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Background: This study utilized a comprehensive nomogram to evaluate the prognosis of patients with COVID-19 
pneumonia. Methods: COVID-19 pneumonia data was divided into training set (256 of 321, 80%), internal 
validation set (65 of 321, 20%) and independent external validation set (n = 188). After image processing, lesion 
segmentation, feature extraction and feature selection, radiomics signatures and clinical indicators were used to 
develop a radiomics model and a clinical model respectively. Combining radiomics signatures and clinical in-
dicators, a radiomics nomogram was built. The performance of proposed models was evaluated by the receiver 
operating characteristic curve (AUC). Calibration curves and decision curve analysis were used to assess the 
performance of the radiomics nomogram. Results: Two clinical indicators that were age and chronic lung disease 
or asthma and 21 radiomics features were selected to build the radiomics nomogram. The radiomics nomogram 
yielded an Area Under The Curve1 (AUC) of 0.88 and accuracy of 0.80 in the training set, an AUC of 0.85 and 
accuracy of 0.77 in internal testing validation set and an AUC of 0.84 and accuracy of 0.75 in independent 
external validation set. The performance of radiomics nomogram was better than clinical model (AUC = 0.77, p 
< 0.001) and radiomics model (AUC = 0.72, p = 0.025) in independent external validation set. Conclusions: 
The radiomics nomogram may be used to assess the deterioration of COVID-19 pneumonia.   

1. Background 

Although the severity of COVID-19 pandemic has been mitigated [1], 
the world still faces a shortage of healthcare workers and medical sup-
plies. Thus, having access to the prediction of disease prognosis can 

enable severe patients to get special care timely, which may prevent 
their disease from worsening and ultimately to reduce the mortality rate 
[2]. 

The American CDC has recommended using reverse transcription 
polymerase chain reaction (RT-PCR) approaches for detection of SARS- 
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CoV-2 [3–4]. Studies have shown that the signs of COVID-19 pneumonia 
including fever, dry cough, fatigue, and other related symptoms. 
Abnormal laboratory findings including lymphopenia, prolonged pro-
thrombin time and elevated lactate dehydrogenase were also observed 
in some patients [5–6]. However, there were no clear evidence that 
showed how RT-PCR, clinical symptoms, and laboratory tests were 
correlated with the severity of the COVID-19 disease. 

In China, CT scans were used as criteria for clinical diagnosis of 
COVID-19 because of its higher sensitivity of detection of COVID-19 
pneumonia [7–9]. A few studies reported that chest CT scans could 
accurately locate the lesions and the severity or changes in the lesion 
area during the course of the disease [10–11]. Yuan et al. published a 
simple CT scoring method to predict mortality of patients with COVID- 
19 [12]. However, there are limitations of using CT scans to understand 
disease prognosis. Firstly, evaluation of the disease severity based on 
routine CT images relies on radiologists’ expertise. Additionally, the 
number and appearance of different types of lesions in chest CT images 
are often varied and irregular [13]. Furthermore, CT images may appear 
to be normal during early infection or abnormal even in the absence of 
symptoms [10]. Thus, more researches are needed to understand the 
correlation of CT findings with the severity and progression of the dis-
ease [14]. Artificial intelligence (AI) technology has been used to 
improve the efficiency of clinicians in the radiology field. A recent study 
showed that AI surpassed human-level performance in automatic 
detection of lung diseases during the COVID-19 outbreak [15]. Zheng 
et al. developed a deep learning based model for automatic detection of 
COVID-19 lesions on chest CT [16]. Another study also reported that AI 
systems performed well the prognosis of COVID-19 pneumonia [17]. 

Our study developed an AI-based radiomics nomogram to assess the 
disease prognosis of COVID-19 pneumonia by integrating radiomics 
signatures from initial CT images with clinical indicators. We hope that 
the radiomics nomogram can be used by hospital teams for the man-
agement of the COVID-19 epidemic, especially in hospitals with a 
shortage of medical resources. 

2. Materials and Methods 

2.1. Ethical approval and patient resources 

The data of patients with COVID-19 pneumonia in training set and 
internal validation set was collected from the Radiology Quality Control 
Center database of Hunan province, Optics Valley Hospital of Hubei 
Province [18] and four hospitals in Guizhou province. The data of pa-
tients in independent external validation set was from Huoshenshan 
Hospital, China. This multicenter study was approved by the ethics 
committees of all hospitals (2020, NO.01 listed in supplements). Because 
of its retrospective nature, the need to obtain informed consent from the 
patients was waived. The study was performed according to the prin-
ciples of the declaration of Helsinki. Fig. 1 shows the workflow of our 
study. 

