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ELK4 promotes the development 
of gastric cancer by inducing M2 polarization 
of macrophages through regulation 
of the KDM5A‑PJA2‑KSR1 axis
Lei Zheng1, Hongmei Xu1, Ya Di1, Lanlan Chen1, Jiao Liu1, Liying Kang2 and Liming Gao1* 

Abstract 

Background:  We tried to elaborate the molecular mechanism of ETS-like transcription factor 4 (ELK4) affecting 
gastric cancer (GC) progression through M2 polarization of macrophages mediated by lysine-specific demethylase 5A 
(KDM5A)-Praja2 (PJA2)-kinase suppressor of ras 1 (KSR1) axis.

Methods:  GC expression dataset was obtained from GEO database, and the downstream regulatory mechanism of 
ELK4 was predicted. Tumor-associated macrophages (TAMs) were isolated from GC tissues. The interaction among 
ELK4, KDM5A, PJA2 and KSR1 was analyzed by dual luciferase reporter gene, ChIP and Co-IP assays. The stability of 
KSR1 protein was detected by cycloheximide (CHX) treatment. After TAMs were co-cultured with HGC-27 cells, HGC-
27 cell biological processes were assessed through gain- and loss-of function assays. Tumorigenicity was detected by 
tumorigenicity test in nude mice.

Results:  In GC and TAMs, ELK4, KDM5A and KSR1 were highly expressed, while PJA2 was lowly expressed. M2 polari-
zation of macrophages promoted the development of GC. ELK4 activated KDM5A by transcription and promoted 
macrophage M2 polarization. KDM5A inhibited the expression of PJA2 by removing H3K4me3 of PJA2 promoter, 
which promoted M2 polarization of macrophages. PJA2 reduced KSR1 by ubiquitination. ELK4 promoted the prolifera-
tive, migrative and invasive potentials of GC cells as well as the growth of GC xenografts by regulating KSR1.

Conclusion:  ELK4 may reduce the PJA2-dependent inhibition of KSR1 by transcriptional activation of KDM5A to 
promote M2 polarization of macrophages, thus promoting the development of GC.
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Background
Gastric cancer (GC) is regarded as the fifth prevalent 
malignancy and the third leading reason for cancer-
related deaths on a global scale [1]. The risk factors for the 
occurrence of GC include geographical location, dietary 

habit, in addition to genetic background of the host [2]. 
Gastrectomy combined with systematic lymph node dis-
section can be curative for GC but leads to postopera-
tive complications [3]. Chemotherapy is a recommended 
treatment regimen for patients with advanced GC, but 
the chemotherapy resistance still poses an obstacle to the 
efficacy [4]. Importantly, tumor-associated macrophages 
(TAMs), exerting a pivotal role in the tumor microen-
vironment, can be categorized into M1 and M2 pheno-
types and engaged GC progression [5].
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ETS-like transcription factor 4 (ELK4) is a member 
of the ternary complex factor subfamily of E twenty-six 
domain transcription genes [6]. Intriguingly, ELK4 can 
regulate cellular homeostasis and stress responses in 
macrophages to affect acute responses to external infec-
tion [7]. Lysine-specific demethylase 5A (KDM5A/RBP2) 
is identified as a chromatin-modifying enzyme related 
to transcriptional regulation by catalyzing removal of 
methyl groups from methylated lysine 4 of histone H3 
and this gene is observed in multiple cancers including 
GC [8]. As previously reported, suppression of KDM5A 
by microRNA-212 could result in inhibited GC prolifera-
tion [9]. Praja2 (PJA2), belonging to the growing family of 
mammalian RING E3 ubiquitin ligases, has been found 
to be implicated in different cancers and neurological dis-
eases [10]. A previous study suggests that PJA2 promotes 
the accumulation of ubiquitinated MFHAS1 but does 
not degrade it; MFHAS1 ubiquitination by PJA2 posi-
tively regulates the TLR2-mediated JNK/p38 pathway 
and promotes M1 macrophage polarization, M2 to M1 
macrophage transformation and inflammatory response 
[11]. Another study has shown that low expression of 
GADD45A, PPP1CB, PJA2, and KLF2 is associated with 
poor overall survival [12], which provides insight into 
the underlying mechanisms of GC pathogenesis. Down-
regulation of PJA2 was revealed to share association with 
worse overall survival of patients with GC [12]. Strikingly, 
PJA2 has been identified as the E3 ligase which can ubiq-
uitylate kinase suppressor of ras 1 (KSR1) [13], a molecu-
lar scaffold of the Raf/MEK/extracellular signal-regulated 
kinase (ERK) cascade which can augment oncogenic Ras 
signaling [14]. Of note, KSR1 has been identified as a 
possible biomarker to predict the response for RAD001 
containing treatment in patients with advanced GC 
[15]. Considering all the above findings, we propose a 
hypothesis in the current study that ELK4 may affect the 
development of GC by regulating macrophages, with the 
involvement of the KDM5A-PJA2-KSR1 axis.

