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Abstract

Conventional clinical management of complex bone healing scenarios continues to result in
5-10% of fractures forming non-unions. Additionally, the aging population and prevalence

of osteoporosis-related fractures necessitate the further exploration of novel ways to augment
osteogenesis in this special population. This review focuses on the current clinical modalities
available, and the ongoing clinical and pre-clinical research to promote osteogenesis in segmental
bone defects, delayed unions, and osteoporosis. In summary, animal models of fracture repair

are often small animals as historically significant large animal models, like the dog, continue to
gain favor as companion animals. Small rodents have well-documented limitations in comparing
to fracture repair in humans, and few similarities exist. Study design, number of studies, and
availability of funding continue to limit large animal studies. Osteoinduction with rhBMP-2 results
in robust bone formation, although long-term quality is scrutinized due to poor bone mineral
quality. PTH 1-34 is the only FDA approved osteo-anabolic treatment to prevent osteoporotic
fractures. Limited to 2 years of clinical use, PTH 1-34 has further been plagued by dose-related
ambiguities and inconsistent results when applied to pathologic fractures in systematic human
clinical studies. There is limited animal data of PTH 1-34 applied locally to bone defects. Gene
therapy continues to gain popularity among researchers to augment bone healing. Non-integrating
viral vectors and targeted apoptosis of genetically modified therapeutic cells is an ongoing area
of research. Finally, progenitor cell therapies and the content variation of patient-side treatments
(e.g., PRP and BMAC) are being studied.
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Bone has a remarkable capacity for self-renewal and remodeling, and has evolved to serve
many mechanical, endocrine, and homeostatic functions.? Although normal bone remodels
in response to adverse conditions such as changing biomechanical forces, micro-damage,
and fracture, about 5-10% of fractures do not heal conventionally even with clinical
interventions resulting in non-union.3 Thus, there is an unmet clinical need for novel
approaches to promote rapid repair of complicated long bone fractures and large bone
defects. The degree of soft tissue injury and type of fixation utilized, host factors such as
age, diabetes, NSAID use, and osteoporosis limit osteogenesis in vivo; often these limiting
factors result in clinical sequelae such as increased infection rate, risk of nonunion, and
inability to maintain quality of life.4>

Increasing osteogenesis has been explored through targeted overexpression of growth
factor and exogenous hormone delivery—therapeutics mainly aimed at osteoinduction, a
substance that results in the commitment of progenitor cells down an osteoblastic lineage.
One way osteogenic induction is achieved in vivo is through delivery of growth factors
that result in accelerated osteoblast generation from native progenitor cells, and therefore,
accelerated bone formation. Bone formation and bone healing can be achieved through
various pathways; therefore, a cursory signaling summary of the growth factors to be
discussed, BMP-2 and PTH, is provided.

Bone morphogenic proteins, part of the transforming growth factor- superfamily, induce
bone formation through binding complexes of serine threonine kinase receptors to initiate
cell signaling.® The most studied osteogenic BMPs, 2, 4, and 7 bind the same complex

of receptors.® Subsequent SMAD 1/5/8 phosphorylation allows nuclear translocation and
binding to specific DNA elements to activate transcription of osteoblast-specific genes.’
Osteogenesis may also occur through activation of TAK-1 and TAB1, which are crucial
upstream regulators of MKK its activation of osteogenic gene transcription via p38/MAPK 8
Both canonical (R-smad) and non-canonical (MKK) osteogenic BMP signaling results in
the transcription of RunX2, DIx5, and Osx.? Bone anabolism via PTH occurs through
canonical WNT signaling. WNT-PTH crosstalk results in B-catenin stabilization, nuclear
translocation, and subsequent transcription of genes to improve bone formation while
decreasing bone resorption. Non-canonical WNT bone anabolism is often achieved with
planar cell polarity crosstalk and is implicated in PTH 1-34 response to strain and

during skeletal morphogenesis.10 Further discussion of the signaling pathways involved in
osteogenesis for bone healing can be reviewed with these references.3:811

This review describes approaches used to promote osteogenesis in pathologic and
osteoporotic fractures and segmental bone defects using BMP-2 and PTH. Use of
appropriate pre-clinical animal models, recombinant protein therapy, gene therapy, and the
use of progenitor cells are discussed. Scaffolding materials for bone have recently been
comprehensively reviewed and will not be discussed in this manuscript.12:13
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ANIMAL MODELS

Research in animal models is a critical component for translation to human clinical trials.
No perfect model exists that exactly replicates fracture healing in humans; however, animal
models may be utilized to answer specific clinical questions. Tables 1 and 2 provides a
descriptive summary of common animal model advantages and disadvantages, and Figure 1
provides pictorial representations of common preclinical models and the method most often
utilized to study osteogenesis in segmental bone defects.

