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Abstract

In this Seminar, we highlight the main developments in the field of Alzheimer’s disease. The 

most recent data indicate that, by 2050, the prevalence of dementia will double in Europe and 

triple worldwide, and that estimate is 3 times higher when based on a biological (rather than 

clinical) definition of Alzheimer’s disease. The earliest phase of Alzheimer’s disease (cellular 

phase) happens in parallel with accumulating amyloid β, inducing the spread of tau pathology. 

The risk of Alzheimer’s disease is 60–80% dependent on heritable factors, with more than 40 

Alzheimer’s disease-associated genetic risk loci already identified, of which the APOE alleles 

have the strongest association with the disease. Novel biomarkers include PET scans and plasma 

assays for amyloid β and phosphorylated tau, which show great promise for clinical and research 

use. Multidomain lifestyle-based prevention trials suggest cognitive benefits in participants with 

increased risk of dementia. Lifestyle factors do not directly affect Alzheimer’s disease pathology, 

but can still contribute to a positive outcome in individuals with Alzheimer’s disease. Promising 

pharmacological treatments are poised at advanced stages of clinical trials and include anti­

amyloid β, anti-tau, and anti-inflammatory strategies.

Introduction

Alzheimer’s disease is the main cause of dementia and is quickly becoming one of the 

most expensive, lethal, and burdening diseases of this century.1 Since the Seminar published 

in 2016,2 important developments have taken place in the understanding of the underlying 

pathology, the recognition of multiple causative and protective genes, the identification of 

new blood-based and imaging biomarkers, and the first cautious signals of positive effects of 

disease-modifying treatments and lifestyle interventions. The aim of this new Seminar is to 

provide the reader with up to date insight into the field of Alzheimer’s disease.

Clinical signs and symptoms

Three cases, in panel 1 (see also figure 1), illustrate the clinical spectrum of Alzheimer’s 

disease. Case A highlights Alzheimer’s disease that is determined genetically, as per the 

ongoing global initiatives of the Dominantly Inherited Alzheimer Network and Alzheimer 

Prevention Initiative and their associated clinical trials. Case B represents a language variant 

of Alzheimer’s disease, usually occurring at a younger age (under 70 years), illustrating 

the difficulty in recognising Alzheimer’s disease in those for whom memory problems 

are not the first and most prominent feature. Case C is a typical amnestic variant, more 

commonly seen in patients older than 70 years, illustrating the growing population affected 

by Alzheimer’s disease and dementia: older individuals often living alone, and increasingly 

dependent on others for care.
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Diagnostic criteria: from clinical, to clinical and biological, to biological

The diagnosis of Alzheimer’s disease has gone from a purely pathological one, in the 

days of Alois Alzheimer (1864–1915) to a clinical, exclusionary approach in 1984. 

The clinical diagnosis was based on the criteria defined by the National Institute of 

Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and 

Related Disorders Association,3 via a combined clinical and biological approach developed 

by the International Working Group4,5 and subsequent efforts by the National Institute 

on Aging and the Alzheimer’s Association working groups,6 incorporating biomarkers to 

make the categorisation of Alzheimer’s disease purely biological.7 Initially, the diagnosis 

of Alzheimer’s disease was restricted to the stage of dementia, a clinical syndrome 

characterised by substantial progressive cognitive impairment affecting several domains, 

or neurobehavioral symptoms of enough severity to cause evident functional impact on daily 

life. A person with dementia is no longer fully independent, and this loss of independence is 

the primary feature differentiating dementia from mild cognitive impairment.8

Given the developments in the biomarker field and the desire to make them usable in 

a diagnostic setting, Jack and colleagues8 grouped the biomarkers into A (amyloid), T 

(phosphorylated tau), and N (neurodegeneration, measured by total tau where applicable): 

the ATN frame work (appendix p 1). In this research framework, the diagnosis of 

Alzheimer’s disease is defined by the presence of amyloid β and phosphorylated 

tau. The presence of amyloid β (regardless of the presence of phosphorylated tau 

and neurodegeneration) is termed Alzheimer’s pathological change, basing the research 

diagnosis of Alzheimer’s disease on biomarker evidence only. Clinical stages can range from 

cognitively normal to mild cognitive impairment and dementia, stressing the continuum of 

Alzheimer’s disease, which spans a period of years. The ATN framework underpins the 

importance of amyloid β and tau as the defining characteristics of Alzheimer’s disease, 

consequently proposing that Alzheimer’s disease can be diagnosed by biomarkers only, 

and definitively distinguishing between the concepts of Alzheimer’s disease and dementia 

(figure 2).

Despite the critique that other key causes of dementia, in particular vascular disease, were 

omitted,9 the authors of the ATN framework argued that dementia has multiple underlying 

pathologies, of which Alzheimer’s disease is one, but Alzheimer’s disease is defined by 

the presence of amyloid β and tau (acknowledging that many other pathologies can also be 

present in these patients).10 The large number of ATN categories, combined with the fact 

that other pathologies are not evaluated in the scheme, makes the ATN approach not yet 

suitable for clinical practice.11 In addition, there are operational limitations to defining A, 

T, and N positivity or negativity, such as some biomarkers not having established cutoff 

points, and different biomarkers being combined in one category. Although the AT or 

ATN approach is the cornerstone of current trials of disease-modifying interventions in 

Alzheimer’s disease, clinical diagnosis still rests on the criteria set by the National Institute 

on Aging in 2011.6,12

The ATN framework clearly paves the way for a diagnosis before the stage of Alzheimer’s 

disease-associated dementia, and it makes individualised risk-profiling for patients with mild 

cognitive impairment feasible.13 However, a clinical encounter study evaluating doctor–
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patient communication in memory clinics showed that clinicians are reluctant to share 

specific prognostic information with patients with mild cognitive impairment.14 In the 

context of predementia diagnosis, subjective cognitive decline is even more challenging. 

