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Abstract

Clouds are prevalent and alter PM2.5 mass and chemical composition. Cloud-affected satellite 

retrievals are often removed from data products, hindering estimates of tropospheric chemical 

composition during cloudy times. We examine surface fine particulate matter (PM2.5) chemical 

constituent concentrations in the Interagency Monitoring of PROtected Visual Environments 

network during Cloudy and Clear Sky times defined using Moderate Resolution Imaging 

Spectroradiometer (MODIS) cloud flags from 2010–2014 with a focus on differences in particle 

hygroscopicity and aerosol liquid water (ALW). Cloudy and Clear Sky periods exhibit significant 

differences in PM2.5 and chemical composition that vary regionally and seasonally. In the eastern 

US, relative humidity alone cannot explain differences in ALW, suggesting emissions and in 
situ chemistry exert determining impacts. An implicit clear sky bias may hinder efforts to 

quantitatively to understand and improve model representation of aerosol-cloud interactions.

Plain Language Summary

Satellite retrievals affected by clouds are often removed from final data products, hindering 

knowledge of chemical composition under cloudy conditions. Much of the contiguous US 

(CONUS) is covered by visible clouds much of the time, and clouds alter fine particulate matter 

(PM2.5) chemical composition and mass concentration. We investigate differences in PM2.5 mass 

and chemical composition between cloudy and clear sky times from 2010–2014. We use surface 

measurements of PM2.5 chemical constituents from the Interagency Monitoring of PROtected 

Visual Environments (IMPROVE) network, grouped into Cloudy and Clear Sky bins based on 

the cloud flag from the Moderate Resolution Imaging Spectroradiometer. We find that PM2.5 

mass and chemical composition varies regionally and seasonally across the CONUS between 

Cloudy and Clear Sky time periods. We find an important role for chemical composition linked to 

emissions and formation processes to explain Cloudy and Clear Sky differences in aerosol liquid 

water (ALW). This work suggests that an implicit clear sky bias hinders efforts to quantitatively 

understand particulate matter chemical composition during cloudy times.
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1 Introduction

At any given time, visible clouds cover over 60% of the Earth’s surface (King et al., 2013), 

and a warming climate causes cloud cover to change (Norris et al., 2016). Average cloud 

fraction values over the contiguous US (CONUS) are ~40% year-round with higher values in 

the winter (44–54%) than the summer (26–34%) (Ju & Roy, 2008; Kovalskyy & Roy, 2015). 

Clouds act as atmospheric aqueous phase reactors, and their condensed phase oxidative 

chemistry generates particle mass aloft, such as sulfate (Zhou et al., 2019) and water-soluble 

organic carbon (Carlton et al., 2008; Duong et al., 2011) Clouds are the primary drivers 

of vertical transport in the atmosphere, moving trace species from the boundary layer to 

the free troposphere (FT) (Ervens, 2015).. The radiative impacts of aerosols in the FT are 

substantial, especially when located above clouds where aerosols scatter and absorb both 

incoming solar radiation and diffuse back scatter from clouds (Seinfeld, 2008). Aerosol­

cloud interactions are complex and a critical uncertainty in model projections of the future 

(Fan et al., 2016).

Atmospheric chemistry laboratory studies, sampling, modeling and analysis strategies 

designed to minimize cloud and water influences lead to an implicit, yet persistent clear 

sky bias in the quantitative understanding of tropospheric composition. During atmospheric 

chemistry field campaigns, aircraft typically avoid clouds. There is increased error in 

remotely sensed aerosol optical thickness (AOT) retrieval techniques during cloudy times 

(Martin, 2008), and impacted retrievals are often screened from final data products to 

avoid measurement artifacts. Most validation of satellite-derived AOT through comparison 

to surface measurements, such as those from sun photometers used to retrieve AOT from 

the ground up, is conducted for cloud-free periods (Liu et al., 2018). Air quality models 

are often evaluated with cloud-free satellite retrievals (van Donkelaar et al., 2010; Guo et 

al., 2017; de Hoogh et al., 2016; Song et al., 2014; J. Tian & Chen, 2010) and cloud-free 

aircraft samples (Bray et al., 2017; McKeen et al., 2009). This biases model development 

and predictive skill toward cloud-free conditions. Laboratory experiments to understand 

particulate matter formation are conducted under dry conditions (e.g., Lamkaddam et al., 

2017; Ng et al., 2007) atypical of cloudy time periods. Should differences in aerosol 

physicochemical properties exist between cloudy and clear sky time periods, current 

approaches are limited in their ability to quantitatively assess those differences. This is a 

key knowledge gap.