2.2. Diagnostic criteria of COVID-19 pneumonia 

The patient data for the study is from confirmed COVID-19 pneu-
monia patients hospitalized between January 12 and April 30, 2020. In 
training set and internal validation set, 185 patients have moderate 
pneumonia while 136 patients have severe pneumonia. In independent 
external validation set, 101 patients have moderate pneumonia and 87 
have severe pneumonia. We confirmed the diagnosis and clinical clas-
sification of patients by two associate chief physicians according to the 
data from electronic health records (EHRs), laboratory information 
system and Diagnosis and Treatment Protocol for Novel Coronavirus 
Pneumonia (Trial Version 7, listed in the supplements). If the two doc-
tors are divided, there will be a chief physician to make a final diagnosis 
that used as the gold standard. Data from patients with a normal initial 
chest CT and patients with mild symptoms [19], were not included. 

2.3. Data selection and processing 

All images are non-enhanced chest CT images and collected from 
Picture Archiving and Communication system then be reconstructed at a 
slice thickness of 1.00 mm. Details of the CT characteristics are listed in 
Supplementary Table 1. We chose the chest CT images scanned within 
four days of initial diagnosis [20] as well as the clinical features. Clinical 
examination and CT scan were finished within 24 hours after admission. 
If the CT scan or examinations were done more than once, we chose the 
one closer to initial diagnosis. 

Before any data pre - processing steps and model construction, data 
of 321 patients is randomly split into two individual sets as 80% (n =
256) and 20% (n = 65) in training and internal validation sets respec-
tively. Data of 188 patients from Huoshenshan hospital is used as in-
dependent external validation set. Figure s1 demonstrates the inclusion 
and exclusion criteria. Secondly, features that had higher than 10% 
missing rate were excluded. For features with <10% of missing rate, we 
imputed the average value based on the train set to replace the missing 
values. The same steps were applied to internal and independent 
external validation sets. 

2.4. Image processing 

First, regions of interest (ROI) volumes were segmented by an 
automated segmentation architecture based on three deep learning al-
gorithms. The evaluation of the auto-segmentation accuracy was 
completed before image segmentation. A B-spline interpolation resam-
pling was used to normalize the voxel size, and the anisotropic voxels 
were resampled to form isotropic voxels of 1.0 mm × 1.0 mm × 1.0 mm. 

2.5. Radiomic feature extraction, selection, and radiomics model building 

Radiomic feature extraction was carried out using Pyradiomics2. 
Based on the original images, six common feature groups were extrac-
ted. They were first-order features ,shape features, gray-level co-occur-
rence matrix (GLCM), gray-level run length matrix (GLRLM), gray-level 
size zone matrix (GLSZM), and gray-level dependence matrix (GLDM) 
[21]. Next, the training set was standardized with the standard scaler 
package3, and the standardized model in the training set was applied to 
the two validation sets. 

We performed a feature dimension reduction process, as high- 
dimensional features were extracted to select the most relevant fea-
tures. Additionally, the intra-class correlation coefficient and inter-class 
correlation coefficient were used to evaluate consistency of measure-
ments made by different observers measuring the same quantity and the 
same observer measuring different quantity, respectively. (Supplemen-
tary Fig. 2). Features with an intra-class correlation coefficient > 0.75 
and an inter-class correlation coefficient > 0.75 were considered to have 
a satisfactory agreement and were selected for further analysis. 

Next, a univariable analysis named K-best was employed [22]. This 
test selected features according to the K highest scores as computed 
through the ANOVA F-value between the label and the feature. Features 
with a significant difference (p < 0.05) were selected. The least absolute 
shrinkage and selection operator (LASSO) feature-selection algorithm 
was used to screen the most informative image features to avoid the 
“curse of dimensionality”. 

After feature extraction and selection, logistic regression (LR) algo-
rithms were trained to construct a radiomics model for the disease 
prognosis by using a five-fold cross-validation strategy. This process 
including feature extraction, selection and model construction was all 
finished in train set then we applied them into internal validation set and 
independent external validation set. 