A recent Personal View provides a clinical characterisation of subjective cognitive decline, 

and attempts to provide clinicians with guidance on how to deal with this decline (which 

might or might not be attributable to underlying Alzheimer’s disease).15 At a group level, 

ATN biomarkers clearly predict incident dementia in subjective cognitive decline, but 

individualised risk modelling remains challenging.16,17 In a Delphi study to identify topics 

most relevant to discuss in the diagnostic process, patients and caregivers indicated that they 

value precise and specific information, even when it does not provide complete certainty.18 

Tools to support decision making and communication about Alzheimer’s disease diagnosis, 

such as ADappt,19 are urgently needed.

Epidemiology

Incidence and prevalence—In 2018, Alzheimer’s Disease International estimated a 

dementia prevalence of about 50 million people worldwide, projected to triple in 2050, 

with two-thirds living in low-income and middle-income countries.20 The most recent data 

estimate that dementia prevalence in Europe will double by 2050.1 Accumulating evidence 

suggests that the incidence of dementia is declining in high-income countries,21 although 

evidence for a decline in prevalence is less convincing.22

Mortality—The relatively stable prevalence despite decreasing incidence could be 

explained by a long disease duration, although studies on mortality do not support this 

notion. A US-based study evaluating survival after a dementia diagnosis in almost 60 000 

individuals reported survival times of 3–4 years.23 In an European, memory clinic-based 

cohort, median survival time was 6 years after a diagnosis of Alzheimer’s disease dementia 

(median 6·2 years [range 6·0–6·5]).24 This estimate coincides with a multicentre study that 

provided estimates of duration not only of the dementia stage, but also of the prodromal 

(mild cognitive impairment) and of preclinical disease stage of Alzheimer’s disease.25 For 

an individual aged 70 years, duration estimates are 10 years for the preclinical stage, 4 years 

for the prodromal stage, and 6 years for the dementia stage of Alzheimer’s disease, totalling 

20 years. A first attempt at estimating prevalence on the basis of a biological (rather than 

clinical) definition showed that, at the age of 85 years, the prevalence of biologically defined 

Alzheimer’s disease is 3 times higher than that of clinically defined Alzheimer’s disease.26

Risk factors for dementia and Alzheimer’s disease—The strongest risk factors for 

Alzheimer’s disease are advanced age (older than 65 years, although this is not a fixed 

definition) and carrying at least one APOE ε4 allele.27 Moreover, women are more likely to 

develop Alzheimer’s disease than are men, especially after the age of 80 years.20 Women are 

also more likely to have a higher tau load, despite having a similar amyloid β burden.28,29 In 

addition, cardiovascular risk factors and an unhealthy lifestyle have been associated with an 

increased risk of dementia. The Lancet Commission on Dementia Prevention estimated that 

12 modifiable risk factors together account for roughly 40% of the worldwide risk of any 

type of dementia.30 These estimates illustrate that prevention by intervening on modifiable 

risk factors is of great relevance, even if most of the dementia burden cannot be prevented 
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via a lifestyle-intervention approach. However, evidence suggests that vascular risk factors 

do not increase the risk of Alzheimer’s disease pathology as measured by cerebrospinal 

fluid biomarkers or PET.31–33 This evidence implies that lifestyle and vascular risk factors 

contribute to dementia, but not via the Alzheimer’s disease pathway.

Genetics

Causative and risk genes—Studies of twins showed that the risk of Alzheimer’s disease 

is 60–80% dependent on heritable factors.34 The common APOE ε4 allele explains a 

substantial part of, but does not completely account for the heritability of, Alzheimer’s 

disease.35,36 Large genome-wide association studies have been done to identify novel 

genetic variants in Alzheimer’s disease, the latest of which to date investigated about 

150 000 people with Alzheimer’s disease and age-matched controls, and more than 300 

000 people with a proxy-phenotype Alzheimer’s disease (parental history of Alzheimer’s 

disease) and controls (no parental history of Alzheimer’s disease), which increased the 

number of Alzheimer’s disease-associated risk alleles to more than 40.37 However, although 

the common APOE ε4 risk allele is associated with an estimated 3–4 times increased risk 

of Alzheimer’s disease across different genome-wide association studies, other Alzheimer’s 

disease risk alleles are associated with much smaller contributions to the total disease risk 

(odds ratio between 1·05 and 1·2; figure 3B).37

Based on the presence or absence of these risk alleles in the genome of an individual, 

a polygenic risk score can be calculated, which is currently able to distinguish between 

patients with Alzheimer’s disease and controls with 75–85% accuracy.38,39 Although the 

bulk of this accuracy can be ascribed to the APOE ε4 allele, the 40 or so other variants also 

collectively contribute substantially to Alzheimer’s disease risk.27 Functional annotation of 

these risk loci indicate that, next to amyloid β metabolism, the modulation of the immune 

response, cholesterol, lipid dysfunction, endocytosis, and vascular factors play a role in 

the development of Alzheimer’s disease.40–45 Next-generation sequencing techniques have 

shown rare protein-damaging variants in the SORL1,46 ABCA7,47 and TREM2 genes.48,49 

These findings suggest that the intact protein products of these genes are essential in 

maintaining brain health (figure 3A).

Protective genes—The identification of risk-increasing genetic variants has fuelled the 

interest in the detection of protective genetic variants (figure 3C). Carriers of the protective 

APOE ε2 allele have an estimated 2 times decreased lifetime risk of Alzheimer’s disease 

compared with noncarriers,50 which translates into an exceptionally low likelihood of 

Alzheimer’s disease for homozygous APOE ε2 allele carriers.51 The discovery of the rare 

Ala673Thr Icelandic protective mutation of APP52 was associated with prolonged cognitive 

health. Similarly, compared with middle-aged individuals, a rare Pro522Arg amino acid 

change in the PLCG2 gene was associated with a near 2 times reduced risk of Alzheimer’s 

disease53 and other types of dementia, and with a 2·3 times increased chance of reaching 

100 years in cognitive health.54,55 Genetic resilience was even reported in a person with a 

PSEN1 mutation who lived beyond the age of onset of symptoms common in her family, due 

to a homozygous rare protective variant in the APOE ε3 allele (Christchurch mutation).56 

Variants in the klotho longevity gene were associated with a similar effect.57 Such protective 
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genetic variants hold great promise in Alzheimer’s disease research, as they might pinpoint 

mechanistic processes protecting cognitive health.