Characterization of fine particulate matter (PM2.5) mass and chemical composition in the 

US primarily relies on surface measurements from relatively sparsely spaced monitors. 

At various locations across the CONUS, the Interagency Monitoring of PROtected Visual 

Environments (IMPROVE) network samples every 3 days, and the Chemical Speciation 

Network (CSN) samples every 3 or 6 days (US Environmental Protection Agency, 2008). 

To improve upon surface network spatial and temporal limitations of point measurements, 

data can be interpolated to describe particle mass (Li et al., 2014; G. Zhang et al., 2018) 

and chemical composition over larger areas (Y. Liu et al., 2009; Tai et al., 2010). Satellite 

information can also be used (van Donkelaar, Martin, Brauer, et al., 2015), such as the 

Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard the Aqua 

and Terra satellite platforms. These view the entire Earth surface every 1 to 2 days and 
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are used to impart information about AOT translated to PM2.5 mass concentrations for 

use in air quality applications (van Donkelaar, Martin, Brauer, et al., 2015; Gupta et al., 

2006; Kloog et al., 2011; Sorek-Hamer et al., 2016). Many advanced satellite AOT models 

translate space-based radiation measurements to surface PM2.5 (van Donkelaar et al., 2010; 

van Donkelaar, Martin, Brauer, et al., 2015; van Donkelaar, Martin, Spurr, et al., 2015; 

Gupta et al., 2006; Kessner et al., 2013; Kloog et al., 2011; Kumar et al., 2007; Y. Liu 

et al., 2011; Schaap et al., 2009; J. Wang et al., 2012; J. Wang & Christopher, 2003) and 

employ sophisticated techniques which account for aerosol size and type, vertical extinction, 

mass, and relative humidity (RH) (van Donkelaar et al., 2010). Evaluation of AOT-to-PM2.5 

techniques finds that monthly aggregated AOT can robustly estimate relationships spanning 

five years of daily mean values over North America (R>0.77) (van Donkelaar et al., 2010). 

While temporal and geospatial satellite AOT is useful for understanding trends in PM2.5 

concentrations (van Donkelaar, Martin, Brauer, et al., 2015; Sorek-Hamer et al., 2016; J. 

Wang & Christopher, 2003), an implicit constraint for this and other similar findings is that 

such agreement is for clear sky conditions.

Surface networks record PM2.5 mass and chemical composition during clear sky and cloudy 

time periods alike. The difference between spatially and temporally aggregated PM2.5 mass 

concentrations in the CONUS for cloudy and all sky (cloudy + clear sky) conditions is 

estimated to be ±2.5 μg m−3 (Christopher & Gupta, 2010). Less attention has been given 

to clear sky and cloudy differences in PM2.5 chemical composition, especially with regards 

to particle hygroscopicity and water uptake. Aerosol mass concentrations and chemical 

speciation including aerosol liquid water (ALW) influence AOT (Christiansen et al., 2019; 

Malm et al., 1994; Nguyen et al., 2016; Pitchford et al., 2007), cloud microphysics, and 

mesoscale convective systems (Kawecki & Steiner, 2018), including storm morphology 

and precipitation patterns (Kawecki et al., 2016). Particle chemical composition modulates 

particle size via water uptake. Particle size is a determining factor in light scattering by 

particles, which is important for aerosol radiative properties. An implication of this work 

is that if particle hygroscopicity changes from clear sky to cloudy time periods, when 

aerosol-cloud interactions are most important, a quantitative understanding remains unclear.

In this work, we test the hypothesis that there are quantitative differences in PM2.5 chemical 

composition between cloudy and clear sky time periods in ways important for water uptake. 