Mouse models in fracture repair are often utilized because the ability to purchase and or
design specific genotypes and phenotypes affords researchers the ability to study cells with
specific characteristics.1* This is often done through genetically manipulated knock out
models and inbred strains.1®> Nonetheless, murine bone lacks haversian systems, and it is
unknown how this may affect pathophysiologic pathways of bone injury and healing when
compared to humans!® (Table 1). Similarly, rat bone is also devoid of haversian systems.16
The rat is a popular model for delayed and non-union fracture repair models, as well as
growth factor use in fracture repair. Similar to the mouse, inbred strains of rats may be
purchased from commercial vendors, and housing, anesthesia, and pain management are
inexpensive compared to large animal models. While it is often assumed inbred rat strains
are genetically homogenous, there is some genetic heterogeneity within inbred populations
with large variation in the number of single nucleotide repeats (SNPs).1” How SNP
variation within genetically inbred populations affects baseline variation is unknown. Other
limitations of the rat include size and decreased elasticity compared to human bones.18.19
It is unknown if the lack of haversian systems alters local reaction and nutrient or waste
shuttling during pathology (Table 1). The rabbit offers similar advantages as the mouse
and rat, such as ease of housing, anesthesia, and pain monitoring2°; although they too are
dissimilar in size and body weight when compared to humans. Compared with mice and
rats, rabbits are a more outbred species. This necessitates larger numbers in a given study
to reach statistical power and significance because of individual variation. However, rabbit
bone contains haversian systems and more closely replicates large animal models of bone
structure. Therefore, success in rabbits may predict success in a larger animal model (Table
2).

When comparing bone composition between human, canine, swine, bovine, ovine, poultry,
and rodent bone, canines’ most closely resemble human bone composition when ash weight,
extractable proteins, and IGF-1 content are considered.?! Some studies have found that
trabecular bone turnover is higher in canines than in humans, and that there is an age-related
decrease in the remodeling capabilities.2! At the microstructure level, the secondary osteon
structure and presence of plexiform bone adjacent to periosteum, especially during callus
formation, allows canine cortical bone to withstand greater compressive forces than human
bone.22 Finally, the increased standing of canines as companion animals increases ethical
concerns for their continued use in orthopedic research (Table 2).

Sheep are more similar in body weight to humans compared to the models discussed thus
far, and the dimensions of their bones allow them to be suitable for surgical implants and
biomaterial studies. However, their long bone trabecular density is 1.5-2 times greater than
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humans, conferring more inherent mechanical strength; and, because they are quadrupeds,
weight distribution is dissimilar to humans.22 Despite these limitations, sheep have some
advantages. For example, when sheep age, their bone physiology resembles that of humans,
with increases in osteoporotic or osteopenic bone loss.22:23 Differences in bone healing as it
relates to age in sheep, and stark difference in nutrition status should be taken into careful
consideration when researchers are considering the sheep as a large animal model for bone
repair (Table 2).

The horse is an FDA recommended model for osteoarthritis and comparative joint
research,24 and availability to measure in vivo bone strain as well as the similar haversian
remodeling suggest the horse is a good pre-clinical model for fracture repair despite
cost-associated drawbacks.2%26 However, horses exhibit rapid periosteal expansion with
plexiform bone that is unlike fracture healing in humans?’ (Table 2) and the use of
minimally weight bearing metacarpal bones should be considered (Figure 1).

References for Table 1:2122:28,29

References for Table 2;16,20-22,28-30

RECOMBINANT PROTEINS

BMP-2

Recombinant protein therapy is the use of purified therapeutic protein applied to bone
defects to produce union (e.g., rhBMPs) or administered systemically to increase osteo-
anabolism (e.g., PTH1-34). Production of recombinant proteins is done through a variety of
bacterial (Escherichia coli), eukaryotic (yeast), or mammalian expression systems (Chinese
Hamster Ovary cells (CHO), Human Embryonic Kidney cells (HEK), and AD293 cells (a
derivative of HEK cells). In 2002 and 2004, respectively, the recombinant proteins to be
discussed, PTH (1-34) and rhBMP-2, were approved for use in osteoporosis treatment

and open tibial fractures in humans3132 after extensive preclinical animal studies that
demonstrated clinical efficacy (Table 3). The proteins remain of clinical, ethical, and
socioeconomic interest,33:34

