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ABSTRACT Since 2015, severe hydropericardium-hepatitis syndrome (HHS) associ-
ated with a novel fowl adenovirus 4 (FAdV-4) has emerged in China, representing a
new challenge for the poultry industry. Although various highly pathogenic FAdV-4
strains have been isolated, the virulence factor and the pathogenesis of novel FAdV-
4 are unclear. In our previous studies, we reported that a large genomic deletion
(1,966 bp) is not related to increased virulence. Here, two recombinant chimeric
viruses, rHN20 strain and rFB2 strain, were generated from a highly pathogenic
FAdV-4 strain by replacing the hexon or fiber-2 gene of a nonpathogenic FAdV-4,
respectively. Both chimeric strains showed similar titers to the wild-type strain in
vitro. Notably, rFB2 and the wild-type strain induced 100% mortality, while no mor-
tality or clinical signs appeared in chickens inoculated with rHN20, indicating that
hexon, but not fiber-2, determines the novel FAdV-4 virulence. Furthermore, an
R188I mutation in the hexon protein identified residue 188 as the key amino acid for
the reduced pathogenicity. The rR188I mutant strain was significantly neutralized by
chicken serum in vitro and in vivo, whereas the wild-type strain was able to replicate
efficiently. Finally, the immunogenicity of the rescued rR188I was investigated.
Nonpathogenic rR188I provided full protection against lethal FAdV-4 challenge.
Collectively, these findings provide an in-depth understanding of the molecular basis
of novel FAdV-4 pathogenicity and present rR188I as a potential live attenuated vac-
cine candidate or a novel vaccine vector for HHS vaccines.

IMPORTANCE HHS associated with a novel FAdV-4 infection in chickens has caused
huge economic losses to the poultry industry in China since 2015. The molecular ba-
sis for the increased virulence remains largely unknown. Here, we demonstrate that
the hexon gene is vital for FAdV-4 pathogenicity. Furthermore, we show that the
amino acid residue at position 188 of the hexon protein is responsible for pathoge-
nicity. Importantly, the rR188I mutant strain was neutralized by chicken serum in
vitro and in vivo, whereas the wild-type strain was not. Further, the rR188I mutant
strain provided complete protection against FAdV-4 challenge. Our results provide a
molecular basis of the increased virulence of novel FAdV-4. We propose that the
rR188I mutant is a potential live attenuated vaccine against HHS and a new vaccine
vector for HHS-combined vaccines.

KEYWORDS fowl adenovirus 4, virulence, hexon, pathogenesis, vaccine development

Fowl adenoviruses (FAdVs) belong to the Aviadenovirus genus and the Adenoviridae
family. FAdVs are further classified into five species (designated FAdV-A to -E) based

on molecular criteria and enzyme digestion patterns or 12 serotypes based on serum
cross-neutralization tests (designated FAdV-1 to -7, -8a, -8b, and -9 to -11) (1, 2). FAdV-
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4 infection was first reported in Pakistan in 1987. Subsequent outbreaks have been
reported around the world, resulting in significant economic losses for the poultry
industry (3). Pathogenic FAdV strains associated with hydropericardium-hepatitis syn-
drome (HHS) (4, 5), inclusion body hepatitis (IBH) (6–8), and gizzard erosion (9–11)
have been isolated; therefore, diagnostic methods and vaccines for these strains are in
development. Some nonpathogenic strains were identified and developed into vaccine
vectors, such as CELO (12–14), a FAdV-1 strain.

Notably, severe HHS caused by a highly pathogenic FAdV has emerged in chickens,
ducks, and geese in China since 2015, with mortality rates from 20 to 100% (15–19).
The causative agent for this HHS was identified as FAdV-4, which was identified as a
novel FAdV-4 because of a large genomic deletion (1,966 bp) between ORF42 and
ORF43 (16, 20, 21). In previous studies, we developed a reverse genetic platform for
FAdV-4 and reported that the large genomic deletion is unrelated to increased viru-
lence (22). Although identifying the molecular basis of the increased virulence is impor-
tant for in-depth understanding of pathogenicity and pathogenesis, genes that cause
increased virulence in the emerging FAdV-4 are not well known (23).

Identifying virulence genes is critical for disease control and vaccine development.
Recently, the spike (S) gene of the emerging SARS-CoV-2 was defined to play critical
roles for virulence, which provided important information for understanding pathoge-
nesis and enabled the development of novel therapeutic antibodies and vaccines
(24–26). The meq gene of Marek’s disease virus was identified as the virulence gene (27,
28). Using these findings, a live attenuated vaccine was developed that showed effi-
cient protection for Marek’s disease (29, 30). The live attenuated strain was further
explored as a vaccine vector for combined vaccines of other avian diseases. Several
studies have attempted to identify the potential gene function of the novel FAdV-4.
Short fiber-1 was defined as the key factor for triggering infection by FAdV-4 by
directly binding to the coxsackievirus and adenovirus receptor (CAR) (31, 32). Deleting
the full-length or N-terminal sequence of fiber-2 reduced virulence by reducing replica-
tion ability or destroying viral structure (33, 34). Fiber-1 and penton were independent
of increased virulence (35). Although the hexon and fiber-2 genes are associated with
pathogenic CH/HNJZ/2015 strain’s virulence (36), the roles of these two genes in other
virulent strains and their exact locations remain unknown.

