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Abstract
Tumor-associated autoantibodies (TAAb) could be serological tumor markers. This 
study aims to discover novel TAAb signatures for breast cancer (BC) detection. The 
protein microarray was used to identify candidate TAAb, which were further vali-
dated in 1197 sera from BC, benign breast diseases (BD), and healthy controls (HC) 
by enzyme-linked immunosorbent assay. In addition, 319 preoperative and postop-
erative sera were evaluated. A panel was determined using four different classifiers. 
Twelve TAAb were identified with frequencies of 15.8%-59.2%; their levels were sig-
nificantly decreased in postoperative sera compared to those in preoperative sera 
(P < .05). A panel with six TAAb was developed and evaluated. The area under the 
curve (AUC) was 0.879 (74.3% sensitivity, 91.9% specificity) and 0.865 (69.7% sen-
sitivity, 91.7% specificity) for distinguishing BC from HC in the training set and test 
set, respectively. The panel had an AUC of .884 (71.2% sensitivity, 90.5% specificity) 
for discriminating BC from BD. For identifying BC from all controls (HC+BD), the 
AUC was .916 (78.9% sensitivity, 90.2% specificity). The AUC of the panel was .920 
and .934 for distinguishing stage I-II and age < 50 BC from HC, respectively. These 
identified TAAb have the potential to provide a non–invasive approach to detect BC.
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1  | INTRODUC TION

Breast cancer (BC) is among the most frequently diagnosed can-
cers in the world.1 It is also the leading cause of cancer death 
in women under the age of 45.2 Due to its heterogeneous at-
tributes and complex biological processes, there are no typical 
symptoms and signs for most of BC patients in the early stages 
of disease.3 The current approaches for BC diagnosis, such as 
mammography and biopsy, cause discomfort and can be harm-
ful to women, especially young women.3-6 Thus, it is import-
ant to explore other approaches that could be applied for the 
early detection of BC. Detection of blood-based biomarkers is 
a promising method that is attracting substantial interest from 
researchers.

Cancer antigen 15-3 (CA15-3) has been suggested as a po-
tential serum marker for BC.7 However, it lacks the required 
sensitivity and specificity for early detection. Many studies have 
demonstrated that autoantibodies against tumor-associated an-
tigens (TAA), so called TAAb, could be used for BC detection.8,9 
As potential tumor biomarkers, TAAb have several advantages: 
(a) they appear in the blood of cancer patients much earlier than 
clinical diagnosis;10 and (b) the immune system has an amplifica-
tion effect and memory immune response.11 Nevertheless, the 
detection of a single autoantibody does not appear to meet the 
requirements for clinical application. Therefore, identification of 
a panel of TAAb could improve the diagnostic value by achieving 
the higher sensitivity and specificity required for the early immu-
nodiagnosis of BC.12-15

To identify novel TAAb signatures, protein microarray tech-
nology has been of great interest to researchers.16,17 Due to the 
advantages of rapidity, high sensitivity, and high-throughput, 
protein microarray has been widely used as a screening tech-
nology for tumor serological markers.18 This technique is 
playing an increasingly important role in the study of protein-
protein interaction and the identification of biomarkers in var-
ious cancers.19

The development of cancer is related to many factors. 
Vogelstein et  al. show that a typical tumor may contain two to 
eight “driver gene” mutations; the genes can be divided into 12 
signal pathways, which regulate three core cell processes: cell 
fate, cell survival, and genome maintenance.20 Therefore, the 
development of BC may relate to mutations of multiple cancer 
driver genes and aberrant expression of proteins. Herein, we hy-
pothesize that TAAbs against these antigens encoded by cancer 
driver genes are potential biomarkers for BC. Customized protein 
microarrays consisting of 154 proteins encoded by cancer driver 
genes were developed, aiming to screen the candidate TAAb for 
BC detection. Next, the two steps of ELISA validation were ap-
plied to identify potential TAAb for BC diagnosis. Finally, an op-
timal diagnostic model with a panel of TAAb was established for 
BC diagnosis.

2  | MATERIAL S AND METHODS

2.1 | Sera from patients and controls

Sera from BC patients were collected from a hospital in Henan 
Province, China from June 2017 to April 2018. All specimens of BC 
were obtained prior to any treatment. Among them, 319 sera, includ-
ing 120 preoperative sera and 199 postoperative sera, were obtained 
from 120 BC patients. Postoperative sera were collected within 
1  month after surgery (average 16  days). Sera from age-matched 
female healthy controls (HC) as well as women with benign breast 
diseases (BD) were obtained from Henan Key Laboratory of Tumor 
Epidemiology, China from December 2017 to April 2018. Detailed 
information for all samples is shown in Table  1. All sera were ali-
quoted and stored at −80°C until use. Informed consent forms were 
signed by all participants and the present study was approved by the 
Institutional Review Board of Zhengzhou University.