Materials and methods
Ethical approval
The study was approved by the ethics committee of the 
First Hospital of Qinhuangdao. This study was in line 
with the Declaration of Helsinki, and all patients signed 
informed consent.

Bioinformatics analysis
Through the GEO database (https://​www.​ncbi.​nlm.​nih.​
gov/​geo/), a GC expression microarray GSE29998 was 
obtained, which included 49 normal samples and 50 
tumor samples. Differential analysis was performed using 
the R language “limma” package. Differential p-values 
were corrected using the FDR method and GC-related 

significantly differentially expressed genes were obtained 
with |logFC| > 1, adj.p.val < 0.05 considered as differential 
gene screening criteria. Through the cistrome database 
(http://​cistr​ome.​org/), human transcription factor data 
were obtained, and the list of 318 Translate factors (TFs) 
were downloaded [16]. Using the GeneMANIA database 
(http://​genem​ania.​org/), candidate transcription fac-
tors were subjected to correlation analysis, and correla-
tion scores were obtained. GeneMANIA (www.​genem​
ania.​org), an online analysis tool for deriving hypotheses 
based on gene functions, can search and create a list of 
genes with same functions to the target gene and show 
the correlation between the target gene and the data set 
by plotting an interactive network [17]. GEPIA2 is based 
on TCGA (https://​tcga-​data.​nci.​nih.​gov/​tcga/) and the 
GTEx (https://​www.​gtexp​ortal.​org/​home/​index.​html) 
databases with a total of 84 cancer subtypes analysis. 
Through the GEPIA2 database (http://​gepia2.​cancer-​
pku.​cn/#​index), differential expression of the candidate 
genes in TCGA and GTExGC databases and differentially 
expressed genes in GC were obtained. Downstream genes 
of ELK4 were gathered using the ChipBase database 
(http://​rna.​sysu.​edu.​cn/​chipb​ase/​index.​php). ChIPBase is 
a database for decoding the transcriptional regulation of 
mRNAs [18]. The LinkedOmics (http://​www.​linke​dom-
ics.​org/​login.​php/) is an online analysis platform that 
applies multi-omics data of 32 TCGA cancers types for 
multi-dimensional analysis [19]. Besides, we identified 
overlapped genes associated with ELK4 in GC through 
the “LinkedCompare” module in linkedOmics, and the 
results were shown by Venn plot. Through the STRING 
database (https://​string-​db.​org), a database of known and 
predicted protein–protein interactions [20], correlation 
analysis of ELK4 downstream candidate genes was per-
formed to construct gene interaction network maps by 
cytoscapev3.7.1 software, and core gene degree values 
were counted.

Clinical samples
GC tissues and adjacent tissues were collected from 30 
patients with GC hospitalized in the First Hospital of 
Qinhuangdao from May 2016–May 2020, including 15 
males and 15 females, aged from 28 to 68  years, with a 
median of 50  years. Adjacent tissues were non-tumor 
tissues no more than 5 cm beside the GC tissues. None 
of the GC patients in this study received chemotherapy, 
radiotherapy or immunotherapy before surgery.

Isolation and culture of primary TAMs
Fresh GC tissues were cut into small pieces and digested 
in collagenase B (1 mg/ml, 11088807001, Roche Diagnos-
tics GmbH, Mannheim, Germany) containing buffer A. 
The dissociated cells were collected into 15 ml test tubes 
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and centrifuged at 400g for 5  min. TAMs were isolated 
from the sediment using Percoll density gradient cen-
trifugation Kit (17-0891-01, Pharmacia) according to the 
manufacturer’s instructions.

Co‑culture of M2/M1 macrophages and GC cells
THP-1 macrophages were treated with 100 ng/ml PMA 
Sigma-Aldrich Chemical Company, St Louis, MO, USA) 
for 30  h to produce THP-1 macrophages (M0 mac-
rophages), and then induced with IL-4 (50  ng/ml, R&D 
Systems, Minneapolis, MN, USA) for 48  h to polarize 
into M2 macrophages. They were continuously induced 
with LPS (100 ng/ml, Sigma) for 48 h to polarize into M1 
macrophages. M2/M1 macrophages were co-cultured 
with GC cells HGC-27 (Product Number: ZQ0192, 
Zhongqiao Xinzhou Biotechnology Co., Ltd., Shanghai, 
China) in a 6-well cross well co-culture system (well size: 
0.4 μm, Corning Glass Works, Corning, NY., USA). After 
48 h, the co-cultured GC cells were collected for subse-
quent experiments.