Pathophysiology—Basic scientists designate the preclinical phase of Alzheimer’s 

disease as the cellular phase. Alterations in neurons, microglia, and astroglia drive the 

insidious progression of the disease before cognitive impairment is observed.58 Neuro­

inflammation,59 alterations in the vessels,60,61 ageing,62 and dysfunction of the glymphatic 

system63 act upstream or in parallel to accumulating amyloid β in this cellular disease 

landscape. Amyloid β induces, via an unknown way, the spread of tau patho logy,64 

which is associated with the appearance of necroptosis markers in neurons displaying 

granulovacuolar degeneration.65

Single-cell transcriptome analysis has elucidated the microglia response.66 APOE and 

TREM2, two major Alzheimer’s disease risk genes, are important parts of this 

response.66–68 ApoE binds to amyloid β plaques,69 and the Alzheimer’s disease-associated 

genetic variants of TREM2 Arg47His, Arg62His, and Asp87Asn decrease binding of 

TREM2 to ApoE (figure 3).70 Several other proteins linked to genetic risk of Alzheimer’s 

disease, such as SHIP1, CD2AP, RIN3, BIN1, PLCG2, CASS4, and PTKB2 act 

presumably downstream of ApoE and TREM2 signal-modulating endocytosis, motility, and 

phagocytosis in microglia (figure 4). CD33 acts in opposition to TREM2,77 and MS4A4A 

modulates the secretion of soluble TREM2 protein.78 The fact that so many Alzheimer’s 

disease risk genes converge on microglial response pathways indicates their central role 

in the disease pathogenesis. However, further research is needed to elucidate whether the 

microglia response is to amyloid β plaques only,76 or that it also mediates toxicity induced 

by tau pathology79 or acts protectively against tau.80

The contradictory effects of the microglia response partly reflect the limitations of mice 

models overexpressing tau for the study of Alzheimer’s disease. It is possible that strong 

transgenic tau overexpression79 induces an artificially strong neuroinflammatory response 

that is not seen in milder tau models.76,80 The use of mice models that do not overexpress 

tau,76 mouse-human chimeric mice,82,83 or new in-vitro models derived from human, 

induced pluripotent stem cells84 might help to explain the conflicting observations. Of note, 

all preclinical models are reductionistic in nature, implying that any conclusions towards 

therapeutic developments need to be made with caution.

Although cellular pathology has become central in the study of Alzheimer’s disease, great 

progress has also been made in understanding the preceding biochemical phase of the 

disease (in ATN terms, before A positivity [presence of amyloid β]). Thanks to cryo-electron 

microscopy, amyloid β85 and tau fibrils are now known in finer detail.86 Cryo-electron 

microscopy has also allowed full insight into how presenilins, the catalytic subunits of 

γ-secretases, interact with APP87 and Notch substrates.88 Complemented by functional 

studies on purified γ-secretase complexes, 71 it is now understood that clinical mutations 

in presenilins destabilise the γ-secretase–APP interactions, leading to premature release of 

longer, aggregation-prone amyloid β peptides. These insights support the development of 

new therapeutic approaches to tackle amyloid β in Alzheimer’s disease.
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The role of amyloid β in the disease cascade needs to be reintegrated with concepts 

of resilience and susceptibility. To this end, the cellular responses of neurons, astroglia, 

microglia, pericytes, and endothelial cells, which are largely defined by the genetic makeup 

of a patient, will determine whether and how long a brain affected by amyloid pathology 

will continue to function normally.58,76 Once homoeostasis collapses, Alzheimer’s disease 

manifests itself clinically. Where and when tau influences this cellular phase is one of the 

most interesting questions for the field.

Apart from the core signature biochemical amyloid and tau pathology and the microglia 

response, which defines Alzheimer’s disease, it is clear that vasculature,89 the blood–

brain barrier,89 the glymphatic63 and other clearance systems of the brain,61 the 

peripheral immune system,90 and potentially the gastrointestinal microbiome91 affect the 

clinical development of the disease. Vascular pathology also affects blood–brain barrier 

integrity.89,92 Leakage of the blood–brain barrier causes dementia independently from 

amyloid β and tau pathology, especially in APOE ε4 carriers.92

Biomarkers

The biological definition of Alzheimer’s disease is operationalised by the use of ATN 

biomarkers (appendix p 1).

Imaging biomarkers

Established markers: MRI, 18fluorodeoxyglucose (18FDG)-PET, and amyloid­
PET—The three best validated neuroimaging biomarkers for Alzheimer’s disease are 

medial temporal lobe atrophy on MRI and posterior cingulate and temporoparietal 

hypometabolism on 18FDG-PET as measures of neurodegeneration, and cortical amyloid 

β deposition on amyloid-PET imaging. A five-phase strategic roadmap showed that the three 

biomarkers have almost achieved analytical and clinical validity (phases 1 to 3), although 

evidence for their clinical utility (phases 4 and 5) is considered insufficient.93

Large prospective studies could provide answers regarding the clinical impact and utility of 

amyloid β imaging. The ABIDE study showed that amyloid β imaging improved diagnostic 

accuracy and confidence in a memory clinic setting with relatively young patients (under the 

age of 70 years).94 The IDEAS study, carried out in individuals aged 65 years and older, 

showed that amyloid-PET imaging affected clinical diagnosis and diagnostic confidence in 

about 60% of patients with mild cognitive impairment or dementia.95

Uncertainty regarding the order of tests hinders the widespread implementation of these 

imaging biomarkers. An interdisciplinary group of experts recently concluded that, although 