In 1965, Marshall Urist first discovered that proteins within bone could induce osteoid
formation when he placed demineralized bone matrix in muscle tissue.3> The proteins that
were able to induce osseous metaplasia were given the family name “Bone Morphogenic
Proteins.” Since the advent of gene sequencing, BMPs have been further characterized by
nucleotide similarity and are thus grouped accordingly (e.g., BMP-2/4 and BMP-5/6/7/8).36
The most potent osteoinductive agent available to clinicians’ today is BMP-2. Table 3
summarizes seminal studies that supported FDA approval of rhBMP-2 for open tibial
fractures. RNBMP-2 is most commonly combined with bovine collagen3’ and provides

an exogenous supraphysiologic dose of osteoinductive growth factor to overcome the
challenging clinical environment it is often placed in (e.g., open tibial fractures).

Despite the use of supraphysiologic doses, results are variable.38 Contributing factors
include the short half-life, potential for improper folding or post-translational modification
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that can reduce biologic activity,39 and the presence of natural BMP-2 antagonists, such as
Noggin.#0 Likewise, there are strong species-associated dose requirements for osteogenesis
—the recommended dose to induce osteogenesis in humans (1.5 mg/ml) is at least 3.75
times greater than the required dose in rodents (0.02-0.4 mg/ml).#! Furthermore, rhBMP-2
therapy is complicated as it is often cost-prohibitive, is not covered by insurance,*? is
associated with a high degree of inflammation and ectopic bone formation,*3 and wide-
spread off-label use is documented and often results in unwanted side effects.4445

RhBMP-2 use often results in bony union, but continuous corticies and non-remodeled
trabeculae are often thin?®; as the ultimate goal of fracture healing is to have mechanically
functional bone, rhBMP-2 generated bone quality is in question. Osteolysis and subsistence
are reported in spinal fusion*’~4%—although, spinal use of rhBMP-2 is beyond the

scope of this review, it is prudent to note similar findings found in long-bone fracture
repair—principally cystic bone formation. There are accounts of greater trabecular bone
spacing® and evidence of BMP-2 signaling induced osteoclastogenesis and inflammatory
cytokine expression induction®-53—traits not overcome, and potentially worsened, by
supraphysiologic rhBMP-2 doses. There are reports of BMP-2 induced adipogenesis®*

and clinical accounts of adipose tissue scattered throughout BMP-2 regenerated bone.>®
Although the concentration of BMP-2 required to overcome its native antagonists is
unknown, the current research trends to low-dose BMP-2 with moderate success.>6:>
Furthermore, phase Il and 111 clinical trials were completed with objectives to decrease

the dose of rhBMP-2 from 1.5 to 1.0 mg/ml in patients undergoing internal fixation
surgeries to repair closed diaphyseal tibial fractures. To its favor, retrospective analyses of
on-label spinal fusion and open tibial fracture surgeries show a decreased rate of secondary
interventions when rhBMP-2 is used instead of autograft alone. Additionally, operation time
and hospital stay were reduced with rhBMP-2 use.38:58

There is no current consensus on rhBMP-2 treatment, utilization, or effectiveness among
clinicians or researchers. Further study is needed to elucidate if combination therapy may
allow a lower dose of rhBMP-2, if rhBMP-2 could be more effective if administered via
another mechanism (e.g., gene therapy), and if bone quality and subsistence limit the long-
term effectiveness of treatment.

The production of recombinant PTH 1-34, teriparatide, the amino terminal of the full-length
PTH peptide (84 amino acids), is utilized to encourage osteo-anabolism when administered
systemically and intermittently for the treatment of osteoporosis.