Cell transfection and grouping
TAMs were divided into: sh-NC (transfection of negative 
control plasmid of gene silencing), sh-ELK4 (transfection 
of silencing plasmid of ELK4), sh-NC + oe-NC (transfec-
tion of negative control plasmids of gene silencing and 
overexpression), sh-ELK4 + oe-NC (transfection of ELK4 
silencing plasmid and gene overexpression negative con-
trol plasmid), sh-ELK4 + oe-KDM5A (transfection of 
ELK4 silencing plasmid and KDM5A overexpression 
plasmid), sh-KDM5A + sh-NC (transfection of KDM5A 
silencing plasmid and gene silencing negative control 
plasmid), sh-KDM5A + sh-PJA2 (transfection of KDM5A 
and PJA2 silencing plasmids), oe-NC (transfection of 
KDM5A gene overexpression negative control plasmid), 
oe-PJA2 + oe-KSR1 (transfection of PJA2 and KSR1 over-
expression plasmid), and sh-ELK4 + oe-KSR1 (transfec-
tion of ELK4 silencing plasmid and KSR1 overexpression 
plasmid) groups. Lipofectamine 2000 (Invitrogen, Carls-
bad, CA, USA) kit (11,668,019, purchased from Thermo 
Fisher) was used for transfection. After 48  h of culture, 
the cells were collected to detect the transfection effect 
for subsequent experiments.

Reverse transcription‑quantitative polymerase chain 
reaction (RT‑qPCR)
Trizol (Invitrogen, Carlsbad, CA, USA) was used to 
extract total RNA from tissues and cells. Nanodrop2000 
micro ultraviolet spectrophotometer (1011U, NanoDrop 
Technologies Inc., Wilmington, USA) was used to detect 
the concentration and purity of total RNA. According to 
the instructions of TaqMan MicroRNA Assays Reverse 
Transcription primer (4427975, Applied Biosystems, 

Carlsbad, CA, USA), the total RNA was reversely tran-
scribed into cDNA. The primers of ELK4, KDM5A, PJA2, 
TNF, NOS2, Fizz1, Ym1, and Arg-1 were designed and 
synthesized by Takara company (Dalian, China) (Addi-
tional file  1: Table  S1). Real time fluorescent qPCR was 
performed by ABI7500 qPCR instrument (7500, ABI, 
Oyster Bay, NY, USA). Using glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) as internal reference, the rela-
tive transcription levels of target genes were calculated 
by relative quantitative method (2−∆∆Ct method).

Western blot analysis
Total protein was extracted from tissue or cell by radio-
immunoprecipitation assay (RIPA) lysate containing 
PMSF (P0013C, Beyotime, Shanghai, China) followed by 
protein concentration detection. The samples were then 
transferred to a polyvinylidene fluoride membrane after 
sodium dodecyl sulfate polyacrylamide gel electrophore-
sis (SDS-PAGE). After that, the membrane was blocked 
with 5% skim milk powder at room temperature for 1 h 
and incubated overnight at 4  °C with diluted primary 
rabbit antibodies against ELK4 (1:1000, ab86002, Abcam, 
Cambridge, MA, USA), KDM5A (1:5000, ab194286, 
Abcam), PJA2 (1:800, ab131118, Abcam), KSR1 (1:1200, 
ab68483, Abcam), and GAPDH (ab9485, Abcam; inter-
nal reference). The membrane was then incubated with 
HRP-labeled goat anti-rabbit against IgG H&L (ab97051, 
1:2000, Abcam) for 1  h. Subsequently, the membrane 
was developed by the enhanced chemiluminescence kit 
(BB-3501, Ameshame, UK). The images were taken by 
Bio-Rad image analysis system (Bio-Rad Laboratories, 
Hercules, CA, USA) and analyzed by Quantity One v4.6.2 
software.

Enzyme‑linked immunosorbent assay (ELISA)
GC tissues and adjacent tissues were homogenized 
with precooled PBS and centrifuged at 800g for 10  min 
to collect the supernatant, and the TAM cell culture 
supernatant was collected followed by centrifugation 
at 12,000  rpm for 15  min at 4  °C to remove cell debris, 
and immediately frozen at a −  80  °C freezer for later 
use. The levels of TNF, IL-1β, and IL-10 in the cell cul-
ture supernatant were measured using TNF (DTA00C), 
IL-1β (DLB50), and IL–10 (D1000B) ELISA kits, respec-
tively as per the instructions of ELISA kits (R&D systems, 
Minneapolis, MN, USA). After the reaction was termi-
nated, the absorbance (A) value of each well at 450  nm 
was measured using a totipotent microplate reader (Syn-
ergy2, BioTek, USA) within 10 min. With the concentra-
tion of standard substance as x-axis and A as y-axis, the 
regression equation of the standard curve was calculated, 
and the A value of the sample was substituted into the 
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equation to calculate the target protein concentration in 
the sample.

Dual luciferase reporter gene assay
The KDM5A target gene dual luciferase reporter gene 
vector and mutants at the binding site with ELK4 were 
constructed respectively, namely PGLO-KDM5A WT 
and PGLO-KDM5A MUT. The two reporter plasmids 
were co-transfected into the cells with sh-ELK4 and 
sh-NC, respectively. After 30 h of transfection, the cells 
were lysed, and centrifuged at 12,000 rpm for 1 min, and 
the supernatant was collected. The luciferase activity was 
detected by dual luciferase reporter assay system (E1910, 
Promega). In each cell sample, 100  μl firefly luciferase 
working solution was added to detect firely luciferase, 
and 100 μl Renilla luciferase working solution was added 
to detect Renilla luciferase. The ratios between firefly 
luciferase activity to Renilla luciferase activity were used 
as relative luciferase activities.