2.2 | Customized protein microarray

The layout of protein microarrays is shown in Table S1. Each focused 
HuProt array (BC-Biotechnology) contains recombinant proteins 
that are encoded by 138 cancer-driving genes.20 We also provided 
11 proteins from our laboratory that have been demonstrated as 
promising biomarkers.21,22 All 154 proteins (one protein may have 
more than one fragment) were purchased from CDI Laboratories. 
Focused protein microarrays were removed from the −80°C freezer 
and equalized at 4°C and room temperature, followed by incubation 
using 3% BSA for 3 hours at room temperature. A serum diluted with 
1:50 was then added into each well of arrays (200 μL/well, 4°C over-
night). After washing with PBS containing .05% Tween-20 (PBST), 
microarrays were incubated in 1:1000 Alexa Fluor 532 conjugated 
goat anti–human IgG (Jackson ImmunoResearch) at room tempera-
ture for 1 hour in the dark. After washing with PBST, microarrays 
were rinsed with ddH2O and dried. Microarrays were scanned with 
LuxScan 10K-A (CapitalBio) and analyzed using GenePix Pro 6.0 
software (Molecular Devices).

For the scanned signal, the medians of foreground (F Median) 
and background (B Median) intensity of each protein were mea-
sured. The signal to noise ratio (SNR) (F median/B median) value 
was defined to control the background values between differ-
ent samples. The test samples were repeated 30 times to evalu-
ate the operational stability of various arrays at different times 
(Figure S1A). Candidate proteins were screened out by comparing 
the SNR value between BC and healthy controls using four criteria: 
(a) non–parametric or t test, P-values ≤ .05; (b) receiver operating 
characteristic (ROC) analysis, area under the curve (AUC) >  .600 
and P-values ≤  .05; (c) univariate and multivariate logistic regres-
sion (backward stepwise), P-values ≤ .05; and (d) the differences be-
tween positive reaction rates of BC patients and positive reaction 
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rates of healthy individuals are more than 10%, while the cut-off 
value was defined as the mean plus 3SD.

2.3 | ELISA assay

We adopt a relative quantitative ELISA methodology in this study. 
All purified recombinant proteins for ELISA testing were purchased 
from Cloud-Clone. The 16 recombinant proteins (ALK, BRCA2, 
CDKN2A, CEBPA, CEP55, CSF1R, FGFR3, FUBP1, GATA3, GNAS, 
HIST1H3B, HRAS, IMP2/p62, PTCH1, RalA, and SRSF2) were di-
luted in carbonate buffer (pH  =  9.6) to optimal concentrations of 
.250, .250, .500, 1.000, .250, .500, .500, .125, 1.000, .125, 1.000, 
.500, 1.000, .500, .250, and .125 μg/mL, respectively. The human 
IgG (Solarbio) was also diluted in carbonate buffer to final concen-
trations of 300.0, 150.0, 75.0, 37.5, 18.8, 9.4, 4.7, and .0 ng/mL to 
provide a standard curve. All the diluted proteins and human IgG 

were coated onto 96-well flat-bottom plates overnight at 4°C; then 
plates were blocked with 2% BSA in PBST overnight at 4°C. After 
washing with PBST, a serum dilution of 1:100 was added to each 
well except the wells for blank and human IgG. Then the plates were 
placed in 37°C water baths for 1  hour followed by washing with 
PBST. Plates were incubated with HRP-conjugated goat anti–human 
IgG at 1:5000 diluted in 1% BSA, in 37°C water baths for 1 hour. 
A solution of 3,3 ,́5,5 -́tetramethyl benzidine (TMB)-H2O2-urea was 
used as a detecting agent and 50 μL 2 M sulfuric acid was added to 
each well as stopping solution. Optical density (OD) was read at 450 
and 620 nm using a Multilabel Plate Reader (PerkinElmer).

The final OD values were defined as “OD450−OD620− blank.” The 
standard curve obtained by human IgG was used to calculate the rel-
ative concentration of each autoantibody and to normalize the data 
from different plates. Because we diluted serum at 1:100, after we 
calculated the relative concentration using the standard curve, it was 
multiplied by 100 as the final relative concentration.