MRI is always recommended as the necessary first step after clinical evaluation, the 

decision on necessity and choice of the next biomarker test depends on the specific 

clinical profile and the individual diagnostic question.96 Amyloid-PET is most useful to 

rule out Alzheimer’s disease, whereas 18FDG-PET has value for the differential diagnosis of 

neurodegenerative diseases, prediction of short-term clinical outcome, and staging of extent 

and localisation of neurodegenerative processes. Such algorithms can also be used to support 

clinicians in the choice of whether or not to do an additional diagnostic test.96
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Finally, consideration of regional (instead of global) cortical amyloid β deposition could 

allow detection of the earliest amyloid β stages (in temporobasal and frontomedial areas) 

with much higher sensitivity.73

Tau-PET—Tau-PET ligands allow the in-vivo characterisation of tau tracer retention, 

consistent with Braak stages.74 In contrast to amyloid β deposition, tau-PET binding 

topography correlates with cognitive deficits,97 is specific to the different Alzheimer’s 

disease clinical phenotypes,75 and is predictive of subsequent rates of cognitive 

decline98 and atrophy.99 Tau-PET is a powerful biomarker for differential diagnosis 

between Alzheimer’s disease-tauopathy and other neurodegenerative tauopathies.100 Finally, 

longitudinal tau-PET studies highlight the sensitivity of this technique to track the 

progression of the disease,101 and the spread of tau along brain networks, consistent with 

neuron-to-neuron propagation.102 Tau-PET also helps to better understand the role of tau 

and its interaction with amyloid β. Preliminary data suggest that amyloid β might both 

accelerate tau accumulation103 and allow the spread of tau outside of the medial temporal 

lobe.104

In May, 2020, the tau tracer flortaucipir was approved for clinical use by the US Food and 

Drug Administration. For tau-PET to enter clinical practice, methodological refinement is 

needed; for example, off-target and non-specific binding and analysis procedures are issues 

to be resolved.105,106 Second-generation tracers that seem to have better signal-to-noise 

ratio, less off-target binding, and lower non-specific binding than first-generation tracers 

have been developed.105,106

Other imaging modalities—Developments in PET ligands targeting SV2A imaging have 

opened new avenues to explore brain synaptic density.107 This progress is of particular 

interest in Alzheimer’s disease, with preliminary reports of decreased SV2A binding in 

the hippocampus in patients with mild cognitive impairment or Alzheimer’s disease.108 

Further development of PET markers for neuroinflammation, α-synuclein, TDP43, and 

neurotransmitter systems are also eagerly awaited. Better use of multimodal neuroimaging is 

needed, including through the development of dual-phase amyloid-tau-PET imaging, hybrid 

PET-MR imaging, and artificial intelligence.

Fluid biomarkers

Amyloid β, phosphorylated tau, and neurodegeneration can also be ascertained via body 

fluid biomarkers (appendix p 1), greatly facilitated by the development of automated 

platforms for the analysis of amyloid β1–42, phosphorylated tau 181, and total tau. 109–111 

Through extensive global collaboration (panel 2), reference methods and materials have 

been developed116 and assay outcomes between providers of cerebrospinal fluid biomarker 

assays for Alzheimer’s disease have been aligned.72 Standardised operating procedures for 

cerebrospinal fluid collection and analysis117,118 have also been developed, and a quality­

control programme for monitoring consistency in analysis of the results has been firmly 

established.118,119 All these endeavors are directed at generating global, uniform cutoff 

points to define if a patient’s profile is Alzheimer’s disease-like.
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Cerebrospinal fluid markers—Aside from the established cerebrospinal fluid 

biomarkers amyloid β1–42, amyloid β1–40, phosphorylated tau 181, and total tau, some 

new developments can be reported. Markers reflecting axonal damage and synaptic 

dysfunction are relevant in light of synaptic pathology being present early in the disease 

course, and of its relation with functional outcomes and cognitive decline. Several of these 

biomarkers are emerging (eg, neurogranin, SNAP25, synaptotagmins, and the neuronal 

calcium sensing protein VLP1).120–124 Of these, neurogranin seems the most promising, 

given its specificity for Alzheimer’s disease and its increase in early stages. YKL40 

(CHI3L1), a microglia and astrocyte biomarker and a promising marker to monitor 

treatment effect, is especially increased in frontotemporal dementia and (to a lesser extent) 

in Alzheimer’s disease.122,125 Soluble TREM2 is interesting because of its previously 

mentioned link to genetics. Increases in serum concentrations of TREM2 are observed at 

a group level independently of the presence of the mutation, and concentrations appear to 

have a bimodal course along the Alzheimer’s disease spectrum.126

Some non-protein biomarkers are worth mentioning. Initial remarkable results on a 

plasma metabolomics profile127 were replicated,128–130 although with different profiles. An 

important issue for the metabolome is the absence of specificity to a disease process and the 

subtlety of changes.

Serum and plasma biomarkers—Ultrasensitive technologies enable the accurate 

measurement of CNS proteins in blood. A poignant example is neurofilament light, a major 

axonal cytoskeleton protein that is a cross-disease biomarker of neurode generation.131 

Levels of neurofilament light are increased in blood similarly as in cerebrospinal fluid, 

making clinical implementation of this marker feasible. In the dementia spectrum, 

neurofilament light has particular promise in the diagnosis of frontotemporal dementia,132 

which makes it potentially useful in monitoring treatment response.133–135

Also encouraging are the consistent and converging reports showing that reductions in 

plasma amyloid β concentrations in Alzheimer’s disease can be sensitively measured by 

immunoprecipitation combined with mass spectrometry, or microfluidics and other advanced 

technologies, such as Simoa, immunoreduction, and protein amide bond analysis.136–142 