2 https://pyradiomics.readthedocs.io/en/latest/. Accessed 6 July 2019  
3 https://scikit-learn.org/stable/modules/preprocessing.html 
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2.6. Clinical model building 

We used univariate analysis to assess the relationship between clin-
ical factors, serum biomarkers, and disease outcome. The features with 
p < 0.05 were introduced into a multivariable logistic regression anal-
ysis to select a combination of clinical factors and serum biomarkers. 
Next, we built a clinical model with the selected clinical indicators to 
predict the disease prognosis. 

2.7. Radiomics nomogram construction and evaluation 

A radiomics nomogram was constructed, based on the radiomic 
features along with the clinical indicators, using a multivariate logistic 
regression model in the training set. To detect the multi-collinearity 

among variables in the radiomics nomogram, the collinearity diag-
nosis was conducted by calculating the variance inflation factor (VIF) for 
variables in the radiomics nomogram. In the end, the radiomics nomo-
gram was verified in the validation sets. The calibration curves and 
Hosmer–Lemeshow test were used to assess the relationship between the 
predicted risks and the actual results. Finally, decision curve analysis 
(DCA) was used to evaluate the performance of radiomics nomogram. 

2.8. Statistical analysis 

Before modelling, the differences in clinical factors and serum bio-
markers between the moderate and severe pneumonia sets were assessed 
using the Mann–Whitney U test or independent t-test for continuous 
variables and the chi-square test for categorical variables (SPSS for 

Fig. 1. The workflow of radiomics nomogram.  

Table 1 
Clinical characteristics of patients in the training and internal validation sets (n = 321).  

Variable  Training set (n = 256)   Internal Validation set (n = 65)    

Moderate pneumonia Severe pneumonia p Moderate pneumonia Severe pneumonia p p 

Age (yr,mean ± SD) 43.676 ± 16.078 64.482 ± 17.303 0.000** 40.000 ± 14.121 65.393 ± 17.508 0.000** 0.890* 
Sex n(%)   0.377#   0.313# 0.214# 

Men 72(48.6%) 59(54.6%)  20(54.1%) 19(67.9%)   
women 76(51.4%) 49(45.4%)  17(45.9%) 9(32.1%)   
Fever(n) 91(54.5%) 76(45.5%) 0.147# 24(52.2%) 22(47.8%) 0.279# 0.463# 

Cough(n) 86(53.8%) 74(46.2%) 0.117# 21(52.5%) 19(47.5%) 0.444# 0.887# 

Other symptoms(n) 74(52.1%) 68(47.9%) 0.042# 22(53.7%) 19(46.3%) 0.606# 0.326# 

high-risk heart conditions(n) 19(29.2%) 46(70.8%) 0.000# 5(22.7%) 17(77.3%) 0.000# 0.211# 

CLD(n) 3(20.0%) 12(80.0%) 0.003# 0(0.00%) 0(0.00%) NA 0.048# 

WBC (10^9/L) 5.227 ± 2.955 13.922 ± 44.406 0.004** 5.482 ± 2.561 15.413 ± 26.147 0.030** 0.886* 
N (10^9/L) 3.441 ± 2.746 81.182 ± 204.596 0.000** 3.526 ± 2.227 134.309 ± 266.247 0.000** 0.037* 
L (10^9/L) 1.310 ± 0.590 2.580 ± 11.324 0.003* 1.474 ± 0.875 0.778 ± 0.434 0.000** 0.314* 
D dimer (μg/mL) 89.217 ± 169.431 48.046 ± 194.655 0.056* 74.807 ± 153.752 46.288 ± 194.845 0.487* 0.244* 
albumin (g/L) 40.465 ± 3.909 45.293 ± 50.910 0.000* 40.841 ± 4.687 44.894 ± 60.191 0.051* 0.741* 
Cr(μmol/L) 62.746 ± 33.771 95.242 ± 133.566 0.010** 58.138 ± 19.012 65.034 ± 19.493 0.529* 0.068* 
CK (U/L) 107.980 ± 114.984 327.280 ± 1336.189 0.007* 133.097 ± 205.248 94.606 ± 102.351 0.422* 0.248* 
LDH (U/L) 219.476 ± 86.180 618.741 ± 3181.724 0.001** 211.938 ± 105.688 253.951 ± 108.985 0.630* 0.041* 
CRP(mg/L) 20.301 ± 26.260 341.612 ± 1783.586 0.000** 15.297 ± 19.802 232.289 ± 767.839 0.005* 0.548* 
co-infection 7(18.4%) 31(81.6%) 0.000# 1(8.3%) 11(91.7%) 0.000# 0.450# 