In this study, the hexon gene, but not fiber-2, was identified as the critical virulence
gene for FAdV-4. A single amino acid at position 188 of the hexon protein was further
identified as the determinant for FAdV-4 pathogenicity. We first identified the molecu-
lar basis for the increasing virulence of the emerging novel FAdV-4. The R188I mutant
strain, rR188I, can replicate as well as the wild-type strain in vitro but is totally nonpa-
thogenic by serum neutralization in vivo. Furthermore, the rR188I strain is nonpatho-
genic and provides full protection against HHS, thus highlighting its potential value for
development as a live attenuated vaccine or combined vaccine vector.

RESULTS
Hexon, not fiber-2, determines novel FAdV-4 pathogenicity. To identify the viru-

lence genes of the HLJFAd15 strain, rHN20 and rFB2 chimeric viruses were generated
by replacing the hexon or fiber-2 gene of the HLJFAd15 strain with hexon or fiber-2
from the nonpathogenic strain ON1, respectively (Fig. 1A). The replication capacity of
the two chimeric recombinant viruses in leghorn male hepatocellular (LMH) cells was
not different from that of the rescued wild-type virus (rWT-FAdV4) (Fig. 1B).

The pathogenicity of rHN20 and rFB2 was tested on 3-week-old specific-pathogen-
free (SPF) chickens. Unexpectedly, the chickens in the rHN20 and mock control groups
did not show any symptoms until the end of the experiment, whereas all the chickens
in the rFB2 and rWT-FAdV4 groups died within 4 days after challenge (Fig. 1C). The
heart, liver, spleen, lung, kidney, thymus, and bursa tissues were collected from dead
or euthanized chickens for viral load titration. The viral load in the rFB2 and rWT-FAdV4
groups in each tissue was not significantly different. The viral distribution was the
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FIG 1 Hexon, not fiber-2, determines novel FAdV-4 pathogenicity. (A) Schematic of fiber-2 and hexon gene
replacement recombinant virus generation based on the FAdV-4 HLJFAd15 strain fosmid infectious clone. (B)
Virus growth kinetics. LMH cells were infected with rWT-FAdV4, rHN20, and rFB2 at an MOI of 0.01. At each

(Continued on next page)
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highest in the liver. The viral loads of rFB2 and rWT-FAdV4 were significantly higher
than that of rHN20 and mock controls, and the rHN20 group presented a low viral load
in various tissues (Fig. 1D). Gross autopsy of chickens infected with rWT-FAdV4 or rFB2
showed a swollen and friable liver or hydropericardium, as previously reported (21;
data not shown). Moreover, pathological histology analysis of the liver, spleen, and
bursa tissues showed that rWT-FAdV4 or rFB2 infection caused severe pathological ne-
crosis. No significant lesions were observed in the rHN20 and mock infection groups
(Fig. 1E).

Collectively, our data demonstrate that hexon, not fiber-2, determines the pathoge-
nicity of novel FAdV-4.

R188I mutation plays a critical role in FAdV-4 attenuation. Based on the hexon
amino acid sequences, evolutionary analysis and sequence alignment of ON1 and 16
novel FAdV-4 strains isolated in China since 2015 were performed. The results showed
that the hexon proteins of virulent epidemic strains were all in the same branch and
shared the same amino acid sequence as that of HLJFAd15 (Fig. 2A), but there were 13
amino acid differences compared to the nonpathogenic strain ON1 (Fig. 2B). To investi-
gate the contribution of individual amino acids in the hexon protein to FAdV-4 patho-
genicity, 13 single-amino acid mutant viruses (designated rS164T, rR188I, rR193Q,
rQ195E, rN238D, rT240A, rN243E, rI263M, rV264I, rA410T, rI574V, rP797A, and rA842G)
were generated (Fig. 2B) and used to test the pathogenicity of the mutant viruses in 4-
week-old SPF chickens. Surprisingly, chickens infected with rR188I, like rHN20, did not
die or develop any clinical signs. Chickens infected with the other mutant viruses all
died within 1 to 4 days after challenge (100% mortality rate) (Fig. 2C and D).
Correspondingly, rR188I and rHN20 copy numbers were similar to the background
value of the mock group, whereas the other groups had high viral loads in the liver
(Fig. 2E). These results indicate that the loss of virulence from the rHN20 strain results
from an arginine (R)-to-isoleucine (I) substitution at amino acid 188 of the hexon pro-
tein (R188I). Virulence is not related to the other 12 differential amino acids.