We employ a combination of satellite products, surface measurements, and thermodynamic 

modeling to analyze annual and seasonal trends in different chemical climatology regions 

across the CONUS. We assess and quantify seasonal statistical significance (Kahn, 2005) for 

differences in distributions of RH, PM2.5, and chemical speciation during cloudy and clear 

sky times using surface measurements from the IMPROVE network from 2010–2014 within 

the context of MODIS cloud flag values. Further, we examine one chemical climatology 

region in detail, the Mid South, as a case study. This region encompasses the location of 

the Atmospheric Radiation Measurement Southern Great Plains (SGP) site in an area of the 

CONUS that experiences varied weather patterns, a broad range of cloud conditions, and 

distinct seasonal variations in temperature and humidity (Sisterson et al., 2016).

Christiansen et al. Page 3

Atmos Chem Phys. Author manuscript; available in PMC 2021 August 10.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



2 Data and Methods

Cloudy and clear sky classifications are determined using publicly available data (National 

Aeronautics and Space Administration, 2018) from MODIS on the Aqua and Terra satellites. 

Pairing of satellite and surface PM2.5 mass measurements typically works best in rural 

and vegetated locations, where the spectral properties of the background tend to be dark 

and vary little over the space of a satellite grid cell (Hauser, 2005; Jones & Christopher, 

2010). For this reason, we use rural IMPROVE network sites that are located primarily in 

national parks, although improvements have been made for retrievals over bright surfaces 

such as deserts and urban areas (Hauser, 2005; Hsu et al., 2004, 2006, 2013; H. Zhang 

et al., 2016). We use 500 m resolution pixels that contain the IMPROVE sites. Retrievals 

are flagged as cloudy if QA flags specifically identified clouds as preventing retrieval 

(LAND_GOOD_FLAG=11, LAND_BAD_FLAG=3), or if 2.1-micrometer reflectance was 

too high (r>0.35) and the fraction of 500 m sub pixels that were cloudy was greater than 

44.4% (LAND_CLOUD_FRAC>0.444). We choose 44.4% because it is a fundamental 

limit of the algorithm (Remer et al., 2013). IMPROVE monitors are frequently under a 

MODIS swath with valid retrievals even if the pixel containing the IMPROVE station is 

not successfully retrieved. As an alternative to the IMPROVE pixel, we employ a method 

for quality assurance, a 17×17 grid. This allows for any retrieval within a 50 km x 50 km 

area to represent the IMPROVE station. If all 17×17 pixels are not retrieved, then the state 

over the monitor is determined to be cloudy. The 17×17 grid approach is much more likely 

to attribute non-retrieved data to clouds (98.5%) than the containing pixel approach, which 

attributes 89.8% of non-retrieved data to clouds. Misidentifying non-retrievals as cloudy is 

unlikely to substantially affect interpretation, as the sample size is large (N>70,000 total 

observations, and N>1500 for an individual region).

IMPROVE network data were downloaded on 13 July 2015 and 26 May 2016 from 

public archives (http://vista.cira.colostate.edu/Improve/) (IMPROVE Network, 2019) for 132 

unique sites across the CONUS with complete data records for the years 2010–2014 (Figure 

S1a). IMPROVE data is collected every 3 days. We investigate 24-hour average PM2.5 

mass, ALW, RH, sulfate (SO4
2−), nitrate (NO3

−), and total organic carbon (TOC) mass 

concentrations. We group IMPROVE sites across the CONUS into 22 chemical climatology 

regions defined by the IMPROVE network (Figure S1b) (Hand et al., 2011; Malm et al., 

2017). PM2.5 mass and composition is provided directly from the IMPROVE database, while 

ALW is estimated.

ALW is a function of RH, particle concentration, and chemical composition. We 

estimate ALW using a metastable assumption in the inorganic (K+–Ca2+–Mg2+–NH4
+–

Na+–SO4
2−–NO3

−–Cl−–H2O) aerosol thermodynamic equilibrium model ISORROPIA 2.1 

(Fountoukis & Nenes, 2007). We use the reverse, open-system problem because only aerosol 

measurements are available. Particle mass concentration inputs of SO4
2− and NO3

− are taken 

from IMPROVE measurements. Because of limited measurement availability, ammonium 

ion is not considered. Dust and organic species are also not considered because water uptake 

properties are not well constrained (Jathar et al., 2016; Metzger et al., 2018), and there is 

large spatial heterogeneity in dust mass concentrations. Excluding dust and organics from 

ISORROPIA estimates alters ALW concentrations but does not affect overall interpretation 
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(Figure S2), consistent with an earlier sensitivity using this technique and including organic 

compounds (Nguyen et al., 2015). The temperature and RH were extracted from the North 

American Regional Reanalysis (NARR) model ( Kalnay et al., 1996) similar to Nguyen et al 

(Nguyen et al., 2016).