Chromatin immunoprecipitation (ChIP)
ChIP kit (MilliporeCorp., Billerica, MA, USA) was used. 
TAMs were collected fixed with 1% formaldehyde at 
room temperature for 10  min. DNA and protein were 
immobilized and crosslinked. After crosslinking, they 
were randomly broken by ultrasonic treatment into 200–
1000 base pairs. After centrifugation, the supernatant 
was divided into three tubes. Positive control antibody 
RNA polymerase II, negative control antibody rabbit anti 
IgG (ab172730, 1:100, Abcam) and rabbit anti-H3K4me3 
(1:200, ab8580, Abcam) were added respectively. The 
endogenous DNA protein complex was precipitated by 
Agarose/Sepharose, the supernatant was aspirated after 
centrifugation, the nonspecific complex was washed, the 
de-crosslinking was carried out overnight at 65  °C, and 
the DNA fragment was recovered by phenol/chloroform 
extraction and purification. The promoter sequence of 
PJA2 gene and the DNA recovered from antibody bound 
chromatin fragment were detected by semi-qPCR.

Co‑immunoprecipitation (co‑IP)
TAMs were cleaved on ice using IP lysate (Baimeiouxidi 
Biotechnology Co., Ltd., Wuxi, China) with protease 
inhibitor (MG-132). Next, 1  mg protein was extracted 
from each sample, and the volume was adjusted to the 
same using IP lysate, followed by addition of KSR1 mono-
clonal antibody for co-IP, and incubation in a silent mixer 
at 4  °C overnight. A total of 20  μl protein A + G beads 
were added in the morning of the next day and incubated 
for 2  h. After centrifugation, the supernatant was dis-
carded carefully and 20 μl 2× loading buffer was added 
into each well. The samples were subjected to SDS-PAGE 
and analyzed by Western blot. The antibodies used were: 

anti IgG (1:100, ab172730, Abcam) and anti Ub (1:100, 
ab7780, Abcam).

Protein stability test
To determine the stability of KSR1 protein, PJA2 was 
overexpressed in TAMs and incubated with 20  µg/ml 
CHX (protein synthesis inhibitor, purchased from Sigma-
Aldrich Chemical Company) for a specified time. The 
cells were lysed with RIPA lysate (P0013B, Beyotime) and 
centrifuged at 12,000g/minute. After protein extraction, 
cells were lysed in RIPA buffer containing 0.1% sodium 
dodecyl sulfate for performing Western blot analysis. The 
expression level of KSR1 was quantified by ImageJ and 
normalized to GAPDH. The protein was extracted at 0, 
1 and 2  h, and the expression of KSR1 was detected by 
Western blot.

Cell counting kit‑8 (CCK‑8) assay
HGC-27 proliferation was statistically analyzed by 
CCK-8 method (CK04, Dojindo Laboratories, Kuma-
moto, Japan). The absorbance value of each well at 
450  nm wavelength was measured by enzyme-linked 
immunosorbent assay. The value was directly propor-
tional to the number of proliferating cells in the medium, 
and the cell growth curve was drawn.

Transwell assay
Invasion and migration activity of the cells was analyzed 
using a 24-well Transwell chamber (8 μm aperture, Corn-
ing, USA) coated with/without Matrigel (BD Biosciences, 
Franklin Lakes, NJ, USA) [21]. The stained cells were 
manually counted under inverted light microscope (Carl 
Zeiss MicroImaging, Inc., Thornwood, NY, USA) in ran-
domly selected five regions.

Tumorigenesis in nude mice
Eighteen specific-pathogen-free grade female BALB/C 
nude mice (4–5  weeks, 18–22  g) were purchased from 
SLAC (Shanghai, China). They were raised in specific-
pathogen-free environment for adaptive feeding for 
7  days, with comfortable temperature, aseptic feed and 
drinking water, under alternate day and night cycles each 
for 12 h. TAMs stably transfected with sh-NC + oe-NC, 
sh-ELK4 + oe-NC and sh-ELK4 + oe-KSR1 were 
screened. The stable transfected TAMs (5 × 105 cells/ml) 
and HGC-27 (1 × 106 cells/ml) were inoculated into the 
left axillary skin of nude mice to establish the subcuta-
neous transplantation tumor model in nude mice. One 
week after inoculation, tumor growth was observed and 
data were recorded every 3 days. On the 26th day of cul-
ture, mice were killed by cervical dislocation. Tumor tis-
sue was taken out, and tumor weight was weighed with 
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a balance. The related mRNA expression in transplanted 
tumor tissue was detected by RT-qPCR.