I188R mutation confers rHN20 virulence. To further assess the role of R188 in
FAdV-4 pathogenicity, we made a reverse I188R mutation in the nonpathogenic strain
rHN20, resulting in the rI188R recombinant virus (Fig. 3A). The virus growth kinetics
showed that I188R had the same replication ability as rWT-FAdV4, rHN20, and R188I in
LMH cells (Fig. 3B). Challenge of SPF chickens with these four viruses resulted in 100%
death for rWT-FAdV4- and rI188R-infected chickens but not in rHN20- and rR188I-
infected chickens, as expected (Fig. 3C). No other clinical symptoms were observed in
the rHN20 and rR188I groups. Moreover, the livers of dead or euthanized chickens
infected with rWT-FAdV4 or rI188R contained high viral loads, whereas the rHN20 and
R188I groups had very low viral loads (Fig. 3D). In addition, pathological observation
showed that the rWT-FAdV4 and rI188R groups presented severe IBH and hepatocellu-
lar injury, whereas rHN20- and rR188I-infected chickens were not different from healthy
chickens (Fig. 3E). These data demonstrate that the I188R mutation confers rHN20 viru-
lence, and amino acid 188 of the hexon protein determines the FAdV-4 virulence.

Phylogenetic and amino acid 188 conservation analysis of hexon from different
FAdV-4 isolates. To further analyze the role of amino acid 188 of hexon in the patho-
genicity of other FAdV-4 isolates, we downloaded the complete hexon sequences of all
reported naturally nonpathogenic strains (ON1, KR5, and B1-7) and foreign pathogenic
strains (Mx-SHP95 and AG234-CORR) from GenBank and compared these sequences to
that of novel FAdV-4. As previously reported, pathogenic novel FAdV-4 is on a unique

FIG 1 Legend (Continued)
time point, viruses were harvested and quantified using a plaque assay. (C) Survival curve of 3-week-old SPF
chickens after challenge with rWT-FAdV4, rHN20, and rFB2 (n= 10). (D) Viral loads in different tissues. The
heart, liver, spleen, lung, kidney, thymus, and bursa tissues from each group were collected at the end of
the experiment (n=3). Viral DNA was detected using TaqMan quantitative real-time PCR. Error bars represent
the standard errors of the mean (SEM). *, P, 0.05; **, P, 0.01; ***, P, 0.001; ns, not significant. (E)
Histological examination of the liver, spleen, and bursa from chickens infected with rWT-FAdV4, rHN20, and
rFB2. Scale bar, 50mm.
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evolutionary branch (16), but the nonpathogenic B1-7, KR5, and ON1 strains are
located on different evolutionary branches (Fig. 4A). Interestingly, independent of time
period and geographical region, amino acid 188 of hexon is R in all the pathogenic
strains, while the nonpathogenic strains contain I (Fig. 4B). These alignment results fur-
ther suggest that amino acid 188 of hexon determines FAdV-4 pathogenicity.

Nonpathogenic strains have limited ability to infect hepatocytes in vivo. The
data presented above suggest that FAdV-4 pathogenicity may correlate with the ability
to infect the liver in vivo because pathogenic strains caused higher viral loads in the
liver but nonpathogenic strains did not (Fig. 1D, 2E, and 3D). To evaluate the real-time
infection ability of different strains on the liver in vivo, we monitored the liver viral load

FIG 2 rR188I mutation reduces FAdV-4 virulence in SPF chickens. (A) Phylogenetic analysis based on the hexon amino acid sequences. GenBank accession
numbers and time periods and geographical regions of virus isolation are indicated in parentheses. Red square, novel FAdV-4 strain; light blue circle,
nonpathogenic ON1 strain. (B) Schematic of the generation of mutant viruses. Thirteen amino acids of the rWT-FAdV4 (HLJFAd15) strain hexon protein that
were different from the ON1 strain were mutated to the residues of ON1, respectively. The diagrams are not to scale. (C) Survival curve. Thirteen single-
amino-acid mutant viruses were injected into 3-week-old SPF chickens. rWT-FAdV-4, rHN20, and mock-injected chickens (control) were the three groups
(n= 5). (D) Survival rates after viral challenge. (E) Viral load in the liver in different groups (n= 3). Error bars represent the SEM. *, P, 0.05; **, P, 0.01; ***,
P, 0.001; ns, not significant.
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at different time points after intramuscular injection of these viruses (Fig. 5A). The data
showed that rHN20 and rR188I infected significantly fewer hepatocytes in vivo than
did rWT-FAdV4 and rI188R (Fig. 5A). However, when primary chicken embryo liver
(CEL) cells were infected with these viruses, the viral genome content was not different
(Fig. 5B). In addition, there was no difference in the ability of these viruses to infect
LMH cells (Fig. 3B). These data demonstrate that both pathogenic and nonpathogenic
strains have the same ability to infect hepatocytes but that nonpathogenic strains can-
not infect the liver with high efficiency in vivo.

