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