Statistical analysis
All the data in this study were analyzed using the SPSS 
21.0 statistical software (IBM, Armonk, NY, USA). Each 
experiment was repeated three times. The measure-
ment data were expressed by mean ± standard deviation. 
Paired t test was used to compare data between cancer 
tissues and adjacent tissues. Data between two groups 
were compared by independent sample t test, and those 
among multiple groups by one-way analysis of variance 
(ANOVA), followed by Tukey’s post hoc tests. Tumor vol-
ume at different time points were compared by repeated 
measures of ANOVA, followed by Bonferroni’s post hoc 
tests. For comparison of proliferation data at different 
time points, two-way ANOVA was used. p < 0.05 meant 
statistically significant difference.

Results
M2 polarization of macrophages promoted GC 
development
To study the effect of macrophage polarization on GC 
cells, firstly, RT-qPCR was used to detect the M1 and M2 
polarization of macrophages in GC tissues and adjacent 
tissues. The results showed that the mRNA expression 

levels of M1 markers: IL-1β, TNF and NOS2 in GC tis-
sues were decreased, while the mRNA expression levels 
of M2 markers: Fizz1, Ym1 and Arg-1 were increased 
(Fig.  1A), indicating that macrophages mainly polar-
ized to M2 type in GC tissues. ELISA results indicated 
that M1 markers: IL-1β and TNF were decreased and 
M2 marker: IL-10 was increased in GC tissues (Fig. 1A). 
Then, M2 macrophages and M1 macrophages were 
co-cultured with GC cell line HGC-27. Besides, after 
co-culture of M2 macrophages and HGC-27, the prolif-
erative, migrative and invasive potentials of HGC-27 cells 
were enhanced. Additionally, the proliferative, migrative 
and invasive potentials of HGC-27 cells were inhibited 
after co-culture of M1 macrophages with HGC-27 cells 
(Fig.  1B, C). All in all, M2 polarization of macrophages 
promoted the proliferative, migrative and invasive poten-
tials of HGC-27 cell.

ELK4 was highly expressed in GC tissues and TAMs
GC expression microarray GSE29998 was obtained 
from GEO database, and 1733 differentially expressed 
genes were obtained by differential analysis. The heat 
map of some of the differentially expressed genes is 
shown in Fig.  2A. Furthermore, the known transcrip-
tion factor data (Fig.  2B) were obtained through cis-
trome database. Finally, 25 hub genes were obtained. 
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These 25 hub genes are not only differentially expressed 
in GC, but also play a transcriptional regulatory role 
as transcription factors. Further correlation analysis 
of these 25 candidate transcription factors (Fig.  2C, 
Additional file  2: Table  S2) showed that the three 
transcription factors scored the highest: ELK4, LIN9 
and HOXC9. Among the three transcription factors, 
we found ELK4 showed the highest expression in the 
microarray GSE29998 (Table 1). In addition, compared 
with GC and normal samples in TCGA and GTEX data-
bases, ELK4 was also highly expressed in GC tissues 
(Fig.  2D). We further verified through RT-qPCR that 
ELK4 mRNA expression in GC tissues was significantly 
higher than that in adjacent tissues (Fig.  2E). Next, 

TAMs and macrophages (Macs) were isolated from 
GC and adjacent tissues followed by determination of 
ELK4 mRNA expression, and the obtained results were 
consistent with those in tissues (Fig.  2F). In addition, 
we examined ELK4 expression in GC tissues and GC-
TAMs and found that ELK4 expression was high in 
GC-TAMs (Fig. 2G). Moreover, the correlation between 
ELK4 mRNA expression with M1 and M2 markers is 
shown in Additional file 3: Table S3. The results showed 
that ELK4 was upregulated in GC tissues and TAMs 
and mainly expressed in GC-TAMs. 

ELK4 promoted M2 polarization of macrophages 
through transcriptional activation of KDM5A
To further understand the regulatory mechanism of 
ELK4 promoting M2 polarization of macrophages, 
the downstream regulatory genes of ELK4 were pre-
dicted through ChipBase database. Meanwhile, the 
genes with significant positive correlation with ELK4 in 
GC included in TCGA were searched through Linke-
dOmics database. The genes with significant differen-
tial expression in TCGA and GTExGC were obtained 
through GEPIA database, and the intersection of these 
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Table 1  Differential expression of candidate transcription factors 
in microarray