Cloudy and clear sky differences in ALW are investigated in two ways. First, we compare 

ALW estimated using 24-hour average chemical composition and meteorology and group 

results into Clear Sky and Cloudy bins using the MODIS cloud flag. We use these daily 

values when comparing ALW within chemical climatology regions. Second, we investigate 

trends across the eastern US to isolate the effect of chemical composition. We select 

the eastern US since ALW concentrations are largest in this region (Figure S3). We 

group 24-hour average chemical composition and meteorology into Clear Sky and Cloudy 

bins and take monthly medians. We perform ALW estimations using the medians via 

three ISORROPIA calculation scenarios: 1) Clear Sky chemical composition and Clear 

Sky meteorology (“Clear Sky” scenario), 2) Cloudy chemical composition and Cloudy 

meteorology (“Cloudy”), and 3) Clear Sky chemical composition and Cloudy meteorology 

(“Mixed”) (Table S1, Figure S4). We use monthly medians to avoid complications that arise 

from differing numbers of Cloudy and Clear Sky days in the Mixed scenario. We perform 

the Mixed scenario to reproduce studies in which growth factors are measured under clear 

sky conditions (e.g., Brock et al., 2016) and eventually applied to models which contain 

cloudy meteorological conditions. When the Mixed scenario is significantly different than 

Cloudy, we can reject the hypothesis that RH and temperature alone explain the difference.

Growth factors used in the Mid South region are estimated from a modified Kohler equation 

(Brock et al., 2016; Jefferson et al., 2017) (Equation 1). We use RH from the NARR and 

estimate κd, the particle hygroscopicity, from IMPROVE-measured chemical composition 

mass concentrations and individual species κ values (κSO4 = 0.5 and κNO3 = 0.7).(Petters & 

Kreidenweis, 2007) Here, gf D  is the hygroscopic diameter growth.

gf D = 1 + κd
RH

100 − RH
1/3

(1)

Statistical significance for differences in measurement distributions of PM2.5 chemical 

composition and properties between Cloudy and Clear Sky time periods for all seasons in 

the years 2010–2014 is determined using the Mann-Whitney U Test in R statistical software 

(R Core Team, 2013). The Mann-Whitney U Test is a non-parametric test that compares two 

samples to assess whether population distributions differ (McKnight & Najab, 2010). The 

timeframe 2010–2014 encompasses typical conditions, and coincides with several intensive 

observation periods including the Southeast Atmosphere Studies (SAS) (Carlton et al., 

2018), the Studies of the Emissions and Atmospheric Composition, Clouds, and Climate 

Coupling by Regional Surveys (SEAC4RS) (Toon et al., 2016), and the California Research 

at the Nexus of Air Quality and Climate Change (CalNex) (Ryerson et al., 2013) field 

campaigns,. We define cloud fraction for each region as the number of MODIS-flagged 

cloudy IMPROVE sampling days over the total number of IMPROVE sampling days. 

Further, we define winter as December, January, and February (DJF), spring as March, 
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April, and May (MAM), summer as June, July, and August (JJA), and fall as September, 

October, and November (SON).

3 Results and Discussion

3.1 Hygroscopicity and chemical composition

Distributions in monthly particle chemical composition across the eastern US in 2010–

2014 are sufficiently changed between MODIS-defined Cloudy and Clear Sky times to 

affect hygroscopicity and alter predicted ALW mass concentrations beyond differences 

that would arise from changes in meteorology alone (Figure 1). The only difference 

between the Mixed and Cloudy ALW calculations is that the Mixed scenario employs 

Clear Sky chemical composition extrapolated to Cloudy meteorology. This can occur in 

model development or satellite validation applications when PM2.5-AOD relationships or 

growth factors are unmeasured for Cloudy periods (e.g., van Donkelaar et al., 2010; de 