TA B L E  1   Characteristics of study subjects

Characteristics

Identification of TAAb TAAb detection TAAb validation

BC (%) HC (%) BC (%) HC (%) BC (%) HC (%) BD (%)

Number 27 27 120 120 279 279 200

Female 27 (100.0) 27 (100.0) 120 (100.0) 120 (100.0) 279 (100.0) 279 (100.0) 200 (100.0)

Age, years

Mean±SD 39.7 ± 5.1 40.2 ± 10.5 49.1 ± 10.3 50.6 ± 11.4 47.2 ± 9.5 46.0 ± 11.2 37.7 ± 10.8

Range 21-58 21-58 29-78 31-81 25-81 25-76 21-70

<50 23 (85.2) 21 (77.8) 61 (50.8) 56 (46.7) 174 (62.4) 182 (65.2) 173 (86.5)

≥50 4 (14.8) 6 (22.2) 59 (49.2) 64 (53.3) 105 (37.6) 97 (34.8) 27 (13.5)

ER+ 18 (66.7) NA 62 (51.7) NA 149 (53.4) NA NA

PR+ 16 (59.3) NA 58 (48.3) NA 143 (51.3) NA NA

HER-2+ 20 (70.4) NA 11 (9.2) NA 23 (8.2) NA NA

TNM stage NA NA NA NA

I 4 (14.8) 38 (31.7) 92(33.3)

II 16 (59.3) 31 (25.8) 71 (25.4)

III 6 (22.2) 26 (21.7) 37 (13.3)

IV 1 (3.7) 10 (8.3) 11 (3.9)

Unknown 0 (0.0) 15 (12.5) 68 (24.4)

Lymph node 
metastasis

NA NA NA NA

Positive 8 (29.4) 8 (6.7) 14 (5.0)

Negative 19 (70.4) 112 (93.3) 260 (93.2)

Unknown 2 (1.1) 0 (0.0) 5 (1.8)

Histological type NA NA NA NA

Invasive 27 (100.0) 106 (88.3) 250 (89.6)

Non–invasive 0 (0.0) 8 (6.7) 13 (4.7)

Unknown 0 (0.0) 6 (5.0) 16 (5.7)

BC, breast cancer; BD, breast benign disease; HC, healthy control; NA, not available.
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2.4 | Development of an optimal panel for breast 
cancer detection

The least absolute shrinkage and selection operator (LASSO) to re-
move less important TAAb and remaining TAAbs were used as input 
features for classification algorithms. A total of four classifiers, in-
cluding a random forest (RF), a support vector machine (SVM), a lo-
gistic regression (LR), and a gradient boosting decision tree (GBDT), 
were constructed, and their performance was compared using 10-
fold cross-validation within the training set. The classifier with the 
best performance was chosen. Then, the model based on less TAAb 
as a panel was built on the whole training dataset and tested on an 
independent test set. We also applied the panel to discern BC from 
BD. To further explore whether the final TAAb in the panel were 
specific to BC, we evaluated the final TAAb in esophageal cancer 
(EC), gastric cancer (GC), hepatocellular cell carcinoma (HCC), lung 
cancer (LC), and ovarian cancer (OC) based on the microarray data 
from our laboratory, which was obtained simultaneously with the 
data for this study.

2.5 | Statistical analysis

The IBM SPSS Statistics 21, GraphPad Prism 5.0, and R version 3.6.1. 
were applied in this study. The Mann-Whitney U test and Kruskal-
Wallis test were conducted to compare two or multiple groups (α 
value was corrected by Bonferroni correction). The diagnostic value 
of TAAb was evaluated using the ROC curve. The cut-off value was 
defined at the point of the maximum Youden index, where the speci-
ficity was greater than 90%. The performance of the model based 
on the TAAb panel was indicated by the AUC. Moreover, the Gene 
Expression Profiling Interactive Analysis (GEPIA, http://gepia.cance​
r-pku.cn/, accessed 16 August 2020) was used to analyze the expres-
sion genes involved in this study. STRING (https://strin​g-db.org/, ac-
cessed July August 2020) was used to explore the functional protein 
association.