FIG 3 rI188R mutation confers rHN20 virulence in SPF chickens. (A) Detailed schematic representation of the four recombinant viruses. rWT-FAdV4, rescued
wild type FAdV-4; rHN20, the hexon gene was replaced with the ON1 sequence; rI188R, amino acid 188 of the hexon protein from the rHN20 strain was
reverse mutated to wild type; rR188I, amino acid 188 of the hexon protein of the rWT-FAdV4 strain was mutated to the ON1 sequence. (B) Virus growth
curves of the four viruses in LMH cells. (C) Survival curve. The four viruses were intramuscularly injected into 3-week-old SPF chickens (n= 10). (D) Viral load
in the liver in different groups (n= 3). Error bars represent the SEM. *, P, 0.05; **, P, 0.01; ***, P, 0.001; ns, not significant. (E) Histological examination of
the liver, spleen, and bursa. Scale bar, 50mm.
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Considering that passage through the blood is required before viral entry into the
target tissues, we injected these viruses intravenously and examined the viral loads in
the blood, liver, and kidney. Both of the pathogenic strains proliferated with high effi-
ciency in the blood, whereas effective proliferations of nonpathogenic strains were not
detectable (Fig. 5C). We further examined the viral load in the liver and kidney at 24 h
postinfection and observed that rHN20 and rR188I loads were significantly lower than
rWT-FAdV4 and rI188R loads (Fig. 5D). Taken together, four viruses showed similar abil-
ity to infect hepatocytes in vitro, while the pathogenic rWT-FAdV4 and rI188R were ca-
pable to induce greater viremia and higher virus loads in target tissues in vivo.

Hexon amino acid 188 determines the neutralization capacity of SPF chicken
serum against FAdV-4. To demonstrate that the blood has differential effects on
FAdV-4 pathogenic and nonpathogenic strains, rWT-FAdV4 and rHN20 EGFP reporter
viruses were preincubated with fresh SPF chicken serum for 1 h at 42°C before infect-
ing LMH cells. Fluorescence microscopy and flow cytometry showed that the infectivity
of rWT-EGFP in LMH cells was not significantly affected by SPF chicken serum, whereas
rHN20-EGFP was significantly neutralized. In addition, the extent of neutralization was
positively correlated with the serum concentration (Fig. 6A and B). These results show
that SPF chicken serum neutralizes nonpathogenic strains with high efficiency.

To further demonstrate the relationship of amino acid 188 with serum-neutralized
viruses, the four viruses were simultaneously pretreated with SPF chicken serum or serum-
free medium and used to infect LMH cells. We observed that treatment with serum signifi-
cantly inhibited the cytopathic effect (CPE) of rHN20 and rR188I but had no effect on
rWT-FAdV4 and rI188R (Fig. 6C). Correspondingly, the viral loads in serum-pretreated rHN20-
and rR188I-infected LMH cells were significantly lower than that in medium-pretreated cells,
but serum treatment did not reduce viral loads in rWT-FAdV4- and rI188R-infected LMH cells

FIG 4 Phylogenetic and hexon amino acid 188 conservation analysis of different FAdV-4 isolates. (A) Phylogenetic tree based on hexon.
GenBank accession numbers and time periods and geographical regions of virus isolation are indicated in parentheses. Red square, novel
pathogenic FAdV-4 strain; purple squares, foreign pathogenic strains; light blue circle, nonpathogenic strain. (B) Sequence alignment analysis
for hexon amino acid 188 from different FAdV-4 isolates. The red star highlights amino acid 188.
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(Fig. 6D). Together, these results demonstrate that SPF chicken serum neutralizes rHN20-
and rR188I-mediated hepatocyte infection.

rR188I mutation provides efficient protection against FAdV-4 challenge.
Because rR188I is a nonpathogenic recombinant virus with only 1 amino acid substitu-
tion compared to wild-type FAdV-4, we hypothesized that rR188I confers immunoge-
nicity. To assess whether the rR188I mutation has the potential for live attenuated vac-
cines, 2-week-old SPF chickens were inoculated with rR188I. Fourteen days later,
chickens were challenged with a lethal dose of rWT-FAdV4 and observed for morbidity
and mortality. The chickens in the challenge control group exhibited lethargy and
piloerection. Death began at 2 days postchallenge and reached 100% mortality at
5 days postchallenge. However, neither death nor clinical symptoms occurred in the
rR188I group or the healthy control group during 14 days (Fig. 7A). The heart, liver,
spleen, lung, kidney, thymus, and bursa tissues from chickens at 5 days postchallenge
were collected, and viral loads were determined. Viral loads in the rR188I and healthy
control groups were not significantly different but were much lower than that in the
challenge control group. In the challenge control group, the highest viral load was
seen in the liver, reaching 107 to 108 copies per million cells (Fig. 7B). Correspondingly,
severe pathological tissue damage was seen in different tissues of the challenge con-
trol group. The liver cells showed degenerative necrosis and inflammatory cell infiltra-
tion concurrent with generalized lymphocytic necrosis and reduction with giant cell
hyperplasia in the spleen and bursa. No histopathological symptoms were observed in
the rR188I or healthy control groups (Fig. 7C). These data demonstrate that rR188I pro-
vides efficient protection against FAdV-4 challenge.