Clinical characteristics and serum biomarkers of patients in the training and internal validation set. Other symptoms including muscle aches, fatigue, headache, 
nausea, diarrhea, abdominal pain, shortness of breath and vomiting. High-risk heart conditions means companying with any of hypertension, hyperglycemia and 
dyslipidemia. CLD = chronic lung disease or asthma, WBC = white blood cells count, N = neutrophil count, L = lymphocyte count, Cr = creatinine, CK = creatine 
kinase, LDH = lactate dehydrogenase, CRP = C reactive protein and co-infection means co-infected with other pathogen infection. 
Note: yr = year; std = standard deviation; P-value < 0.05 was considered as a significant difference. 

* student’s t test 
** Mann–Whitney U test 
# chi-square test 
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Windows, v.20.0; Chicago, IL). A p-value < 0.05 was considered a sta-
tistically significant difference. 

The area under the curve (AUC) of receiver-operating characteristics 
(ROC) with 95% confidence interval (95% CI) was used to evaluate the 
performance of the models. Accuracy was calculated to assess the pre-
diction performance. Differences in the AUC values between different 
models were estimated by the DeLong test. Youden index was used to 
classify the patients into the high-risk or the low-risk group. 

3. Results 

3.1. Patient characteristics 

A total of 509 patient data were included in this study. 321 patient 
data were included in training and internal validation sets, 188 were 
included in independent external validation set. Patient characteristics 
in the training and internal validation sets are listed in Table 1. No 
significant differences were observed between the training set and the 
internal validation set in age (p = 0.890) and sex (p = 0.214). All pa-
tients were Asian. High-risk heart conditions (including hypertension, 
hyperglycemia, and dyslipidemia), chronic lung disease or asthma, 
white blood cells count (WBC), Neutrophil count (N), Lymphocyte count 
(L), albumin, creatinine (Cr), Creatine kinase (CK), lactate dehydroge-
nase (LDH), C-reactive protein (CRP) and co-infected with other path-
ogen infection differed significantly between the moderate pneumonia 
and severe pneumonia sets in the training set (p-value < 0.05). 

3.2. Development of clinical model 

Seventeen clinical factors and serum biomarkers were included in 
our study (Table 1). A total of 12 factors were selected from univariate 
logistic regression analysis, and two predictive indicators were selected 
from multivariate logistic regression analysis (Supplementary Fig. 3). 
The clinical model to predict and assess COVID-19 pneumonia was 
developed based on the following two independent predictive factors: 

age and chronic lung disease or asthma. Higher total points based on the 
sum of the assigned number of points for each factor in this model were 
associated with the risk of severe COVID-19 pneumonia. Clinical model 
obtained an AUC of 0.83 and accuracy of 0.77(sensitivity, 0.77; speci-
ficity, 0.78; F1,0.74) in the training set, an AUC of 0.83 and accuracy of 
0.68 (sensitivity, 0.68; specificity, 0.68; F1,0.64) in the internal vali-
dation set and an AUC of 0.72 and accuracy of 0.66 (sensitivity, 0.70; 
specificity, 0.62; F1,0.66) in the independent external validation set. 
(Fig. 3, Supplementary Table 4) 

3.3. Feature selection and radiomics model building 

Analysis of pneumonia segmentation using CT images on 30 patients 
randomly selected from the entire data set was done using the Dice 
coefficient (DC) as the evaluation metric. In 30 patients, the average DC 
value was 0.825 ± 0.047, suggesting a good segmentation result. 

In the intra-reader class, 1157 out of 1218 (95%) radiomic features 
had a good agreement with the ICCs ranging from 0.754 to 0.999. In the 
inter-reader class, 955 out of 1218 (78%) radiomic features had a good 
agreement with the ICCs ranging from 0.750 to 0.999. A total of 925 
features were selected for further analysis (Supplementary Fig. 2). 