Hoogh et al., 2016; J. Tian & Chen, 2010; Brock et al., 2016). When Clear Sky chemical 

composition is extrapolated to Cloudy period meteorology (“Mixed”), monthly median 

ALW concentrations in the eastern US are significantly different from our best estimate, 

which employs the actual chemical composition during cloudy periods (“Cloudy”), in all 

seasons except winter. Interestingly, monthly median Clear Sky and Cloudy scenario ALW 

concentrations do not differ significantly except during winter despite higher Cloudy RH 

(Figure S5). This suggests chemical composition is a determining factor in ALW uptake on 

cloudy days because the pattern in ALW is opposite the pattern in RH. Clear Sky/Cloudy 

patterns in SO4
2− and NO3

− mass concentrations, which affect particle hygroscopicity, 

vary regionally and seasonally. When aggregated over the eastern US, ALW estimates for 

the Mixed case are largest during summer and spring and can be explained by elevated 

Clear Sky SO4
2− and NO3

− concentrations and high Cloudy RH. Generally, Mixed ALW 

concentrations in the eastern US are higher than for the Cloudy scenario during each 

season because Clear Sky chemical composition facilitates greater hygroscopicity and 

Cloudy RH is elevated (Table S2). A notable exception is the Ohio River Valley during 

winter, where Cloudy SO4
2−, NO3

−, and RH are higher than Clear Sky. In this case, 

Cloudy period ALW concentrations are higher than for the Mixed scenario. These findings 

highlight that a changing PM2.5 chemical composition has a determining effect on ALW 

mass concentrations (Nguyen et al., 2016), a critical element in the estimation of aerosol­

cloud interactions and particle radiative impacts. During cloudy periods, when the accurate 

prediction of ALW and aerosol-cloud interactions is most critical, in situ knowledge of 

PM2.5 chemical composition is required.

Differences in daily mass concentrations of fine particle chemical constituents between 

Cloudy and Clear Sky periods across the CONUS are spatially and temporally different 

among PM2.5 mass and its chemical constituents except in the Northwest region (Tables 

S3-S7, Figure S6). These patterns cannot be adequately described as a function of MODIS 

cloud fraction (Figures S7-S8). If meteorological processes and physical transport are the 

only controlling factors, then patterns in mass concentrations among PM2.5 and constituents 

should not vary. However, they do, suggesting differences in emissions and/or in situ 
chemical production of PM2.5 during Cloudy and Clear Sky time periods. Where differences 
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are significant for ALW, Cloudy ALW is higher than Clear Sky in all seasons, with 

few exceptions (Figure 2, Table S3). Water uptake contributes to particle growth with a 

determining impact on particle size and radiative properties. PM2.5 mass, greater during 

Clear Sky times in most regions and seasons, has nearly an opposite pattern to ALW spatial 

and seasonal trends (Figure 3, Table S3). Although Cloudy vs. Clear Sky differences are 

observed across the CONUS, the largest differences are observed in the central and eastern 

US during winter (Figure 2, Table S2). Wintertime Cloudy SO4
2− mass concentrations are 

greater than Clear Sky (Figure S9, Table S5), and the highest NO3
− mass concentration 

differences are observed during Cloudy times in winter when temperatures are coldest 

(Figure S10, Table S8). This promotes thermodynamic stability of nitrate in the condensed 

phase, increasing particle hygroscopicity and facilitating ALW.

Outside of winter, significant SO4
2− mass concentrations are typically higher on Clear 

Sky days in the eastern US (Figures S9 & Tables S5-S6). In the eastern US summer, 

SO4
2− differences are greater during Clear Sky times than Cloudy. Higher Clear Sky SO4

2− 

concentrations during these times may be associated with heat waves and stagnation events 

prevalent during summer, which are characterized by a lack of ventilation in high pressure 

systems (Jacob & Winner, 2009; J. X. Wang & Angell, 1999), higher air conditioning loads, 

and electricity demand (Farkas et al., 2016).