ELK4 ETS-like transcription factor 4, HOXC9 homeobox C9

Symbol logFC Ave expr p.value Adj.p.val

ELK4 1.492757041 2.278704623 0.000941832 0.005681043

LIN9 1.266602945 4.600122208 3.63E−06 4.61E−05

HOXC9 1.067821739 4.403106717 0.002149055 0.01153422
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Fig. 3  ELK4 promotes macrophage M2 polarization through transcriptional activation of KDM5A. A Prediction of ELK downstream target gene. 
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TCGA and GTEX, and the middle part represents the intersection of the three groups of data. B The interaction analysis of ELK4 downstream target 
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After silencing ELK4 in TAMs, the protein expression of ELK4 was detected by Western blot. I After ELK4 was silenced in TAMs, the protein expression 
of KDM5A was detected by Western blot. J After ELK4 was silenced in TAMs, the effect of ELK4 on KDM5A activity was detected by dual luciferase 
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three groups of data was taken (Fig. 3A). Finally, 32 hub 
genes were obtained. Then, we analyzed the gene inter-
action of these 32 candidate hub genes, constructed the 
gene interaction network graph, and counted the degree 
value of core genes in the network diagram (Fig. 3B, C). 
The results showed that KDM5A, SP1 and EP300 genes 
were in the core position in the network diagram. Among 
these three genes, KDM5A and ELK4 were positively 
correlated in GC (Fig. 3D), and in GC data collected by 
TCGA and GTEX, it was also overexpressed in GC tis-
sues (Fig. 3E). We found that KDM5A mRNA expression 
was increased in GC tissues and TAMs (Fig. 3F, G). After 
silencing ELK4 in TAMs, we found decreased ELK4 pro-
tein expression by Western blot results (Fig. 3H), among 
which sh-ELK4-1 had the highest silencing efficiency, 
so it was selected for subsequent experiments. Further 
study on the regulatory mechanism of ELK4 on KDM5A 
showed that the protein expression of KDM5A was 
decreased after ELK4 was silenced (Fig.  3I). Luciferase 
assay demonstrated that compared with sh-NC group, in 
the co-transfection group with KDM5A-WT, the lucif-
erase activity in sh-ELK4 group was decreased, while in 
the co-transfection group with KDM5A-MUT, no signifi-
cant difference was found in luciferase activity between 
the two groups (Fig. 3J). ChIP experiment results showed 
that (Fig. 3K) after silencing ELK4, ELK4 enrichment on 
KDM5A promoter was reduced. The results showed that 

ELK4 could bind to KDM5A promoter and promote its 
transcription in TAMs.

Next, RT-qPCR and ELISA in TAMs showed (Fig. 3L) 
compared with sh-NC + oe-NC group, the mRNA 
expression levels of IL-1β, TNF and NOS2 and the pro-
tein expression of IL-1β and TNF in sh-ELK4 + oe-NC 
group were increased, while the mRNA expression lev-
els of Fizz1, Ym1 and Arg-1 and the protein expression 
of IL-10 were decreased, indicating that silencing ELK4 
could promote the M1 polarization of macrophages. 
Compared with sh-ELK4 + oe-NC group, the mRNA 
expression of IL-1β, TNF and NOS2 and the protein 
expression of IL-1β and TNF in sh-ELK4 + oe-KDM5A 
group was decreased, while the mRNA expression of 
Fizz1, Ym1 and Arg-1 and the protein expression of IL-10 
was increased. These results suggested that ELK4 pro-
moted M2 polarization of macrophages through tran-
scriptional activation of KDM5A.

KDM5A inhibited PJA2 expression by removing H3K4me3, 
thus promoting M2 polarization of macrophages
Studies have shown that PJA2 can promote M1 mac-
rophage polarization, and the low expression of PJA2 
is associated with the poor prognosis of GC [11, 12]. 
Through RT-qPCR, we found decreased PJA2 mRNA 
expression in GC tissues and TAMs (Fig. 4A, B). Western 
blot confirmed the silencing efficiency of KDM5A and 
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sh-KDM5A-1 had the highest silencing efficiency was 
selected for subsequent experiments (Fig.  4C). Besides, 
after silencing KDM5A, PJA2 protein expression was 
increased (Fig. 4D). ChIP experiment results showed that 
(Fig. 4E) after silencing KDM5A, H3K4me3 was enriched 
in the promoter region of PJA2. The aforementioned 
results demonstrated that KDM5A could inhibit PJA2 
expression by removing the enrichment of H3K4me3 in 
the promoter region of PJA2.

Next, RT-qPCR and ELISA in TAMs showed (Fig. 4F) 
compared with sh-NC group, the mRNA expression 
of IL-1β, TNF and NOS2 and the protein expression 
of IL-1β and TNF in sh-KDM5A + sh-NC group was 
increased, while the mRNA expression of Fizz1, Ym1 and 
Arg-1 and the protein expression of IL-10 was decreased; 
compared with sh-KDM5A + sh-NC group, the mRNA 
expression of IL-1β, TNF, and NOS2 and the protein 
expression of IL-1β and TNF in sh-KDM5A + sh-PJA2 
group were lower, while the expression of Fizz1, Ym1 
and Arg-1 and the protein expression of IL-10 increased 
than those in sh-KDM5A + sh-NC group. These results 
indicated that KDM5A decreased PJA2 expression by 
removing H3K4me3, thus inducing M2 polarization of 
macrophages.