Results of current collaborative investigations will show which technology provides the best 

sensitivity for different purposes (eg, screening, stratification, and effect monitoring) and 

holds the strongest promise for implementation in high-throughput analysis, which is needed 

when drugs become available and prescreening and monitoring of amyloid β changes 

becomes relevant. As for phosphorylated tau, three recent papers show strong evidence 

of plasma phosphorylated tau 181 and 217 as diagnostic biomarkers for Alzheimer’s disease 

versus other dementias, and for identification of both amyloid β and phosphorylated tau 

pathology via PET.143–145

The exciting and rapid developments in plasma-based assays hold promise for prescreening 

in research (reducing the need for, and associated costs with, lumbar punctures and PET 

scans), and also, once properly validated, for diagnostic purposes in clinical practice.146
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Treatment options

Non-pharmacological

Evidence for lifestyle changes: In 2019, WHO released the first guidelines for reduction of 

risk of cognitive decline and dementia.147 The guidelines acknowledge that, for some factors 

(eg, physical activity, diet, overweight or obesity, tobacco and alcohol use, hypertension, and 

diabetes), recommendations can be provided, although with different degrees of certainty. 

Some limitations in the current evidence include the scarcity of harmonisation (eg, exposure 

definition) and of long-term, randomised controlled trials, and little evidence from low­

income and middle-income countries, where the prevalence of dementia is increasing 

rapidly.

The SPRINT-MIND trial reported that intensive blood pressure control (goal <120 mm Hg) 

is more effective in reducing the risk of cognitive impairment than standard blood pressure 

control (goal <140 mm Hg).148 These results further highlight the idea that what is good 

for the heart is good for the brain, although the question of the optimal therapeutic target 

remains, especially for individuals older than 70 years.

Multidomain interventions to prevent cognitive decline and dementia: Previous single­

intervention failures stress the crucial need for a multimodal preventive approach that 

has been successful in the cardiovascular and diabetes prevention fields.149 The Finnish 

FINGER study was the first largescale, long-term, randomised controlled trial showing that a 

multidomain lifestyle-based intervention can reduce the risk of cognitive impairment among 

individuals at risk.150,151 FINGER combined healthy balanced nutrition, physical exercise, 

cognitive training and social activities, and vascular and metabolic risk management. The 

trial showed benefits on cognition, even in people with genetic susceptibility to Alzheimer’s 

disease. The French MAPT trial152 tested the association of a lifestyle intervention 

with omega-3 fatty acids supplements, and the Dutch PreDIVA trial153 focused on the 

pharmacological management of vascular and metabolic risk factors. Both trials were 

negative for the primary outcomes, although subgroup analyses suggested cognitive benefits 

in subpopulations of participants with increased risk of dementia. In a substudy using 

amyloid-PET in the MAPT trial,154 lifestyle intervention alone or in combination with 

omega-3 fatty acids was associated with improved primary cognitive outcome in people with 

positive amyloid β status. This finding highlights that even when lifestyle factors do not 

directly affect Alzheimer’s disease pathology, they can still contribute to a positive outcome 

in individuals with Alzheimer’s disease (appendix pp 2–4).

Future directions: from complexity to precision prevention: In 2020, more than 25 

countries joined the World Wide FINGERS network, which aims to adapt, test, and 

optimise the FINGER model in different geographical, cultural, and economic settings. 

In many ongoing World Wide FINGERS trials, substudies are focusing on biomarkers (eg, 

the US-POINTER substudies with MRI, amyloid-PET and tau-PET), which will further 

clarify the role of various biomarkers and mechanisms among individuals at risk.155 

The Multimodal Prevention Trial for Alzheimer’s Disease evaluates the feasibility of the 

FINGER multidomain lifestyle intervention in patients with prodromal Alzheimer’s disease. 

This trial is an example of potential future studies in which pharmacological and non­
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pharmacological preventive strategies can be tested in combination. The study is testing 

the feasibility of a multidomain intervention, combined with a medical food product that 

showed promising results after 2 years of treatment in a large randomised controlled trial 

in patients with prodromal Alzheimer’s disease,156 and sustained positive effects on clinical 

dementia rating and hippocampal volume after 3 years.157 This type of study is necessary 

to identify the prevention potential on an individual basis, ultimately enabling a future of 

personalised medicine for Alzheimer’s disease, in which multimodal interventions can be 

based on individually tailored combinations of lifestyle and drugs.

Pharmacological

Cognitive enhancing treatments for Alzheimer’s disease—Approved treatments 

that encompass the standard of care for many patients with Alzheimer’s disease include 

cholinesterase inhibitors and the N-methyl-D-aspartate receptor antagonist memantine. 

No other symptomatic cognitive enhancing agent has been approved globally since the 

Seminar in 2016.1 Three programmes assessing the utility of 5-HT₆ receptor antagonists for 

cognitive improvement have shown that this pathway is not a viable therapeutic approach for 

cognition.158

Drugs to treat neuropsychiatric symptoms of Alzheimer’s disease—Progress is 

being made in developing psychotropic interventions specific for Alzheimer’s disease or for 

dementia. Pimavanserin is a 5-HT2A receptor inverse agonist that was assessed in a basket 

trial for dementia-related psychosis, which included patients with psychosis in the setting 

of Alzheimer’s disease, Parkinson’s disease with dementia, dementia with Lewy bodies, 

frontotemporal degeneration spectrum disorders, and vascular dementia.159 The trial was 

stopped early for success, and pimavanserin will be submitted to the US Food and Drug 

Administration as a therapy for dementia-related psychosis.

Agitation is a common problem in dementia, occurring in up to 70% of patients with 

Alzheimer’s disease in the course of their illness.160 Recent trials have been supportive of 

treatment with brexpiprazole (an atypical antipsychotic), citalopram (a selective serotonin 

reuptake inhibitor), and nabilone (a cannabinoid).161 These studies suggest that appropriate 

interventions can reduce agitation. Ongoing trials are assessing the efficacy of brexpiprazole, 

escitalopram, prazosin, dextromethorphan plus quinidine, and dextromethorphan plus 

bupropion for agitation related to Alzheimer’s disease.