DISCUSSION

HHS associated with a novel FAdV-4 infection in chickens has caused huge eco-
nomic losses to the poultry industry in China since 2015. The FAdV-4 genome is com-
prised of approximately 43- to 45-kb double-stranded DNA encoding more than 40

FIG 5 Characteristics of the recombinant viruses infecting hepatocytes in vivo and in vitro. (A) Three-week-old SPF chickens were
intramuscularly injected with rWT-FAdV4, rHN20, rI188R, and rR188I (n= 10, dose = 104 PFU). The livers were collected, and viral loads
were evaluated using TaqMan quantitative real-time PCR at the indicated time points (n=3). (B) CEL cells were infected with rWT-
FAdV4, rHN20, rI188R, and rR188I at an MOI of 0.01. At each indicated time point, the cells were harvested, and the viral loads were
analyzed using TaqMan quantitative real-time PCR (n= 3). (C and D) Three-week-old SPF chickens were intravenously injected with
rWT-FAdV4, rHN20, rI188R, and rR188I (n= 3, dose = 106 PFU). (C) Viral loads in the blood at different time points. (D) Viral loads in
the liver and kidney at 24 h postinjection. Error bars represent the SEM. *, P, 0.05; **, P, 0.01; ***, P, 0.001; ns, not significant.
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proteins. However, the virulence genes and their locations are poorly understood.
Investigating the dominant virulence gene is critical for understanding pathogenesis
and enabling vaccine development. Identifying the SARS-CoV-2 spike gene (24, 37),
the influenza virus PB2 gene (38), and nonstructural genes of the Zika virus (39) clari-
fied the pathogenic mechanisms and highlighted novel insights for vaccine develop-
ment. Our previous studies reported that a natural large genomic deletion was unre-
lated to the increased virulence of novel FAdV-4 (22). Further, we showed that fiber-1
protein mediates virus adsorption to cellular receptors (31, 32). Recently, attention has
been focused on the molecular basis of the increased virulence of the highly patho-
genic FAdV-4. In the present study, the capsid protein-encoding gene, hexon, but not
fiber-2, was identified as the dominant virulence gene of novel FAdV-4. These findings
contrast previous reports that hexon and fiber-2 genes are closely associated with the
virulence of novel FAdV-4. Consequently, the hexon gene was identified as the critical
virulence gene underlying the increasing virulence of all novel FAdV-4 strains, whereas
fiber-2 activity is limited to specific strains.

Virulence based on a single amino acid often appears in RNA viruses but is rarely
reported in DNA viruses. Amino acid 367 of the Tembusu virus E protein plays a critical
role in pathogenesis (40), and amino acid 431 of the H1N1 swine influenza virus (SIV)
PB2 protein determines its virulence in mice (41). Here, we report that the single amino
acid R188 of the hexon protein is responsible for novel FAdV-4 pathogenicity. All chick-
ens survived and showed no clinical symptoms when inoculated with a lethal dose of
the rescued mutant strain rR188I. Inducing an R188I mutation totally decreased the
pathogenicity of FAdV-4 in vivo and showed no impact for virus replication in vitro.
Moreover, the FAdV-4 hexon sequences were aligned with those of three reported nat-
ural nonpathogenic FAdV-4 strains (ON1, KR5, and B1-7), which have a conserved iso-
leucine at position 188. In contrast, arginine is present at this position in all pathogenic

FIG 6 Neutralization potency of SPF chicken serum against each recombinant virus. (A and B) Effect of SPF chicken serum concentration on rWT-EGFP and
rHN20-EGFP infection of LMH cells. The rWT-EGFP or rHN20-EGFP viruses were incubated for 1 h at 42°C with the indicated various amounts of fresh 3-
week-old SPF chicken serum. The viruses were then incubated with LMH cells for 1 h. The medium was replaced, and the cells were cultured for another
48 h. (A) Cells were examined using fluorescence microscopy. Scale bar, 200mm. (B) The relative ratio of fluorescent cells was detected using flow
cytometry and normalized to the medium-only control (n= 3). (C and D) Neutralization of rWT-FAdV4, rHN20, rI188R, and rR188I by SPF chicken serum. The
four strains were incubated for 1 h at 42°C with 90% fresh serum or medium. The viruses were used to infect LMH cells for 48 h. (C) The CPE was
examined using microscopy. Scale bar, 100mm. (D) Viral loads were detected and normalized to medium-only controls (n= 3). Error bars represent the SEM.
*, P, 0.05; **, P, 0.01; ***, P, 0.001; ns, not significant.
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FAdV-4 strains, regardless of time period and geographical region. The alignment
results further strengthened the conclusion that R188 of the hexon protein is the viru-
lence determinant of novel FAdV-4. These findings highlight the molecular basis for
the increasing virulence of novel FAdV-4. Further, this is the first report of a single
amino acid changing the virulence of an adenovirus, which is valuable for in-depth
understanding of the virulence evolution of DNA viruses, especially adenoviruses.