TOC mass concentrations are nearly always higher during Clear Sky times than Cloudy 

(Figure S11, Table S7) in all chemical climatology regions across the CONUS, with the 

largest differences during summer and fall. Precursor VOC emissions (e.g., biogenic) and 

subsequent derived PM that contributes to OC differ by season and region (Donahue et al., 

2009; Gentner et al., 2017). Increased sunlight under clear sky conditions leads to higher 

biogenic VOC emissions (Sakulyanontvittaya et al., 2008) and enhanced photolysis rates 

that facilitate hydroxyl radical (OH) production important to secondary organic aerosol 

formation (Tang et al., 2003). We note that TOC is also influenced by primary sources of 

OC including wildland fires in the west and prescribed burning in the east which are not 

influenced by cloud presence (Spracklen et al., 2007); (D. Tian et al., 2009; Zeng et al., 

2008).

3.2 PM2.5 Mass Concentrations

Significant differences in PM2.5 mass concentrations measured at IMPROVE monitoring 

locations are observed between Cloudy and Clear Sky conditions in the majority (>60%) of 

regions in any given season during 2010–2014 (Figure 3 and Table S4) and do not trend with 

MODIS cloud fraction during any season in any region (Figure S12). In all regions, Clear 

Sky PM2.5 concentrations are generally higher than Cloudy. Satellite AOT products used 

to derive PM2.5 may overestimate the atmospheric burden across the CONUS, particularly 

during summertime. Median All Sky PM2.5 concentrations are also significantly different 

than Clear Sky in multiple chemical climatology regions and are typically lower than Clear 

Sky concentrations (Table S9). This suggests the clear sky bias in satellite data may impart 

a positive bias when assessing surface PM2.5 trends in model applications for air quality, 

weather, and climate.
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3.3 Case Study: The Mid South

ALW concentrations are significantly higher during Cloudy times than Clear Sky in the 

Mid South during all seasons (Table 1, Figure S13). RH in the region is high year-round 

during Cloudy and Clear Sky periods alike, with the median greater than 60%. Gas-phase 

water vapor mixing ratios are sufficiently high that water availability is not limiting for 

ALW in the region for any season. Aerosol mass concentrations and chemical composition 

vary, however, and the effects on particle hygroscopicity can be seen in contrasting Cloudy 

and Clear Sky ALW concentrations among the seasons. For example, during Clear Sky 

conditions, the highest ALW mass concentrations occur during summer and spring, which 

correspond to the highest SO4
2− concentrations in the Mid South, and not when Clear Sky 

RH is highest (i.e., during winter). The largest absolute ALW concentrations and estimated 

growth factors occur during Cloudy times in the winter and spring, when NO3
− mass 

fraction and RH are highest. This is consistent with independent humidified nephelometer 

measurements by Jefferson et al. who find that aerosol growth rates are highest in the winter 

and spring at the SGP site within the Mid South chemical climatology region, and identify 

nitrate and RH as determining factors (Jefferson et al., 2017).

NO3
− concentrations are generally lower than SO4

2− in the Mid South, but NO3
− is more 

hygroscopic and provides influence over ALW patterns. Sulfate is traditionally considered 

dominant in determining absolute ALW mass concentrations in this region, and sulfate 

mass fraction is highest in summer. (A. G. Carlton & Turpin, 2013; Gasparini et al., 

2006) Similar to other regions of the CONUS, SO4
2− mass concentrations are greatest 

during summertime Clear Sky conditions due to transport (Parworth et al., 2015), increased 

rates of photochemistry (Stone et al., 2012), and increased electricity sector emissions 

during heat waves and stagnation events (Appel et al., 2011; Farkas et al., 2016), which 

generally occur on sunny days. Sulfate mass fraction is lowest in winter, when nitrate 

concentrations are high due to cooler temperatures and transport of precursor species from 

nearby agricultural and surrounding urban areas (Parworth et al., 2015). Year-round NO3
− 

concentrations are higher during Cloudy conditions than Clear Sky, which are associated 

with lower temperatures. Under Cloudy conditions, the highest ALW concentrations and 

estimated growth factors occur during winter and spring, when NO3
− mass fraction and 

RH are highest. In another continental location, the Po Valley in Italy, NO3
− was found 

to control ALW concentrations with implications for SOA (Hodas et al., 2014). The Mid 

South is also a continental, agricultural area and aerosol growth may be subject to similar 

mechanisms.