3  | RESULTS

3.1 | Study design

Four phases (Figure 1) were involved in this study: (a) a customized 
protein microarray with sera from 54 samples was used to prelimi-
narily identify candidate TAAb by detecting bound IgG; (b) ELISA 
assay was conducted to detect candidate TAAb in 240 sera and po-
tential TAAb were validated using 758 sera; (c) 319 sera from 120 
BC patients were used to evaluate the change in TAAb expression 
among patients before and after surgery; and (d) all BC and healthy 
control samples were used to explore an optimal diagnostic model 
with a TAAb panel by performing the various classification algo-
rithms mentioned in the “Materials and Methods.” Another 200 BD 
samples were used to evaluate the capability of differential diagnosis 

of the model. The characteristics of all participants enrolled in this 
study are shown in Table 1.

3.2 | Discovery of tumor-associated autoantibodies 
by customized protein microarray

Sixteen candidate TAAb (Table S2) were selected using the screen-
ing strategies described above. The expression signal and the AUC 
of the 16 TAAb (ALK, BRCA2, CDKN2A, CEBPA, CEP55, CSF1R, 
FGFR3, FUBP1, GATA3, GNAS, HIST1H3B, HRAS, PTCH1, p62, 
RalA, and SRSF2) in BC and control groups are shown in Figure 2. 
The AUC ranged from .613 to .734, and sensitivities ranged from 
18.5% to 48.2% when the specificity was 92.6%. Moreover, the ex-
pression levels of the genes corresponding to 16 TAAb were queried 
in GEPIA and are displayed in Figure S1B. As shown in Figure S1C, we 
also analyzed the protein-protein interaction (PPI) across 16 TAAs: 
15 TAAs interacted with each others to some extent.

3.3 | Validation of tumor-associated autoantibodies 
by ELISA

In the preliminary detection of candidate TAAb among 240 sera by 
ELISA, the levels of 13 TAAb were significantly different between 
BC and healthy groups (Figure 3). These 13 differentially expressed 
TAAb were further validated in a large dataset (758 sera). The re-
sults (Figure 3) suggested that, regardless of whether healthy indi-
viduals or patients with benign breast disease served as the control 

F I G U R E  1   Study design. BC, breast cancer; BD, benign breast 
disease; GBDT, gradient boosting decision tree; HC, healthy 
controls; LASSO, least absolute shrinkage and selection operator; 
LR, logistic regression; RF, random forest; SVM, support vector 
machines; TAAbs, tumor-associated autoantibodies

http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
https://string-db.org/
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group, the serum levels of 11 TAAb (ALK, BRCA2, CDKN2A, CEBPA, 
CEP55, FUBP1, GATA3, HRAS, PTCH1, p62, RalA) in the BC group 
were significantly higher than those in HC and BD groups (P < .01), 
and there was no difference between BD and healthy control groups 
(P > .01). The level of autoantibody against HIST1H3B was higher in 

the BC group than that in the HC group (P < .01), while no significant 
difference was found between BC and BD groups.

The diagnostic value of validated TAAb was also evaluated. 
The range of AUC for distinguishing BC from healthy controls 
was .597-.736 (Figure  S2) and .600-.724 (Figure  S3) in two 

F I G U R E  2   The signal to noise ratio (SNR) values and receiver operating characteristic (ROC) curves of 16 candidate tumor-associated 
autoantibodies (TAAbs). For the scanned signal of protein microarrays, the median of foreground (F Median) and background (B Median) 
intensity of each protein was measured. The SNR (F median/B median) value was defined to control the background values between 
different samples. BC, breast cancer; HC, healthy controls. Se, sesitivity; Sp, specificity.
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datasets, respectively. The AUC of 12 TAAb in discriminating BC 
from BD ranged from .530 to .758 (Figure  S3). The diagnostic 
performance of the 12 TAAb among all BC and controls (HC and 
BD) is shown in Table  2 and Table  3. The positive rates of 12 
TAAb in the BC group ranged from 20.8% to 49.1% at the cor-
responding cut-off values; these values were higher than those 
in the healthy control group, which ranged from 9.5% to 10.0% 
(P < .05). In the BD group, the range of positive rates was 6.5%–
27.0% (Table 3).

3.4 | Tumor-associated autoantibodies decreased in 
sera of breast cancer patients after the operation

We obtained a total of 319 preoperative and postoperative sera 
from 120 BC patients in this study. As shown in Figure 4A, the pre-
operative levels of 12 TAAb were higher than those within 1 month 
after surgery (P < .05). Figure 4B depicts the changing’ trend of 12 
TAAb in the sera of randomly selected patients.