As reported previously, human adenovirus 5 (HAdV-5) has a higher viral load in the
liver compared to other tissues, and its hexon protein is the critical determinant for
HAdV-5 infecting liver cells (42, 43). A single amino acid mutation (T425A) in hexon
greatly reduced HAdV-5 infection in liver tissue in mice (44). We showed that the
hexon protein is the pathogenicity determinant of novel FAdV-4, but the molecular ba-
sis remains unclear. Novel FAdV-4 infected various organs in chickens, with the highest
viral load in the liver, where it induced severe IBH. However, the hexon replacement
strain rHN20 and the R188I mutant strain rR188I did not effectively replicate in the liver
or other tissues in vivo, although both nonpathogenic strains replicated similarly to the
wild-type pathogenic strain in vitro. To further investigate this potential mechanism,
four strains were directly inoculated into the blood. rHN20 and rR188I infections in the
liver were significantly neutralized by the serum, with similar results in LMH cells in
vitro. The pathogenic FAdV-4 was transported effectively from the blood to the liver,

FIG 7 rR188I provides full protection against FAdV-4 challenge. (A) Survival curve. Two-week-old SPF chickens were inoculated with
rR188I or DMEM/F12 medium (n= 10). At 2 weeks after immunization, chickens were challenged with rWT-FAdV4. The healthy control
group did not receive any treatment. (B) Viral loads of different tissues in different groups at 5 days postchallenge. The heart, liver,
spleen, lung, kidney, thymus, and bursa tissues from each group were collected. Viral DNA was detected using TaqMan quantitative
real-time PCR. Error bars represent the SEM. *, P, 0.05; **, P, 0.01; ***, P, 0.001; ns, not significant. (C) Histological examination of
the liver, spleen, and bursa from different groups. Scale bar, 50mm.
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whereas the nonpathogenic strains were neutralized by the serum because of the
R188I mutant. This is the first report that a single amino acid mutant R188I of the
hexon protein is responsible for reduced FAdV-4 pathogenicity. The R188I mutant may
facilitate the innate immune system or complement system activation to neutralize
nonpathogenic FAdV-4 (44–46). However, the mechanism of virus neutralization needs
further investigation.

Adenovirus vectors are widely developed and used for novel vaccine development,
such as HAdV-5 vector-based SARS-CoV-2 (47), Ebola (48), and Zika (49) vaccines. For
FAdVs, the nonpathogenic strain CELO (FAdV-1) was first developed as a vector carry-
ing cDNA encoding avian infectious bursal disease virus proteins (13, 14). However,
FAdV-4 is the most pathogenic of 12 FAdV serotypes, and CELO-based vaccines cannot
provide full protection against FAdV-4 infection. Here, the artificial rescue strain rR188I
protected chickens against FAdV-4 challenge when rR188I was used as a live vaccine.
In addition, rR188I is valuable as a vector for delivering other exogenous immunogenic
proteins. Combined live vaccines containing rR188I may prevent emerging HHS and
exogenous protein-related disease.

In summary, the molecular underpinnings of the increased virulence of novel FAdV-
4 were first described in this study. The hexon gene, but not the fiber-2 gene, was iden-
tified as the critical FAdV-4 virulence gene, and a single amino acid at position 188 of
the hexon protein determines pathogenicity. The pathogenic FAdV-4 was transported
from the blood to the liver, whereas the nonpathogenic strains, including the R188I
mutant, were neutralized in the serum. Furthermore, the rR188I strain was totally non-
pathogenic and provided full protection against HHS, highlighting its potential value
for developing live attenuated vaccines or combined vaccine vectors. Our findings pro-
vide in-depth understanding of FAdV-4 pathogenesis and will support the develop-
ment of novel FAdV-4 vaccines.

MATERIALS ANDMETHODS
Ethics statement. All animal studies were approved by the Committee on the Ethics of Animal

Experiments of the Harbin Veterinary Research Institute (HVRI), Chinese Academy of Agricultural
Sciences (HVRI-IACUC-2020-016). SPF chickens were purchased from the Experimental Animal Centre of
HVRI and housed in negative pressure isolators with adequate food and light. All animal procedures
were performed according to international standards on animal welfare.