Off-label, PTH (1-34) has been studied in clinical trails to assess fracture repair®®; however,
therapy is limited by dosing ambiguities and mixed results. In one human clinical trial
treating distal radius fractures, a higher dose (40 pg) of PTH 1-34 was no better than the
vehicle control, while the lower dose (20 pg) shortened time to cortical continuity.>® In
patients with pelvic fractures, a dose of 100 ug of PTH (1-84) and concurrent vitamin

D and calcium supplementation accelerated fracture healing and functional outcome.80

In rat tibial fractures, lower doses (60 pg) of PTH 1-34 produced less external callus
volume and ultimate load when compared to higher doses (200 pg).81 These ambiguities
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and mixed results have led to the termination of several of the clinical trials in long bone
fracture repair; although, PTH (1-34) may still be clinically indicated in other clinical
scenarios. For instance, PTH (1-34) increases bone formation around implants, helping them
assimilate into grafts82-65 and increases flexural thickness and overall cortical thickness®®
predominantly through the proliferation of bone lining cells®” and inhibition of osteoblast
apoptosis.58 It may also regulate bone formation around bone implants through strain
specific osteoblastic induction.10
An important limitation of PTH (1-34) is that it that treatment is approved for
only 24 months of use due to an increased incidence of osteosarcoma and a dose-
related increase in osteoblastoma and osteoma in female and male Fischer rats
(https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/021318s0151bl.pdf). While this
limitation may not be relevant in long bone fracture since patients should be well-within
healthy bone remodeling, patients at risk of osteoporotic fractures may require long-term
therapy.

References for Table 3:30-32.61.69-87
GENE THERAPY

The transformation of cells, as observed by differing phenotypes, dates back to at least 1928,
and was first observed and characterized in bacteria by Frederick Griffith.88 Today, the term
gene therapy encompasses a variety of techniques that utilize viruses, plasmids, and gene
activated matrices to deliver therapeutic cDNA into host cells. This review will focus on
gene therapy utilizing viruses only. Targets of gene therapy may be somatic or germ cells,
and the distinction is important as the FDA currently allows gene therapy on somatic cells
only. In challenging bone-healing environments it would be beneficial to deliver therapeutic
osteo-anabolic genes over several weeks as opposed to only a few days.

The purpose of viral gene therapy is to either (i) replace defective native gene sequence, or
to (ii) provide an extra gene copy and drive over expression. Although different vectors and
their associated therapies are designed with specific therapeutic targets in mind, transduction
should result in transgene expression at therapeutic quantities®® and be highly specific to
the cellular target.90 Viral gene therapy utilizes the efficiency of viruses to gain entrance
into cells and to have quick production of protein from the genetically modified cell. When
compared to transfection by plasmid or another cDNA containing element, the efficiency of
viral vectors to transduce target cells is superior®®; further, vectors with different serotypes
have been shown to selectively transduce a number of cell types, including mesenchymal
stem cells, chondrocytes, and synoviocytes.%2 Gene therapy to induce bone formation has
been delivered in vivo directly to a defect as a suspension,3:94 in vivo lyophilized to an
allograft implant scaffold, or through an ex vivo approach, where cell-type transduction is
controlled in vitro, and then applied to a defect some time later in a dual surgery process
(traditional),8%:9 or tissue may be selectively isolated, transduced, and re-implanted in a
single surgery (expedited).91:97.98 Figure 2 shows how a traditional, allogeneic ex vivo
approach might be utilized to study fracture repair in situ.
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Therapeutic genes used in gene therapy were initially successful in their use as recombinant
proteins, and were then explored with gene therapy because it was hypothesized they

may better effect clinical success with an alternate delivery.9® At the site of large bone
defects, recombinant proteins require specific temporal and spatial delivery mechanisms

to decrease diffusion of the protein from the site of interest. While genetically modified
cells will produce protein that also diffuses, the continuous and persistent production that is
achieved for the lifetime of the genetically modified cell eliminates the need to deliver
one-time supraphysiologic doses as occurs with recombinant protein therapy. Further,
transduction and gene production by host cell machinery is more likely to undergo genuine
post-translational modification, and may have greater biological activity compared to their
recombinant counterparts. 39100

Despite removal of virulence factors from therapeutic vectors, there is concern viruses

may revert to pathogenicity if they transduce a cell that has previously been, or becomes co-
infected with another virus and that allows pathogenic replication within the patient. Some
vectors, especially commonly used adenoviruses are pro-inflammatory even after removal of

virulence factors, a trait attributed to the production of non-therapeutic, non-pathogenic viral
genes. 101,102

The following viruses have been the most commonly used in segmental bone defects as
delivery vectors. Table 4 provides seminal gene therapy references utilizing BMP-2 and PTH
(1-34) as therapeutics for segmental bone defects.

Adeno Vectors

The non-enveloped adenovirus is a double stranded DNA (dsDNA) virus. Several of the
early transcript genes of adenovirus are required for adeno-associated vectors to replicate,
although the two are unrelated. Adenoviruses are relatively ubiquitous and do not cause any
known disease in humans, making them incredibly useful during the early experiments of
gene therapy. However, adenoviruses do elicit a large immune response, leading to immune
destruction of transduced target cells.193.104 Newer vector constructs are often utilized.