We divided samples into subgroups based on age and stage. As 
shown in Figure S4, the level of TAAb to PTCH1 showed no signifi-
cant difference (P > .05) between patients before and after surgery 
in the late stage (III-IV), while in the early stage (I-II), it was higher in 

patients before surgery than that in patients after surgery (P < .05). 
Moreover, the TAAb to CEBPA, GATA3, and PTCH1 showed higher 
expression levels in the preoperative patients aged ≥ 50 than those 
of aged < 50 (P < .01).

3.5 | Establishment and validation of a panel with 
six tumor-associated autoantibodies for breast 
cancer detection

A panel of six TAAb (CEBPA, CEP55, GATA3, HRAS, PTCH1, and 
RalA) was selected by LASSO. After 10-fold cross-validation within 
the training set, RF was chosen as the final model among four classi-
fiers, as it showed the highest AUC of .879, with sensitivity of 74.3% 
and specificity of 91.9% (Figure 5A). The relative importance of the 
panel with six TAAb is shown in Figure 5E.

Next, all samples in the training set were used to construct a 
model and the performance was evaluated in a blind test set. There 
was an AUC of .865 (69.7% sensitivity and 90.7% specificity) for 
BC detection. The performance of the model for differential diag-
nosis (BC vs BD) revealed an AUC of .884, a sensitivity of 71.2%, 
and a specificity of 90.5%. The PPV was 77.6%. When combining 
all controls (HC+BD) together, the model had an AUC of .916, and 

F I G U R E  3   The relative concentration of individual tumor-associated autoantibodies (TAAbs) among breast cancer, benign breast disease, 
and normal individuals in two datasets (TAAb detection set and TAAb validation set). BC, breast cancer; BD, benign breast disease; HC, 
healthy controls; TAAb, tumor-associated autoantibodies. *P < .05, **P < .01, ***P < .001 (Kruskal-Wallis H test and Mann-Whitney U test, 
Bonferroni correction)
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the sensitivity, specificity, and PPV were 78.9%, 90.2%, and 85.7%, 
respectively (Figure 5B).

The expressions of six TAAb in the panel were also verified 
with the data generated by protein microarray across other 
common cancers, such as esophageal cancer, gastric cancer, he-
patocellular cell carcinoma, lung cancer, and ovarian cancer. As 

exhibited in Figure 6, autoantibodies to CEBPA, CEP55, GATA3, 
HRAS, and RalA showed no difference across these five can-
cers. Only elevated autoantibody to PTCH1 was detected in 
hepatocellular cell carcinoma and ovarian cancer. The results 
suggested that all TAAb in the panel except anti–PTCH1 are 
specific for BC.

TA B L E  2   The diagnostic value of 12 TAAbs for identifying BC from healthy control (HC)

TAAb
Cut-off 
(ng/mL)

Positive(%)

χ2 P
Se 
(%)

Sp 
(%) YI

Accuracy 
(%)

FPR 
(%)

FNR 
(%)

PPV 
(%)

NPV 
(%)

BC HC

(n = 399) (n = 399)

ALK 26 911 94 (23.6) 40 (10.0) 26.153 <.001 23.6 90.0 0.1 16.8 10.0 76.4 70.2 54.1

BRCA2 22 292 118 (29.6) 38 (9.5) 50.994 <.001 29.6 90.5 0.2 19.5 9.5 70.4 75.7 56.2

CDKN2A 24 963 100 (25.1) 40 (10.0) 31.185 <.001 25.1 90.0 0.2 17.5 10.0 74.9 71.5 54.6

CEBPA 23 449 147 (36.8) 42 (10.5) 76.437 <.001 36.8 89.5 0.3 23.7 10.5 63.2 77.8 58.6

CEP55 43 553 91 (22.8) 40 (10.0) 23.755 <.001 22.8 90.0 0.1 16.4 10.0 77.2 69.5 53.8

FUBP1 19 421 102 (25.6) 42 (10.5) 30.505 <.001 25.6 89.5 0.2 18.0 10.5 74.4 70.9 54.6

GATA3 19 858 196 (49.1) 41 (10.3) 144.197 <.001 49.1 89.7 0.4 29.7 10.3 50.9 82.7 63.8

HIST1H3B 35 877 83 (20.8) 41 (10.3) 16.843 <.001 20.8 89.7 0.1 15.5 10.3 79.2 66.9 53.1

HRAS 32 356 127 (31.8) 40 (10.0) 57.319 <.001 31.8 90.0 0.2 20.9 10.0 68.2 76.1 56.9

IMP2/p62 35 344 133 (33.3) 40 (10.0) 63.833 <.001 33.3 90.0 0.2 21.7 10.0 66.7 76.9 57.4