Cell culture and viruses. Chicken LMH cells (ATCC CRL-2117) and CEL cells (prepared using 14-day-
old SPF chicken embryos) were cultured at 37°C in a Dulbecco modified Eagle medium/nutrient mixture
Ham F-12 (DMEM/F12; Sigma-Aldrich, USA) supplemented with 10% fetal bovine serum (FBS) (Sigma-
Aldrich, USA), 100 IU/ml penicillin, and 100mg/ml streptomycin in a 5% CO2 atmosphere.

The highly pathogenic novel FAdV-4, HLJFAd15 (GenBank accession no. KU991797), was isolated as
previously described (21). rWT-EGFP and rHN20-EGFP reporter viruses were constructed by inserting an
enhanced green fluorescent protein (EGFP) expression cassette into rWT-FAdV4 and rHN20 backbones.
Other recombinant viruses were constructed in this study. All viruses were propagated in LMH cells and
stored at –80°C after isolation.

Construction of recombinant FAdV-4 fosmids. The HLJFAd15 fosmid infection clone was gener-
ated using a CopyControl fosmid library production kit (Epicentre, USA) according to the manufacturer’s
instructions. Recombinant FAdV-4 fosmids were generated by two-step Red/ET-mediated recombination
using a Counter Selection BAC modification kit (Gene Bridges, USA). To generate chimeric fosmids
replacing the hexon or fiber-2 genes, the hexon and fiber-2 genes of the nonpathogenic FAdV-4 strain
ON1 (GenBank accession no. GU188428) were synthesized and cloned into pCAGGS vectors before
recombination. In the first recombination step, the antibiotic selection cassette (rpsL-neo) was amplified
using PCR with specific primers with 50-bp homology arms (Table 1). The PCR products were electro-
transferred into DH10B electrocompetent cells containing the pRed/ET plasmid and HLJFAd15 fosmid to
replace the hexon or fiber-2 genes. In the second recombination step, the hexon and fiber-2 genes of
the ON1 strain were PCR amplified using the primers listed in Table 1 and electrotransferred into rpsL-
neo-positive electrocompetent cells. To mutate the hexon protein, 13 single point mutations in hexon/
HLJFAd15 and the I188R point mutation in hexon/ON1 were introduced by point mutation PCR in the
pCAGGS vector using the primers in Table 2. Using these plasmids as the templates and hexon-insert F
and hexon-insert R as primers, the mutated hexon gene was amplified using PCR and electrotransferred
into the rpsL-neo-positive electrocompetent cells generated in step 1 to replace rpsL-neo. All recombi-
nant fosmids were sequenced (Jilin Comate Bioscience Co., Ltd., Changchun, China) to confirm the cor-
rect sequence.

Rescue of recombinant viruses. Purified FAdV-4 fosmids were linearized by digestion with FseI
(Thermo Scientific, Lithuania) and recovered by ethanol precipitation to release viral DNA. Next, 2 mg of
DNA was transfected into LMH cells grown in 6-well plates using X-treme GENE HP DNA Reagent
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(Roche, Switzerland). When CPE visibly occurred (within 1 week), the culture was subjected to three
rounds of freeze-thaw. The supernatant was then harvested and propagated. The rescued wild-type vi-
rus was named rWT-FAdV4, and the gene replacement recombinant viruses were named rHN20 and
rFB2. The hexon mutation strains were named according to the locations of the relative amino acids. All
rescued virus genomes were extracted using the AxyPrep body fluid viral DNA/RNA miniprep kit
(Axygen, USA) according to the manufacturer’s instructions for PCR amplification and sequencing at Jilin
Comate Bioscience Co.

Viral titration. Viral titers were determined by PFU analysis. Each virus was diluted 10-fold with se-
rum-free DMEM/F12 medium and inoculated in LMH cells for 1 h. The medium was removed, and the
cells were washed and covered with DMEM-agarose containing 2% FBS. Six days later, the agarose cells
were fixed with 4% paraformaldehyde, stained with crystal violet, and rinsed with tap water. The plaques
were then counted, and the viral titers were calculated.

Virus growth curves. LMH cells were infected with each FAdV-4 virus at a multiplicity of infection
(MOI) of 0.01. The infected cells and supernatants were harvested at 12, 24, 48, 72, 96, and 120 h postin-
fection. Plaque assays were used to calculate virus titers.

Pathogenicity analysis of rescue virus. Three-week-old SPF chickens were used to analyze the
pathogenicity of each recombinant virus. Chickens were intramuscularly injected with 105 PFU of the
indicated viruses and monitored daily for 1 week. The dead and euthanized chickens were dissected,
and tissues were collected for viral load determination and histopathological examination.