Adeno-Associated Vectors

The adeno-associated virus (AAV) is a small, single-stranded DNA parvovirus that elicits
minimal immunogenic reaction. The many serotypes available add to its allure as a
therapeutic vector since targeted tissue tropism is conferred. Serotype 2 is the most
commonly utilized serotype in musculoskeletal tissues and is used with serum free media
for maximal transduction. Several genes including BMP-2,105 BMP-4,106 and BMP-7107 are
used in AAV vectors to induce osteogenesis, although BMP-2 is by far the most widely
used due to its ability to induce de novo osteogenesis in vitrol®8 and in vivo.109 However,
it has been observed that AAV vectors might not produce enough protein to heal large
segmental defects. As previously mentioned, AAV vectors utilize genes from Adenovirus
(termed “helper genes™) to ensure viral replication; although, high titers of recombinant
adeno-associated viral vectors have been produced in the absence of adenovirus helper
genes.110
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Self-Complementary Adeno-Associated Vectors

Self-complementary adeno-associated virus (SCAAV) is an AAV vector that has been
engineered to contain coding and non-coding strands of DNA. Therefore, SCAAV does

not require DNA polymerase to produce a complementary DNA strand before mRNA is
produced. This ultimately results in more efficient protein expression.11 scAAV vectors
have been used in vivo to produce the interleukin-1 receptor antagonist (IL-1ra) protein
transgene in normal joints12; and it has been shown that repeat dosing can be achieved
without immunogenic reaction when the serotype of the repeat dose is modified.112 In
bone healing, SCAAV vectors have been used to deliver various DNA molecules that
showed improved bone integration histologically. Yazici et al.%> used sCAAV2.5-BMP-2
coated allografts to increase incorporation when compared to autograft. Further, Yazici

et al.9 showed that SCAAV-BMP-2 treated femurs had increased torsional rigidity when
compared to the control femur in post mortem analysis. In contrast to integrated vectors,
SCAAV vectors remain episomal within the nucleus and the transgene is not replicated with
subsequent cell divisions. Although this may seem like a disadvantage, sSCAAV transduced
cells increased IL-1ra transgene expression in the equine model 183 days after in vivo
injection.112 Therefore, long-term expression results from scAAV gene therapy even though
it does not integrate into the cells genome. Figure 2 shows how scAAV may be used
clinically to augment bone healing.

Lentiviral Vectors

Lentiviral vectors are RNA viruses that transduce dividing and non-dividing cells, and each
virion inserts two transgene copies into host chromosomes. Host chromosome integration
leads to prolonged transgene expression, however insertion is currently not controlled

and may lead to insertional mutagenesis. Insertional mutagenesis occurs when the viral
transgene integrates near potential proto-oncogenes, altering the nuclear regulation of
transcripts, and ultimately resulting in unwanted neoplasia. This random insertion into the
genome affects the safety profile of this vector®! and could limit its efficacy; however
non-integrating lentiviral vectors have been produced13:114 and studies are being performed
using antiviral pro-drugs that are metabolized to toxic compounds within transduced cells
only.115 Such advancements in vector technology show an effort to provide a clinical
approach to eliminating therapeutic cells after the transgene is no longer needed.

Retroviral Vectors

Retroviral vectors are RNA viruses that preferentially transduce and integrate into the
genome of actively dividing cells. While bone is in a constant state of turnover, it is not
dividing at a rate that allows it to be a suitable target of retroviral vectors delivered in vivo.
However, similar to lentiviral vectors, transgene expression may also be mutagenic.116.117

References for Table 4:89,93-98,118-123

PROGENITOR/STEM CELLS

The term “stem cell” exists in scientific literature dating back to 1868. Stem cells, or
perhaps more correctly, tissue progenitor cells, utilized in modern research are derived
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from a variety of tissues (e.g., are digested away from lipo-aspirate, muscle, blood

vessels, and other organs124:125) and are selected for by adherence to culture plates.