PTCH1 34 216 177 (44.4) 39 (9.8) 120.888 <.001 44.4 90.2 0.3 27.1 9.8 55.6 81.9 61.9

RalA 49 331 117 (29.3) 40 (10.0) 47.014 <.001 29.3 90.0 0.2 19.7 10.0 70.7 74.6 56.0

Note: The cut-off value was considered as the maximum Youden index at the point of more than 90% specificity.
FNR, false-negative rate; FPR, false-positive rate; NPV, negative predictive value; PPV, positive predictive value; Se, sensitivity; Sp, specificity; YI, 
Youden index.

TA B L E  3   The diagnostic value of 12 TAAbs for identifying BC from breast benign disease (BD)

TAAb
Cut-off 
(ng/mL)

Positive(%)

χ2 P
Se 
(%)

Sp 
(%) YI

Accuracy 
(%)

FPR 
(%)

FNR 
(%)

PPV 
(%)

NPV 
(%)

BC BD

(n = 399) (n = 200)

ALK 26 911 94 (23.6) 38 (19.0) 1.612 .204 23.6 82.0 0.1 22.0 18.0 76.4 71.2 51.8

BRCA2 22 292 118 (29.6) 13 (6.5) 41.51 <.001 29.6 93.5 0.2 21.9 6.5 70.4 82.0 57.0

CDKN2A 24 963 100 (25.1) 34 (17.0) 4.987 .026 25.1 83.0 0.1 22.4 17.0 74.9 59.6 52.6

CEBPA 23 449 147 (36.8) 22 (11.0) 43.927 <.001 36.8 89.0 0.3 28.2 11.0 63.2 77.0 58.5

CEP55 43 553 91 (22.8) 26 (13.0) 8.152 .004 22.8 87.0 0.1 19.5 13.0 77.2 63.7 53.0

FUBP1 19 421 102 (25.6) 32 (16.0) 7.017 .008 25.6 84.0 0.1 22.4 16.0 74.4 61.5 53.0

GATA3 19 858 196 (49.1) 36 (18.0) 54.379 <.001 49.1 82.0 0.3 38.7 18.0 50.9 73.2 61.7

HIST1H3B 35 877 83 (20.8) 36 (18.0) 0.657 .418 20.8 82.0 0.0 19.9 18.0 79.2 53.6 50.9

HRAS 32 356 127 (31.8) 26 (13.0) 24.836 <.001 31.8 87.0 0.2 25.5 13.0 68.2 71.0 56.1

IMP2/p62 35 344 133 (33.3) 42 (21.0) 9.799 .002 33.3 79.0 0.1 29.2 21.0 66.7 61.3 54.2

PTCH1 34 216 177 (44.4) 54 (27.0) 16.948 <.001 44.4 73.0 0.2 38.7 27.0 55.6 62.2 56.8

RalA 49 331 117 (29.3) 32 (16.0) 12.655 <.001 29.3 84.0 0.1 24.9 16.0 70.7 64.7 54.3

Note: The cut-off value was considered as the maximum Youden index at the point of more than 90% specificity
FNR, false-negative rate; FPR, false-positive rate; NPV, negative predictive value; PPV, positive predictive value; Se, sensitivity; Sp, specificity;  
YI, Youden index.
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F I G U R E  4   The preoperative and postoperative level of tumor-associated autoantibodies (TAAbs) in the sera of breast cancer patients. 
A, Relative concentration levels (median) of individual TAAb between breast cancer (BC) patients before and after the operation (P <.05). 
B, Relative concentration of individual TAAb from randomly selected patients before and after the operation. TAAbs, tumor-associated 
autoantibodies

F I G U R E  5   Performance of the panel 
with six tumor-associated autoantibodies 
(TAAbs) to detect breast cancer. A, 
Receiver operating characteristic (ROC) 
curves from four models (RF, LR, SVM, 
GBDT) in a training set after 10-fold 
cross-validation. B, The performance of 
the RF model in distinguishing individuals 
with BC from HC (blind test set) or BD or 
all controls (HC+BD). C, Performance of 
the model for distinguishing individuals 
with early-stage (I+II) BC from HC or BD 
or all controls (HC+BD). D, Performance 
of the model for distinguishing individuals 
with age < 50 BC from HC or BD or all 
controls (HC+BD). BC, breast cancer; BD, 
benign breast disease; GBDT, gradient 
boost decision tree; HC, healthy controls; 
LR, logistic regression; RF, random forest; 
SVM, support vector machines; TAAbs, 
tumor-associated autoantibodies
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3.6 | Performance of the panel with six 
tumor-associated autoantibodies for breast 
cancer subgroups