4 Conclusions

Across the CONUS, statistically discernible differences among PM2.5 and chemical 

constituent concentrations under Cloudy and Clear Sky conditions cannot be explained 

solely by physical mechanisms. The chemical properties of aerosol are important to 

explain differences in water uptake and particle composition under different meteorological 

conditions. While meteorological phenomena such as pressure systems, winds, and air 

mixing affect PM2.5 and chemical component concentrations, they are not sufficient to 

explain chemical constituent differences between Cloudy and Clear Sky times. In situ 
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chemical formation processes are necessary to fully explain temporal and spatial patterns. 

Spatially and seasonally, PM2.5 and particle speciation information that lends insight into 

water uptake, particle properties, and particle growth is incomplete when information is 

gathered only during clear sky time periods. The work presented here indicates aerosol 

growth due to water uptake is greatest during satellite periods identified as Cloudy in many 

regions. Satellites are unable to remotely sense particle properties and impacts during these 

times. This limits understanding of atmospheric particle burden and its climate-relevant 

physicochemical properties, which have implications for the prediction of weather (Kawecki 

& Steiner, 2018), air quality, and climate. This indicates that the clear sky bias affects 

accurate representation of ALW on cloudy days and is suggestive that without in situ 

chemical information, aerosol-cloud interactions and subsequent estimates of radiative 

forcings in models (Lin et al., 2016; Vogelmann et al., 2012) will remain inaccurate. 

More detailed particle chemical composition is needed to accurately predict atmospheric 

particulate matter and subsequent impacts on weather, climate, and air quality.
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Key Points

• Aerosol liquid water and particle chemical constituent mass concentrations 

significantly differ on cloudy and clear days across the CONUS

• Physical meteorology is insufficient to fully explain the differences in fine 

particle chemical composition

• Aerosol liquid water differences are partly determined by composition 

affecting hygroscopicity in many locations including the Mid South
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Figure 1. 
ALW mass concentrations are significantly different between Clear Sky and Cloudy time 

periods beyond what would arise from changes solely in meteorology (e.g., RH). Monthly 

median estimated ALW distributions at each IMPROVE monitor in the eastern US during 

Clear Sky times (yellow, Clear Sky scenario), Cloudy times (blue, Cloudy scenario), and 

Cloudy times employing Clear Sky particle chemical composition (green, Mixed scenario). 

The black asterisk in (a) indicates the only situation where Clear Sky and Cloudy scenarios 

differ significantly. The red asterisk in (a) indicates the only situation where the Cloudy 

and Mixed scenarios do not differ significantly. The midline in the box is the median, the 

box boundaries are the 25th and 75th percentiles, and the whiskers are the 10th and 90th 

percentiles. Note that potential outliers are not shown but are used in calculations.
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Figure 2. 
Maps of the difference in ALW mass concentration medians (Cloudy-Clear Sky) for all 

regions from 2010–2014 for a) winter, b) spring, c) summer, and d) fall. The color of 

the point corresponds to the magnitude of the difference. Triangles indicate that median 

differences are significant by the Mann-Whitney U Test. Note that the difference in 

wintertime medians for daily ALW concentrations in the Ohio River Valley (denoted with 

asterisk) is substantially larger than other regions (Cloudy median value is 4.58 μg m−3 

larger than Clear Sky).
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Figure 3. 
Maps of the difference in PM2.5 mass concentration medians (Cloudy-Clear Sky) for all 

regions from 2010–2014 for a) winter, b) spring, c) summer, and d) fall. The color of 

the point corresponds to the magnitude of the difference. Triangles indicate that median 

differences are significant by the Mann-Whitney U Test.
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Table 1.

Particle chemical constituent concentrations, meteorology, and growth factors during Cloudy (Cl) and Clear 

Sky (CS) times in the Mid South.

SO4
2− NO3

− ALW RH Growth Factors

CS Cl CS Cl CS Cl CS Cl CS Cl

Win 0.77 1.24 0.90 1.22 1.32 3.61 0.64 0.80 1.33 1.50

Spr 1.46 1.79 0.37 0.50 2.48 4.02 0.62 0.76 1.25 1.41

Sum 1.91 1.69 0.20 0.19 2.92 3.57 0.59 0.72 1.21 1.39

Fall 1.05 1.17 0.18 0.33 1.56 2.74 0.57 0.73 1.18 1.37
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