PJA2 decreased KSR1 expression by ubiquitination 
to inhibit M2 polarization of macrophages
The GC data in TCGA and GTEX showed that KSR1 
was highly expressed in GC tissues (Fig. 5A). Western 

blot results showed that KSR1 protein expression 
was significantly increased in GC tissues and TAMs 
(Fig. 5B, C). Besides, after overexpression of PJA2, PJA2 
protein expression was increased, while KSR1 protein 
expression was decreased (Fig.  5D). To further study 
the regulatory mechanism of PJA2 on KSR1, co-IP 
assay was used to detect the effect of overexpression of 
PJA2 on the ubiquitination level of KSR1. The results 
showed that (Fig. 5E) after the addition of MG132, the 
binding amount of KSR1 and ubiquitin increased upon 
overexpression of PJA2, that is, the ubiquitination level 
of KSR1 increased. After CHX treatment, the stability 
of KSR1 protein was detected. The results revealed that 
the protein stability of KSR1 was decreased after over-
expression of PJA2. These findings supported that PJA2 
was able to reduce the expression of KSR1 by ubiquit-
ination in TAMs.

Next, we found from RT-qPCR and ELISA (Fig.  5G) 
that compared with oe-NC group, the mRNA expres-
sion of IL-1β, TNF and NOS2 and the protein expres-
sion of IL-1β and TNF in oe-PJA2 + oe-NC group was 
increased, while the mRNA expression of Fizz1, Ym1 
and Arg-1 and the protein expression of IL-10 was 
decreased; compared with oe-PJA2 + oe-NC group, the 
expression of IL-1β, TNF and NOS2 and the protein 
expression of IL-1β and TNF in oe-PJA2 + oe-KSR1 
group were lower, but the expression of Fizz1, Ym1 and 
Arg-1 and the protein expression of IL-10 increased 
than those in oe-PJA2 + oe-NC group.
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These findings demonstrated that PJA2 reduced KSR1 
expression through ubiquitination, thus inhibiting mac-
rophage M2 polarization.

ELK4 induced M2 polarization of macrophages by KSR1 
to promote the proliferative, migrative and invasive 
abilities of GC cells
Based on the above studies, we speculate that ELK4 may 
regulate macrophage M2 polarization through KDM5A-
PJA2-KSR1 axis, thus affecting the biological function of 
GC cells. First, we observed (Fig.  6A, B) that compared 
with sh-NC + oe-NC group, the protein and mRNA 
expression levels of ELK4, KDM5A and KSR1 in sh-
ELK4 + oe-NC group were significantly decreased, and 
the protein and mRNA expression of PJA2 was increased; 
compared with sh-ELK4 + oe-NC group, the protein 
and mRNA expression of ELK4, KDM5A and PJA2 in 
sh-ELK4 + oe-KSR1 group was not changed, but KSR1 
protein and mRNA expression was increased. Besides, 
ELISA revealed that compared with sh-NC + oe-NC 
group, sh-ELK4 + oe-NC markers: IL-1β, TNF and NOS2 
mRNA and IL-1β and TNF protein expression were 
increased, while M2 markers: Fizz1, Ym1, and Arg-1 
mRNA and IL-10 protein expression were decreased; 
compared with sh-ELK4 + oe-NC group, sh-ELK4 + oe-
KSR1 markers: IL-1β, TNF, and NOS2 mRNA and IL-1β 
and TNF protein expression were decreased, while M2 
markers: Fizz1, Ym1 and Arg-1 mRNA and IL-10 protein 

expression were increased. After TAMs were co-cultured 
with HGC-27, CCK-8 and Transwell detection results 
showed (Fig. 6C, D) that compared with sh-NC + oe-NC 
group, the proliferative, migrative and invasive abilities 
of HGC-27 in sh-ELK4 + oe-NC group were decreased; 
compared with sh-ELK4 + oe-NC group, the prolif-
erative, migrative and invasive abilities of HGC-27 in 
sh-ELK4 + oe-KSR1 group were increased. The results 
demonstrated that ELK4 could promote the proliferative, 
migrative and invasive potentials of GC cells by regulat-
ing KSR1.

ELK4 promoted macrophage M2 polarization by regulating 
KSR1, thus promoting the growth of GC xenografts
In order to further study the effect of ELK4 on GC xeno-
grafts by regulating KSR1-mediated M2 polarization of 
macrophages, we conducted tumorigenesis experiment 
in nude mice. TAMs after different treatment and HGC-
27 cells were inoculated subcutaneously in nude mice. It 
was found (Fig. 7A, B) that compared with sh-NC + oe-NC 
group, the volume and weight of transplanted tumor in 
sh-ELK4 + oe-NC group were reduced; compared with sh-
ELK4 + oe-NC group, the tumor volume and weight were 
increased in sh-ELK4 + oe-KSR1 group. Then, compared 
with sh-NC + oe-NC group, the mRNA expression of 
IL-1β, TNF and NOS2 and the protein expression of IL-1β 
and TNF in sh-ELK4 + oe-NC group was increased, while 
the mRNA expression of Fizz1, Ym1 and Arg-1 mRNA and 