Sleep and night-time behavioural disturbances disrupt the lives of patients and caregivers. A 

trial of suvorexant showed significant increases in total sleep time and decreased awakening 

after falling asleep. Suvorexant is a dual orexin antagonist approved for insomnia, and the 

authorised prescribing information now includes clinical trial and adverse event information 

regarding the use of the agent to treat insomnia in Alzheimer’s disease.162 Lemborexant, 

another dual orexin antagonist, is in a trial for irregular sleep-wake rhythm disorder in 

patients with Alzheimer’s disease.

Disease-modifying therapies for Alzheimer’s disease—Most of the Alzheimer’s 

disease drug-development pipeline is devoted to disease-modifying therapies (appendix pp 
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5–9).64,163 These agents are in secondary prevention trials in individuals with preclinical, 

prodromal or mild, or moderate-to-severe Alzheimer’s disease.

Amyloid β is the most common target of drug development programmes in phase 

2 and phase 3. Growing evidence suggests that by removing amyloid β oligomers 

(soluble aggregates of amyloid β) and plaques (insoluble extracellular aggregates of 

fibrillar amyloid β) with monoclonal antibodies, disease progression can be slowed.164 

Aducanumab, BAN2401, and gantenerumab all reduce amyloid β plaques.165 These agents 

also reduce phosphorylated tau, neurogranin, and neurofilament light in the cerebrospinal 

fluid; observations that suggest that removal of amyloid β is associated with downstream 

effects on tau pathology and neurodegeneration. In each case, ambiguities in the clinical 

trials remain to be resolved. No therapeutic agents have yet been approved by regulatory 

authorities, and phase 3 clinical trials (NCT04241068, NCT03443973, NCT04339413, 

NCT04592341, NCT03444870, NCT03887455, and NCT04468659) are ongoing. A recent 

phase 2 trial of donanemab suggests that this antibody directed against the pyroglutamate­

modified form of amyloid β (an oligomer of amyloid β pE3 and amyloid β 42) has promise 

as an amyloid-targeted treatment.166 New phase 3 trials of donanemab (NCT04437511 and 

NCT04640077) have since been initiated.

Amyloid β vaccines are being tested in active immunotherapy trials and are a promising 

area for Alzheimer’s disease therapeutics. BACE1 and BACE2 inhibitors were a promising 

class of Alzheimer’s disease-modifying therapies that markedly reduce concentrations of 

cerebrospinal fluid amyloid β. Several of these trials have been stopped because of an 

acceleration of deterioration in cognition, elevated liver enzymes, or futility.167 Because 

many trials were stopped early on, it remains unclear whether longer treatments would have 

exerted beneficial effects. Further development of this class of agents is unlikely, unless 

major new insights into their safety and efficacy are achieved.

Tau biology is providing another repertoire of potentially important targets for disease­

modifying therapies.168 Several monoclonal antibodies targeting different epitopes are in 

trials. The monoclonal antibodies are intended to engage extracellular tau as it spreads from 

cell to cell. Small molecules targeting tau aggregation and neurofibrillary tangle formation 

are being assessed. All these approaches come with potential side-effects and experts in the 

field should seriously think about risks to benefits and more complex trials, with better dose 

finding and measurements of therapeutic target engagement. Otherwise, it is probable that 

tau-targeted trials will end in premature futility analyses, with little additional learning as to 

why these trials are negative and what can be improved.

Neuroinflammation is recognised as a major component of the pathology of Alzheimer’s 

disease, contributing to disease progression and neurodegeneration. Oligomannate was 

approved in China in 2019, after a phase 3 trial conducted in the same country showed 

cognitive improvement.169 This agent is hypothesised to be efficacious, on the basis of non­

clinical observations, in reducing brain inflammation in patients with Alzheimer’s disease 

through its effect on the gut microbiome, reducing dysbiosis, restoring normal gut bacterial 

composition, and decreasing peripheral inflammatory cell populations, which can contribute 

Scheltens et al. Page 12

Lancet. Author manuscript; available in PMC 2022 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT04241068
https://clinicaltrials.gov/ct2/show/NCT03443973
https://clinicaltrials.gov/ct2/show/NCT04339413
https://clinicaltrials.gov/ct2/show/NCT04592341
https://clinicaltrials.gov/ct2/show/NCT03444870
https://clinicaltrials.gov/ct2/show/NCT03887455
https://clinicaltrials.gov/ct2/show/NCT04468659
https://clinicaltrials.gov/ct2/show/NCT04437511
https://clinicaltrials.gov/ct2/show/NCT04640077


to central inflammation. A global trial (NCT04520412) is planned to determine the extent to 

which these effects can be reproduced in other populations.

Various other mechanisms are being targeted in Alzheimer’s disease drug development 

programmes (appendix pp 9–12). Infections are also hypothesised to contribute to 

Alzheimer’s disease onset or progression, and agents that target bacteria or viruses are 

in clinical trials for Alzheimer’s disease. Neuroprotection is essential for successful disease­

modification, and some agents target neuroprotection directly through growth factors, 

mitochondrial function, or other mechanisms, in an effort to slow disease progression.

The Dominantly Inherited Alzheimer Network Treatment Unit is an adaptive prevention 

trial platform, assessing multiple agents simultaneously in individuals with autosomal 

dominant Alzheimer’s disease.170 A recent report presented at the 2020 Alzheimer’s 

and Parkinson’s Diseases Conference showed that, in a small sample of mutation 

carriers, neither solanezumab nor gantenerumab affected clinical outcomes compared with 

placebo.171 Gantenerumab, but not solanezumab, positively affected biomarker outcomes.171

An overview of the Alzheimer’s disease-modifying treatments pipeline shows that several 

agents have clinical or biomarker benefits, and confirmatory trials are being pursued. Some 

agents have been submitted to the US Food and Drug Administration or the European 

Medicines Agency for regulatory review. The development of improved trial designs, a 

larger repertoire of biomarkers reporting on a wider variety of cell processes, improved 

outcome measures, and better analytical approaches, along with improving insight into the 

biology of Alzheimer’s disease, support the optimism in the field that the emergence of 

important new therapies for Alzheimer’s disease might be imminent.