In the early stage (I–II) of BC, as shown in Figure 5C, the model dis-
played AUC of .920 (BC vs HC with 78.1% sensitivity and 90.5% 
specificity), .870 (BC vs BD with 64.2% sensitivity and 90.5% speci-
ficity), and .903 (BC vs [HC+BD] with a sensitivity of 72.3% and 
specificity of 90.8%). In addition, for the diagnosis of BC patients 
under the age of 50, the model exhibited AUC of .934 (BC vs HC, 
80.7% sensitivity and 90.5% specificity), .884 (BC vs BD, 68.9% 
sensitivity and 90.5% specificity), and .917 (BC vs [HC+BD], 77.9% 
sensitivity and 90.5% specificity) (Figure 5D). Table S3 showed that 
there was no significant difference between various clinical stages, 

ages, prognostic index, lymph node status, histological type, and 
family history of cancer (χ2 test, P >  .05). The predicted results of 
the model among BC subgroups are provided in Figure S5.

4  | DISCUSSION

Protein microarray technology has shown broad application pros-
pects in the biomedical field. It is able to simultaneously and rapidly 
discover a variety of biomarkers.23,24 It is also a highly effective tool 
to profile novel autoantibodies in cancer with superior specificity.25 
Using the customized protein microarrays, 16 candidate TAAb were 
screened out, including ALK, BRCA2, CDKN2A, CEBPA, CEP55, 
CSF1R, FGFR3, FUBP1, GATA3, GNAS, HIST1H3B, HRAS, PTCH1, 

F I G U R E  6   Scatter plot of a panel 
of six tumor-associated autoantibodies 
(TAAbs) in common cancers (median with 
interquartile). EC, esophageal cancer; GC, 
gastric cancer; HC, healthy controls; HCC, 
hepatocellular cell carcinoma; LC, lung 
cancer; OC, ovarian cancer; SNR, signal 
to noise ratio; TAAb, tumor-associated 
autoantibodies. ***P < .001
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p62 (IMP2), RalA, and SRSF2. These candidate TAAb can distin-
guish BC from healthy controls with a sensitivity range from 18.5% 
to 48.2% at 92.6% specificity. Except for HIST1H3B, the remain-
ing TAA corresponding to 15 TAAb interact with each other, which 
means the novel biomarkers may be involved in cell cycle regulation 
and signal transduction.26 Furthermore, from the gene expression 
level, they could also distinguish BC from normal controls. The result 
indicates that this is a feasible method to screen TAAb by using the 
protein microarrays encoded by cancer driver genes. Moreover, it 
reveals that the proteins encoded by cancer driver genes have im-
munogenicity as well, which could trigger immune responses.

Of the identified novel biomarkers, several are associated with 
BC. As an important transcription factor, CEBPA regulates the pro-
liferation and differentiation of various tissues and participates in 
the regulation of the expression or function of some cell cycle reg-
ulators, including BC cells.27 Gery et al found that CEBPA is related 
to the occurrence and development of BC.28 It was reported that 
PTCH1 is associated with early recurrence of BC and may become a 
powerful predictor of BC.29,30 Studies have suggested that GATA3 is 
a member of the transcription regulatory factor family, which could 
be a useful immunohistochemical marker for BC.31,32 CDKN2A/p16 
has a meaningful association with the risk of BC and it is expected 
to be a candidate gene for BC.33 BRCA2 gene is a confirmed BC 
susceptibility gene,34 which could lead to the development of BC.35 
HRAS is related to BC and could be a valuable screening biomarker 
for women.36 As the human far upstream element (FUSE) binding 
protein 1, FUBP1 overexpression was observed in many kinds of 
cancers.37,38 A study found that CEP55 is a novel TAA for BC.39 ALK 
also plays an important role in cancer biology.40 All biomarkers se-
lected in this study are closely implicated in the development of BC.