In the training set, the univariate analysis identified 347 features 
with statistically significant association with severe pneumonia. Next, 
the LASSO logistic regression model was used to minimize the number of 
features. (Supplementary Fig. 4). The number of predictive features was 
reduced to 21 (Fig. 2). These 21 predictive features were then evaluated 
to construct the radiomics model, which included 3 first-order features, 
one sharp feature, and 17 texture features (GLCM = 6, GLSZM = 4, 
GLDM = 4, and GLRLM = 3); 9 of the 21 features were transformed by 
wavelet filters. The box plot of the radomics scores in the training set 
and internal validation set are shown in Fig. 2. The calculation formula 
of radiomics scores is listed in supplementary. The difference of radio-
mics scores between moderate pneumonia set and severe pneumonia set 
is significant (p < 0.001). The details of these features are shown in 
Supplementary Table 2. 

Fig. 2. A,B,C the box plots of the radomics scores in the training set, internal validation set and independent external validation set. The optimal cut-off value was 
0.059 according to the maximized Youden index in the training set. The difference radiomics scores between moderate pneumonia set and severe pneumonia set was 
computed with t-test. 

Fig. 3. ROC curves in the training set, internal validation set and independent external validation set.  
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In general, the radiomics model achieved a satisfying performance 
with AUC = 0.83, SEN = 0.72, SPE = 0.82, F1 = 0.74, and ACC = 0.78 in 
the training set, AUC = 0.81, SEN = 0.71, SPE = 0.76, F1 = 0.70, and 
ACC = 0.74 in the internal validation set and AUC = 0.77, SEN = 0.75, 
SPE = 0.69, F1 = 0.71, and ACC = 0.77 in the independent external 
validation set. (Fig. 3, Supplementary Table 4) 

3.4. Construction and validation of the radiomics nomogram 

Multivariable analysis revealed that radiomics score and two clinical 
indicators were significant independent factors that accessed disease 
prognosis. A radiomics nomogram incorporating these two variables 
was built (Fig. 4). By using the collinearity diagnosis, the VIFs for the 
radiomics score and two clinical indicators were<10, indicating no se-
vere collinearity existing in these factors (Supplementary Table 3). The 
radiomics nomogram showed good performance with AUC of 0.88 (95% 
CI, 0.840 to 0.922) in the training set, 0.85 (95% CI, 0.723 to 0.958) in 
internal validation set and 0.84 (95% CI, 0.781 to 0.894) in independent 
external validation set. It yielded an accuracy of 0.80 (sensitivity, 0.80; 
specificity, 0.80; F1, 0.77) in the training set, accuracy of 0.77 (sensi-
tivity, 0.86; specificity, 60.70; F1, 0.76) in the internal validation set and 
accuracy of 0.74 (sensitivity, 0.83; specificity, 0.68; F1, 0.75) in the 
independent external validation set (Fig. 3, Supplementary Table 4). 

DeLong’s test was used to compare the performance of clinical 
model, radiomics model, and radiomics nomogram. The result showed 
that the radiomics nomogram was significantly better than clinical 
model (p < 0.001) and the radiomics model (p = 0.025) in the inde-
pendent external validation set. 

3.5. Clinical usefulness of the radiomics nomogram 

The calibration curve showed the agreement between predicted and 
actual values. The Hosmer–Lemeshow tests were not significant in the 
training set (p = 0.973), internal validation set (p = 0.932) and inde-
pendent external validation set (p = 0.273), which suggested there was 
no significant departure from actual values. The calibration curves of the 
radiomics nomogram in both sets were shown in Fig. 5. Decision curve 
analysis (DCA) was used to evaluate the performance of the radiomics 
nomogram (Fig. 6). If the threshold probability was>20%, the radiomic 
nomogram was more net benefits than other models and the treat-all or 
treat-none scheme, indicating its good performance with clinical 
application. 

4. Discussion 

In this study, we found 21 radiomic features and 2 clinical indicators 

Fig. 4. Radiomics nomogram developed in the training set with radiomic features, age and chronic lung disease or asthma (CLD).. Points are assigned for each 
variable by drawing a line upward from the corresponding variable to the Points line. The sum of points plotted on the total Points line corresponds with the severity. 