To properly denote plastic adherent tissue-based cells isolated from any source as true
mesenchymal stem cells, characterization would include expression of CD105, CD73,

and CD90.126 Additionally, cells would lack expression of the following markers: CD45,
CD34, CD14/11b, CD79-alpha/CD19, and Human Leukocyte Antigen-DR,126 must self-
renew, re-populate, and undergo tri-lineage differentiation in vitro.127 Ease of isolation,
replication potential (telomere length, pluripotent markers), planned therapeutic use, and
other clinical indications often dictate the site of progenitor cell harvest, though there is
evidence to suggest differences in cell differentiation between progenitor cells from different
sources.128-130 While each source can undergo tri-lineage differentiation into adipocytes,
chondroblasts, and osteoblasts, there is evidence of lineage biases of progenitor cells isolated
from bone marrow when osteoinduction is the goal3! and it is likely epigenetic gene
regulation confers some sort of tissue-source memory, as some groups have successfully
changed the osteogenic differentiation capacity of adipose derived progenitor cells to rival
bone marrow derived progenitors through use of histone deacetylase inhibitors.132

Patients presenting with several risk factors for non-union formation or those presenting

for a second surgery to repair a failed fracture consolidation are considered to have

clinical indications for progenitor cell therapies'33; however, patients cannot receive culture-
expanded BMDMSCs unless they are part of a clinical trial. In lieu—clinicians are utilizing
patient-side progenitor cell therapies, such as bone marrow aspirate concentrate and stromal
vascular fraction—increased concentrations of cytokines and a small population of stem
cells characterize both treatments.134 While these patient-side treatments are minimally
manipulated and autogenic, they have the potential to be heavily influenced by patient
co-morbidities.

It is currently unknown how many progenitor cells are needed to affect segmental bone
healing, from what source progenitor cells should come from, at what concentration, and

in what vehicle should cells be delivered in. It is known those progenitors cells alone and
without a carrier are not sufficient to alter segmental defects, and alone are not a suitable
intervention. Studies have found correlations between number of osteoprogenitor cells,
concentration of fibroblast colony forming units, and final fracture consolidation35-137
although there remains no consensus on how many cells are needed to fill a defect. In
general, it is considered that mineralized callus formation is correlated to the number of
progenitor cells within the bone marrow aspirate, especially when utilized in the absence of
concentration.138 Therefore, it is reasonable to postulate that culture-expanded cells may be
especially helpful in instances of healing segmental bone defects when higher concentrations
of cellular therapies have affected clinical success.139:140

Bone marrow aspirate concentrate (BMAC) is one minimally manipulated therapy, and
considered an alternative to autologous bone graft (ABG). ABG has many well-documented
co-morbidities and an upper limit of available graft material. 141 BMAC contains several cell
type precursors, including platelet alpha-granules that contain numerous growth factors, and
a small population of mesenchymal stem cells.142 Recently, one group found that nucleated
cell counts of BMAC samples were not predictive of colony forming units, suggesting
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the healing property of BMAC is correlated to growth factors contained within platelet
granules such VEGF and IL-1ra.134 In an equine model it was demonstrated that the
addition of culture-expanded BMDMSCs and autologous PRP resulted in bone formation

in chondral defects.143 The role of nucleated cells, expanded BMDMSCs, and platelets (and
platelet-based patient-side therapies) remains to be elucidated but may have the potential to
encourage bone healing. It is judicious to note that none of these therapies have been tested
in a challenging bone healing environment.

CONCLUSION

Promotion of osteogenesis to heal segmental bone defects and osteoporosis in humans and
animals is a complex issue. While many studies have been performed, there are a myriad

of unanswered questions. Successful clinical therapies may predominantly move towards
cell-based growth factor delivery systems that address the need for sustained osteoinduction,
especially in large defects to augment risk factors for non-unions. The barrier to this may

be regulations that are associated with FDA rules governing autologous and allogeneic cell
implantation in addition to genetically modified cells. The frequencies of nonunions (5-10%
of fractures annually) remain an unmet challenge with serious socioeconomic impact, and
the aging population necessitates that a more critical emphasis must be put on osteoporotic
fractures and disease progression. Cellular-based therapeutic approaches require further
intensive investigation, as there is no clear solution. Future testing in preclinical models and
additional clinical trials of bone repair will elucidate safety and efficacy of alterations in
dosing and route of administration of the recombinant proteins BMP-2 and PTH 1-34, gene
therapy, and progenitor cell therapies.
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Figure 1.
Figure 1 describes common animal models, the corresponding segmental defect size, and the

type of fracture stabilization utilized for segmental bone research.
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Figure 2.

Figure 2 describes how an ex vivo technique may be utilized with cryopreservation to
provide a gene therapy approach to segmental bone defects in fracture repair.
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