To the best of our knowledge, of the 16 TAAb, 3 (CDKN2A, p62, 
and RalA) have been reported as biomarkers for BC as well as other 
types of cancers.41-43 However, others have not been reported in 
the BC serological biomarkers study. Thus, we further investigated 
the presence and diagnostic value of them by indirect ELISA test. 
The ELISA tests were conducted in two steps: one for the prelim-
inary detection of TAAb and the other for the validation of TAAb. 
We selected 12 potential TAAb (ALK, BRCA2, CDKN2A, CEBPA, 
CEP55, FUBP1, GATA3, HIST1H3B, HRAS, PTCH1, p62, and RalA). 
The serum levels of the 12 TAAb in the BC group were higher than 
those in the healthy control group and the benign breast disease 
group (P <  .01). The 12 TAAb are potential serological biomarkers 
for BC and could be used in the diagnosis or differential diagnosis 
of BC. Moreover, serum samples are easy to obtain, and the detec-
tion method of antibody is comparatively simple with highly sensi-
tive and non–invasive characteristics, which makes the detection of 
TAAb more practical. Based on our results, TAAb to CEBPA, PTCH1, 
GATA3, CDKN2A, and BRCA2 have relatively high diagnostic value 
for BC detection. The AUC range from .707 to .769.

Studies have shown that some circulating biomarkers emerge be-
fore clinical diagnosis of patients,10,44,45 while diminishing after sur-
gery.46-50 Similarly, our findings indicated the reduction of 12 TAAb 
in patients’ sera after surgery. A previous study found that TAAb 

can indicate the malignant transformation of disease prior to clinical 
study and are promising biomarkers for early detection.44 Herein, 
the dynamic change of serum TAAb may reflect the changes in the 
tumor status of patients.51 Our results suggest that the 12 TAAb 
may be useful as predictors of tumor activity. However, the biolog-
ical mechanism for the changes in serum TAAb in cancer patients 
before and after surgery remains unclear. In this study, the postop-
erative sera of BC patients were only collected within 1 month of 
the operation, with no follow-up samples. Thus, we cannot verify 
the changes in the novel TAAb in the sera of BC patients in a lengthy 
time span after treatment.

Multiple tumor markers could improve the diagnostic perfor-
mance and increase the efficiency of the test.52 A variety of ma-
chine learning (ML) techniques have been used in cancer research 
to develop predictive models and improve the accuracy of decision-
making.53 Therefore, in phase IV of this study, we applied different 
ML algorithms to choose a model with excellent diagnostic perfor-
mance. To make the model more efficient and interpretable, we first 
used a feature selection technique LASSO to reduce the number of 
TAAb to be included. The inverse regularization parameter C was 
set as .1 to keep a reasonable set of TAAb. RF and GBDT showed 
comparable performance and outperformed the other two classifi-
ers. Comprehensive studies have been conducted to compare ML 
and statistical methods with respect to their applications in cancer 
genomics; GBDT and RF are always among the most powerful.54,55 
As the model will finally be used on clinical data, where noise may 
arise, we chose RF because it is more tolerant to noises.

The RF model with the combination of six TAAb exhibited good 
diagnostic value both in training and blind test sets. In addition, the 
six-TAAb panel could distinguish BC from breast benign diseases 
(AUC  =  .884, 71.2% sensitivity and 90.2% specificity). For early 
detection, the six-TAAb panel showed an increasingly high AUC 
(AUC =  .903 for stage I-II, AUC =  .917 for age < 50). The eminent 
performance of the RF model for different and unbalanced sub-
groups demonstrated its capability of handling different situations 
in the clinic. Consequently, the model based on six TAAb is well-
established, which is of great significance for its clinical application 
for early BC detection. Furthermore, five of the six TAAb are spe-
cific to BC among common cancers, which makes them ideal for BC 
detection. Nevertheless, there are some limitations of this study. 
Our study is a retrospective case-control study and the prospective 
collection of specimens from a cohort is unavailable.56 Therefore, 
it is necessary to confirm autoantibody signatures in a large-scale 
prospective study. In addition, there were no pre–diagnostic serial 
sera, so the expression status of these TAAb before the develop-
ment of BC was unknown. Following up patients with precancerous 
breast lesions through the collection of their successive sera will be 
the focus of our future study.

In summary, this study found some novel TAAb that could be 
potential biomarkers for the detection of BC. These biomarkers can 
not only identify BC from healthy controls but also differentiate BC 
from benign breast disease. Furthermore, we developed a diagnos-
tic model, the six-TAAb combination, that performed well and is a 
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promising potential method for BC detection. Further work is needed 
to determine the value of these markers in clinical application.
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