Fig. 5. Calibration curves of the radiomic nomogram for the disease prognosis of COVID-19 pneumonia in training set (A), internal validation set (B) and inde-
pendent external validation set (C). The y-axis represents the actual probability of the COVID-19 pneumonia becoming severe, the x-axis represents the predicted risk. 
Dashed line was reference line where an ideal nomogram would lie. Dotted line was the performance of radiomics nomogram, while the solid line corrects for any 
bias in radiomics nomogram. 
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that were significantly related to the disease prognosis of COVID-19 
pneumonia. We then constructed and validated a radiomics nomo-
gram for disease prognosis based on radiomics features extracted from 
initial CT images combined with clinical indicators. Results in our study 
indicated that the radiomics nomogram performed better than the 
radiomics model and clinical model. But there was tiny difference of 
performance between internal validation set and independent external 
validation set that perhaps caused by the presence of significant differ-
ences among the two populations, or maybe different instruments were 
used in the two sets. 

Our results suggested that radiomics could also be a potential tool for 
evaluating the disease prognosis in COVID-19 pneumonia. FANG et al. 
investigated the value of radiomics in screening COVID-19, Chen et al. 
constructed a system based on deep learning for detecting COVID-19 
pneumonia on high resolution CT[23]. Other researchers have done 
similar studies[24–26]. But in our study, we implemented an AI-based 
semiautomatic method that substantially reduced the time required 
for obtaining ROI as compared with a completely manual process. And 
we designed and implemented the models using MINIMAR (MINimum 
Information for Medical AI Reporting)[27] and checked using IJMEDI 
checklist[28] that to manage concerns in terms of accuracy and bias. 
Because with the huge increased number of AI researches of COVID-19, 
there were some critical doubt: Michael Roberts et al. [29] systemati-
cally reviewed 62 studies about COVID-19 modelling and find that none 
of the models are of potential clinical use due to methodological flaws 
and/or underlying biases. Similar questions have been raised by other 
researchers and they all suggested that in order to solve this problem, 
standard reporting list must be adhered to, for example TRIPOD 
(Transparent Reporting of a multivariable prediction model for Indi-
vidual Prognosis Or Diagnosis) proposed in 2015 [30], MINIMAR or 
IJMEDI checklist [28] that we chose in our study. In addition, we used 
multi-center data to train and evaluate our model. But there are still 
some drawbacks in our study. For instance, we did not report the brand 
and model of the analyzer equips about the hematochemical parameters 
as well as the report about model interpretability and explainability. 
Moreover, the most meaningful evaluation of an algorithm’s perfor-
mance is to assess it in a clinical setting and take deep insight into the 
biological meaning of radiomic features [31], which are the future di-
rection of our research. 

Our results suggested that the inflammatory signs of patients with 
severe pneumonia as seen on the initial CT images were different from 
those of patients with moderate pneumonia, which may be related to the 
different pathological changes caused by the virus. Another study found 

that CT findings of viral pneumonia are diverse and may be affected by 
the immune status of the host and the underlying pathophysiology of the 
viral pathogen [32]. Mild and moderate cases of COVID-19 mimic 
common respiratory viral infections. However, histological examination 
from a patient who died of COVID-19 [33] showed that disease severity 
is related to ARDS. Thus, early pathological differences in lungs of pa-
tients with moderate versus severe symptoms are likely to be detected 
with chest CT images. Patients with COVID-19 pneumonia may get co- 
infected with other pathogen in the later stages of the disease, which 
could aggravate the disease. The pathological changes and CT signs of 
viral pneumonia are different from those of other pneumonia [13]. Fang 
et al. suggested that hospital-acquired pneumonia (HAP) is a possibility 
in the later stages of the disease [6], Bassetti et al. noted that in their 
study, bacterial infections (pneumonia or bloodstream infection) 
developed in 10% COVID patients [34]. 

In conclusion, by using an AI-based method, we established a 
radiomics nomogram for disease risk prediction based on the initial CT 
images and clinical indicators of patients with COVID-19 pneumonia. 
We believe that this radiomics nomogram can be used in the COVID-19 
epidemic, especially in situations where there is a shortage of healthcare 
workers. 
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Fig. 6. Decision curve analysis(DCA) for the radiomic model, clinical model and radiomics nomogram in training set (A), internal validation set (B) and independent 
external validation set (C). The y-axis measures the net benefit. using the clinical model,radiomic model and radiomics nomogram in the study to predict COVID-19 
pneumonia progress adds more benefit than the treat all patients as severity patients scheme or the treat none scheme. The net benefit of radiomics nomogram was 
better than clinical model and radiomic model in both two sets and with several overlaps in the training set. 
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