Conclusions

In the past 5 years, substantial progress has been made into understanding the 

pathophysiology and genetic basis of Alzheimer’s disease. The amyloid β cascade 

hypothesis has been modified by a more thorough understanding of the cellular, preclinical, 

phase of Alzheimer’s disease. Genetic studies have moved from pinpointing three causal 

genes and one risk gene to identifying a plethora of genes that can be put into a polygenic 

risk score for Alzheimer’s disease. The developments in biomarker diagnosis have led to 

a complete rethinking of how to label Alzheimer’s disease outside of and before clinical 

symptomatology, enabling the enrolment of patients in research in a much earlier phase 

of the disease, particularly now that blood biomarkers seem to be within reach. Further 

refinement of the diagnostic classification and pathological underpinnings of the disease will 

be made by molecular imaging, allowing visualisation of copathology and regional protein 

aggregation. Following these developments will be insights in risk reduction, primary and 

secondary prevention, non-pharmacological and pharmacological approaches, ultimately 

given in parallel and at a much earlier timepoint than has been trialled before. If the 

field keeps up this pace, very early identification and multimodal treatment of patients can 

become a reality.
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Search strategy and selection criteria

Between Dec 1, 2019, and Sept 1, 2020, we searched the Cochrane Library for articles 

published exclusively in English during 2010–15, PubMed for articles published during 

2016–20, and Embase for articles published during 2016–20. We used the search 

term “Alzheimer’s disease” in combination with the following: “pathology”, “imaging”, 

“diagnosis”, “therapy”, “trials”, “epidemiology”, “CSF”, “genetics”, and “biomarkers”. 

We largely selected publications from the past 5 years, and especially focused on changes 

that occurred after the publication of the previous Seminar in 2016.1 We also searched 

the reference lists of articles identified by this search strategy and selected those that 

were judged relevant. Review articles and book chapters are cited to provide readers with 

references for more details than this Seminar can include.

Panel 1: Case vignettes

Mrs A, aged 42 years, a successful manager of an IT company, presents at the Alzheimer 

Centre Amsterdam because of self-perceived memory loss and loss of oversight and 

multitasking abilities. She recognises these complaints all too well because her mother 

had Alzheimer’s disease for 5 years, until her death at the age of 47 years. Two of 

her four brothers also had Alzheimer’s disease, and had been tested and found to be 

carriers of a PSEN1 mutation. Although she has not been tested herself, she always felt 

she would be a carrier and subsequently chose not to have children. She asked for a 

full evaluation because she wanted to have the option of participating in a clinical trial 

programme. Her Mini-Mental State Exam score was 27/30 and her Montreal Cognitive 

Assessment score was 24/30. Given her age, these scores suggest mild memory and 

executive disturbances, which were confirmed by neuropsychological testing. A brain 

MRI showed no abnormalities. Cerebrospinal fluid biomarker values were 750 pg/mL for 

amyloid β42, 335 pg/mL for tau, and 35 pg/mL for phosphorylated tau 181, all in the 

abnormal range. Serum neurofilament light chain value was 25 pg/mL, which is abnormal 

for her age, according to in-house defined reference curves. APOE status was ε3/ε4. 

All these biomarker values indicate the presence of Alzheimer’s disease pathology and 

onset in a clinically mildly affected patient. Genetic testing confirmed the presence of the 

same PSEN1 mutation carried by her brothers. She was informed about the diagnosis, 

followed up at 6 month intervals at the centre, and put on the list for a clinical trial within 

the Dominantly Inherited Alzheimer Network Trials Unit programme. She informed her 

colleagues at work and agreed to have regular meetings with the company’s physician.

Mr B, aged 62 years, is a high school teacher who presented to the neurologist with 

gradually progressive difficulty finding words and understanding sentences, and slight 

memory loss. He had visited another neurologist because of suspicion of a vascular event, 

but a brain MRI showed no abnormalities. On examination, his Mini-Mental State Exam 

score was 25/30 and the Montreal Cognitive Assessment score was 24/30, both within 

normal range for his age, with normal findings at routine neurological and laboratory 

investigations. Neuropsychological and detailed language assessment revealed a decrease 

in fluency, naming, and repetition of long sentences.
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Review of the MRI showed slight asymmetry of the temporal lobes, with grade 2 

hippocampal atrophy on the left side and grade 1 hippocampal atrophy on the right 

side, without any other abnormalities (figure 1B). Because of his young age, and his and 

his family’s desire to obtain a firm diagnosis to plan ahead and make proper adjustments 

to his working life, an amyloid-PET scan was done and showed diffuse cortical uptake 

of the ligand (figure 1A). As part of a research project, a tau-PET scan was done and 

showed left-temporal abnormal tau deposition (figure 1C). A diagnosis of logopenic 

variant of Alzheimer’s disease was made. Lifestyle advice was given and regular visits to 

a speech therapist were offered.2 Given the diagnosis and the perceived grim future, as 

well as the high demands of his job on his language skills, he decided to take sick leave 

from his job.

Mrs C, aged 78 years, lives independently on her own after being widowed 6 years ago. 