Real-time PCR. The collected tissue samples or infected LMH cells were homogenized in phosphate
buffer solution (PBS), and total DNA was extracted using AxyPrep body fluid viral DNA/RNA miniprep
kits (Axygen, Jiangsu, China). FAdV-4 genome amplification was used as an indicator of viral DNA (50)
and the chicken ovotransferrin gene (OVO) was used as the reference (51). Real-time PCR amplification
was performed with Premix Ex Taq (probe qPCR; TaKaRa, Japan) and a QuantStudio 5 system (Applied
Biosystems, USA). The final concentration was calculated in copy numbers per 106 cells. All samples
were examined in triplicates.

Histopathological examination. The liver, spleen, and bursa tissues were collected from dead or
euthanized chickens and fixed with 10% formalin. The fixed tissues were embedded in paraffin and sec-
tioned for observation using light microscopy after hematoxylin-eosin staining.

Phylogenetic analysis and sequence alignment. Complete FAdV-4 hexon gene sequences were
downloaded from the GenBank database (https://www.ncbi.nlm.nih.gov/). GenBank accession numbers
are annotated in the phylogenetic trees. The phylogenetic trees were mapped using MEGA7 software
(52), and the sequences were aligned using the MegAlign program of DNASTAR software (DNASTAR,
Madison, WI).

Serum neutralization assays. Fresh SPF chicken serum was separated from whole blood and
passed through a 0.22-mm filter. A total of 10ml of rWT-EGFP and rHN20-EGFP reporter viruses were
coincubated with serum-free DMEM/F12 media or fresh SPF chicken serum in different volume ratios for
60min at 42°C. The viruses were then added to LMH cells seeded in 12-well culture plates. After incuba-
tion at 37°C for 60min, the cells were washed, and the medium was replaced with fresh medium con-
taining 2% FBS. The cells were then incubated for an additional 48 h. EGFP-positive cells were examined
using fluorescence microscopy. The relative ratio of fluorescence positive cells was detected using flow
cytometry and normalized to cell-free medium controls. Then, 10-ml portions of rWT-FAdV4, rHN20,
rI188R, and rR188I were pretreated with 90ml of SPF chicken serum or serum-free DMEM/F12 and used
to infect LMH cells. CPE was examined using microscopy, and the viral load was determined.

Evaluation of protection by rR188I. Thirty-two-week-old chickens were randomly and equally di-
vided into three groups. The experimental group was inoculated with 105 PFU rR188I, whereas the

TABLE 1 Primers used for construction of recombinant FAdV-4

Primera Sequence (59–39)b Purpose
fiber2-rpsL F TCCTATCCCTTTTTCCTATCAGGGTTACGTCTACTCCCCCAACGGGAACA

GGCCTGGTGATGATGGCGGGATCG
Fiber-2 replacement

fiber2-rpsL R GCAATCAACGTTCATGACTCTTTATTTGACACGCGGTGGGGAGGGCGCGCTC
AGAAGAACTCGTCAAGAAGGCG

Fiber-2 replacement

fiber2-insert F TCCTATCCCTTTTTCCTATCAGGGTTACGTCTACTCCCCCAACGGGAACAAT
GCTCCGAGCCCCTAAAAGAAGAC

Fiber-2 replacement

fiber2-insert R GCAATCAACGTTCATGACTCTTTATTTGACACGCGGTGGGGAGGGCGCGC
TTACGGGACGGAGGCCGCTGGAC

Fiber-2 replacement

hexon-rpsL F CACGGCTTACAACCCGCTGGCTCCCAAGGAGTCCATGTTTAACAACTGGT
GGCCTGGTGATGATGGCGGGATCG

Hexon replacement

hexon-rpsL R GTGTCGAACACGCCATAGAGCATGTACACGTAAGTGGGATCATCCATGGG
TCAGAAGAACTCGTCAAGAAGGCG

Hexon replacement

hexon-insert F CACGGCTTACAACCCGCTGGCTCCCAAGGAGTCCATGTTTAACAACTGGT
CGGAGACGGCACCCGGGCAGAACG

Hexon replacement

hexon-insert R GTGTCGAACACGCCATAGAGCATGTACACGTAAGTGGGATCATCCATGGG
GTCGAGCTCGAAGTTGATGACCAT

Hexon replacement

aF, forward primer; R, reverse primer.
bUnderlining indicates homology arms.
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challenge and healthy control groups were inoculated with an equal volume of DMEM/F12. After
2weeks, the experimental and challenge control chickens were challenged with a lethal FAdV4 dose
(104 PFU/bird). Healthy controls were inoculated with DMEM/F12. The dead and euthanized chickens at
5 days postchallenge were dissected for observation. Tissues were collected for viral load determination
and histopathological examination.

Statistical analysis. All data were analyzed with unpaired t tests using Prism (GraphPad Software,
Inc.). P, 0.05 was considered statistically significant.
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