Fig. 6  ELK4 promotes M2 polarization of macrophages by regulating KSR1 to promote the proliferation, migration and invasion of GC cells. 
A Western blot was used to detect the expression of ELK4, KDM5A, PJA2 and KSR1 in TAMs. B mRNA and protein expression of M1 and M2 
macrophage markers in TAMs cells was detected by RT-qPCR and ELISA. C The proliferation of HGC-27 cells was detected by CCK-8 assay after TAMs 
were co-cultured with HGC-27. D After TAMs were co-cultured with HGC-27 cells, the migration and invasion of HGC-27 cells were detected by 
Transwell assay (× 200). *p < 0.05
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the protein expression of IL-10 was decreased; compared 
with sh-ELK4 + oe-NC group, the mRNA expression of 
IL-1β, TNF and NOS2 and the protein expression of IL-1β 
and TNF were higher while the mRNA expression of 
Fizz1, Ym1 and Arg-1 and the protein expression of IL-10 
increased in sh-ELK4 + oe-KSR1 group (Fig. 7C).

These results concluded that ELK4 promoted mac-
rophage M2 polarization by regulating KSR1, thus pro-
moting the growth of GC xenografts.

Discussion
Gastric cancer is considered to be a frequently occur-
ring malignancy presenting a poor prognosis [22]. In the 
current study, we explored the regulatory mechanism of 
ELK4 in GC and found that ELK4 promoted the develop-
ment of GC by regulating the PJA2/KDM5A/KSR1 axis.

Initially, we found that M2 polarization of mac-
rophages promoted the development of GC. It is known 
that TAMs are representative of a main subpopulation 
of tumor infiltrating immune cells [23]. It was found 
that TAMs of the M2 phenotype are responsible for 
the progression of peritoneal dissemination in GC [24]. 
Moreover, M2 macrophage polarization induced by 
GC-derived mesenchymal stromal cells was revealed 
to enhance metastasis and epithelial to mesenchymal 

transition in GC [25]. Furthermore, we demonstrated 
that ELK4 was highly expressed in GC and TAMs and 
could promote M2 polarization of macrophages. ELK4 
is involved in the development of prostate cancer by reg-
ulating the chimeric fusion SLC45A3-ELK4 transcript 
[26]. Additionally, a previous study found that ELK4 
is correlated with the survival of glioblastoma patients 
and thus serves as a potential prognostic marker [27]. 
Intriguingly, it was unfolded that ELK4 could play an 
important role in regulating cellular homeostasis as well 
as stress responses in macrophages, thereby accelerating 
acute responses to external infection [7].

Mechanistically, we demonstrated that ELK4 inhib-
ited PJA2 expression through transcriptional activa-
tion of KDM5A, which promoted M2 polarization of 
macrophages. Of note, the interaction between ELK4 
and KDM5A and that between ELK4 and PJA2 have 
been rarely reported. Strikingly, mounting evidence 
has highlighted the role of KDM5A and PJA2 in GC. 
For instance, Zeng et  al. discovered overexpression of 
KDM5A in GC and its inhibition triggers senescence 
of cancer cells [28]. Moreover, KDM5A could induce 
the promotion of gastric tumorigenesis through mod-
ulation of VEGF expression transactivation together 
with elevated angiogenesis, which thus affected the 
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development and progression of human GC [29]. Nota-
bly, downregulated PJA2 shared correlation with worse 
overall survival of patients with GC and PJA2 was thus 
suggested as a potential plasma circRNA biomarker for 
this cancer type [12].

Another important finding obtained in the study was 
that PJA2 decreased KSR1 by ubiquitination and thus 
inhibited M2 polarization of macrophages. Recent evi-
dence pronounced that PJA2 could induce ubiquitylation 
of MFHAS1, thereby promoting M1 macrophage polari-
zation through activation of JNK and p38 pathways [30]. 
Another study revealed that PJA2 contributed to MFHAS1 
ubiquitylation, positively regulating TLR2-mediated JNK/
p38 pathway, which stimulated M1 macrophage polariza-
tion as well as M2 to M1 macrophage transformation in 
sepsis [11]. Importantly, the interaction between PJA2 and 
KSR1 has been previously reported. It was found that PJA2 
is able to ubiquitylate KSR1 to regulate the growth of can-
cer cells [13]. Of note, upregulation of KSR1 was found in 
SGC-7901/CDDP cell resistant to human GC multidrug 
resistant and activated KSR1-mediated ERK1/2 pathway 
resulted in tumorigenesis in human GC [31].

Conclusion
To sum up, our results demonstrate that ELK4 may 
inhibit PJA2 expression through transcriptional activa-
tion of KDM5A, thereby reducing the ubiquitination of 

KSR1, which promotes M2 polarization of macrophages 
and thus promotes the development of GC (Fig. 8). This 
finding may provide a novel direction for treatment of 
GC. Nevertheless, further study is required to validate 
the mechanism and to explore the clinical application.
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