She was known to her general practitioner with controlled hypertension and moderate 

heart failure, for which she takes medication. Her son lives abroad and her daughter 

lives 100 km away. Both have demanding jobs and young children. During telephone 

and Skype calls, her children noticed increasing forgetfulness and one of the neighbours 

had recently informed the daughter that her mother mixed up the days, forgot to eat, 

and was not able to take good care of herself anymore. The daughter accompanied her 

mother to the Alzheimer Centre Amsterdam on referral by the general practitioner, who 

had initially dismissed the worries of the daughter. On examination by a geriatrician, 

she was found to be malnourished and underweight. The Mini-Mental State Exam score 

was 17/30 and a brief neuropsychological test battery showed scores below the norm 

for memory and executive function. Her score on the Amsterdam Instrumental Activities 

of Daily Living test3 was 58, indicating severe impairment. An MRI showed a medial 

temporal atrophy score of 2 bilaterally, and moderate to severe white matter changes 

(Fazekas score 2). A diagnosis of mild to moderate dementia due to Alzheimer’s disease 

with some vascular contribution was made, and a case manager was assigned to organise 

and supervise care to have her stay at home as long as possible. Vascular risk factors were 

checked and cholinesterase inhibitor therapy was started.

Panel 2: Fluid biomarker consortia relevant to the field of Alzheimer’s disease

Global Biomarker Standardization Consortium of the Alzheimer’s 
Association112

Aims to achieve consensus on the best ways to standardise and validate biomarker tests 

for use in global clinical practices.

Society for CSF Analysis and Clinical Neurochemistry113

Aims to exchange high-level international scientific experience, to facilitate the 

incorporation of cerebrospinal fluid diagnostics into clinical practice, and to give advice 

on the inclusion of cerebrospinal fluid analysis into clinical guidelines.

Foundation for the National Institutes of Health Biomarkers Consortium114

Aims to bring together the expertise and resources of various partners to rapidly 

identify, develop, and qualify potential high-impact biomarkers, particularly to enable 

improvements in drug development, clinical care, and regulatory decision making.

Scheltens et al. Page 24

Lancet. Author manuscript; available in PMC 2022 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



International Federation of Clinical Chemistry and Laboratory Medicine 
Working Group CSF Proteins115

Aims to develop certified reference material and reference methods for amyloid β42 or 

amyloid β40 and tau in cerebrospinal fluid.
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Figure 1: Imaging findings of a case similar to patient B’s case in panel 1
(A) Amyloid Pittsburgh compound B-PET scan showing amyloid deposition predominantly 

in the posterior cingulate region. (B) T1-weighted MRI images showing generalised 

cortical atrophy, left to right. (C) Tau-PET image using AV1451 tracer, showing left-sided 

inferotemporal lobe, parietal, and mild posterior cingulate deposition of tau. Image courtesy 

of Rik Ossenkoppele and Gil Rabinovici.
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Figure 2: Alzheimer’s disease is a continuum
The arrow points to the continuum of Alzheimer’s disease, stretching over a period of 15–25 

years, in which Alzheimer’s disease pathology can be present without any symptoms via a 

stage of mild cognitive impairment leading up to overt dementia, illustrating that dementia 

is the end result of a long-time presence of Alzheimer’s disease pathology. Not every patient 

will necessarily follow this path by definition. Note: between normal and mild cognitive 

impairment, patients can experience subjective complaints, but not all complaints are early 

signs of dementia and the predictive value of having complaints for dementia is unknown.
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Figure 3: The genetic landscape of Alzheimer’s disease
MAF (x-axis) is the frequency at which a non-reference (variant) allele occurs in the 

population. Variant carriers with OR=1 and non-carriers have the same odds of developing 

Alzheimer’s disease, variants with OR >1 are associated with an increased risk of 

Alzheimer’s disease, and variants with OR <1 are associated with a protective effect 

(y-axis). (A) Causative or strong risk increasing variants. A schematic representation of 

individual rare variants for which ORs cannot be estimated due to extreme variant rareness. 

Linkage studies in large pedigrees indicate that specific rare variants in PSEN1, PSEN2, 

and APP cause autosomal dominant Alzheimer’s disease, in some cases with age at onsets 

as early as 40 years old. Note that not all variants in these three genes give rise to 

autosomal dominant Alzheimer’s disease; some might be risk-modifiers or non-pathogenic. 

Further, evidence is accumulating that certain variants in the SORL1 gene are causative 

of Alzheimer’s disease before the age of 70 years. The Alzheimer’s disease-association of 

variants in the SORL1, ABCA7, and TREM2 genes was found in gene-based tests; carriers 

may come from small pedigrees with inheritance patterns of Alzheimer’s disease suggestive 

of autosomal dominant inheritance. (B) GWAS hits are common (by convention, MAF 

>1%) variants that represent risk alleles that occur with significantly different frequency in 

patients with Alzheimer’s disease and controls. Each variant is represented by the gene in 

which it occurs, or when the variant is non-coding, by the gene that maps closest to the 

variant (depicted in dark grey). (C) Protective variants are (very) rare variants suggested 
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to confer resistance against age-associated or disease-associated risk factors of cognitive 

decline. GWAS=genome-wide association studies. MAF=minor allele frequency. OR=odds 

ratio. PRS=polygenic risk scores.
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Figure 4: The cellular phase of Alzheimer’s disease
Although amyloid plaques (red, middle of the figure) and tau phosphorylation and tangles 

(neurons, top right corner) are still considered the defining features of Alzheimer’s disease, 

the focus of research has been widened from neurons to the response of other cell 

populations in the disease.71 The microglia-mediated inflammation, known for decades to 

be present in Alzheimer’s disease,72 has finally taken centre-stage in functional research on 

the pathogenesis of the disease. Many of the risk-genes protein products (bold and capitals) 

identified in Alzheimer’s disease (figure 3) are expressed and have functions in microglia. 
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These genes become upregulated when microglia are exposed to amyloid plaques and 

many of the Alzheimer’s disease risk genes are enriched in the disease-associated microglia 

response that characterises this cell state.73–75 Other genes involved in this response and 

moderately positive in genome-wide association studies are indicated as well. Adapted from 

Sierksma et al,76 by permission of EMBO Molecular Medicine.
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