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ABSTRACT
Obesity is a serious health issue in the world and is related to a higher risk of suffering
metabolic diseases. Understanding the molecular basis of obesity is critical to identify new
targets to treat obesity and obesity-associated metabolic diseases. N6-methyladenosine
(m6A) modification is the most common form of ribonucleic acid modification, which has
attracted increasing interest of researchers in recent years, as it is reported that m6A has
vital functions in diseases and everyday life activities. Recent studies showed that m6A
modification was decreased in obese adipose tissue, and appeared to play a regulatory
role in many obesity-associated biological processes, including adipogenesis, lipid metabo-
lism and insulin resistance. In this review, we discussed the emerging advances in m6A
modification in obesity to provide a novel therapeutic strategy for fighting against obesity.

INTRODUCTION
As a worldwide epidemic, obesity occurs due to a chronic long-
term imbalance between energy intake and expenditure, which
has been considered a capital driver in the pathophysiology of
obesity and other features relating to metabolism, including dia-
betes, cardiovascular diseases, insulin resistance and atheroscle-
rosis1,2. There are mainly two kinds of adipose tissue with
distinct functions in the body. White adipose tissue stores
excess energy in triglycerides, whereas brown adipose tissue
burns calories through thermogenesis3,4. The balance of these
processes is essential for keeping normal adiposity and regulat-
ing lipid metabolism. Therefore, comprehending the molecular
mechanisms behind the imbalance between energy intake and
expenditure could be helpful to provide a new therapeutic strat-
egy for combating obesity.
Ribonucleic acid (RNA) chemical modification is a crucial

post-transcriptional regulator. Like other RNA modifications,
the methylation of N6-adenosine (m6A) is the most common
intrinsic eukaryotic messenger RNA (mRNA) modification,
modulated by methyltransferase complex, RNA-binding pro-
teins and demethylases5,6. m6A has a close relationship with
nearly all essentials of mRNA metabolism, including mRNA
stability, subcellular localization, translation and alternative
splicing7–10. Expanding evidence has shown that the dysregula-
tion of m6A patterns could lead to abnormal gene expressions

and functions, cellular aberrant differentiation and imbalance of
homeostasis, even resulting in the occurrence of certain cancer,
inflammatory states and metabolic diseases11,12. Recent studies
also showed that m6A modification was decreased in obese adi-
pose tissue and appeared to play a vital role in many obesity-
associated biological processes. Here, we aim to summarize the
functional roles and mechanisms of m6A in obesity-associated
biological processes, including adipogenesis, lipid metabolism
and insulin resistance.

OVERVIEW OF M6A METHYLATION
Discovery and development of m6A methylation
As a common epigenetic modification of RNA molecules, m6A
was firstly discovered in the early 1970s in mRNAs from
eukaryotes13, and the primary function of m6A was associated
with mRNA instability14. The following significant break-
through was the cloning of methyltransferase-like protein 3
(METTL3) and clarifying its function of synthesizing nearly all
of the m6A in the mRNA transcriptome in 199715. Next, sci-
entists reported that the depletion of METTL3 in yeast and
arabidopsis led to specific developmental arrest in sporulation
and seed development in the 2000s, showing that m6A was a
regulated modification and exerted some functions in specific
developmental processes16,17. Afterward, alpha-ketoglutarate-
dependent dioxygenase fat mass and obesity-associated protein
(FTO) was found to act as m6A demethylase in 2011, showed
that RNA modifications could be reversed, and attracted
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significant interest in the dynamics of m6A modification and
its regulatory functions in biology18,19. m6A antibody was then
developed and utilized in immunoprecipitation-based high-
throughput sequencing in 2012, and enabled the discovery of
m6A sites through the whole transcriptome20,21. That expedited
the investigation of the functions of m6A along with the fast
development of other m6A detection techniques.

Molecular mechanisms of m6A methylation
m6A modification occurs primarily at the common motif of
RRm6ACH ([A/G/U] [A/G] m6AC [A/C/U]), and initially was
considered to exist only in mRNA. However, studies had
recently suggested that other types of RNA could also arise
from m6A modifications, such as ribosomal RNAs (rRNAs),
small nuclear RNAs, microRNAs, long non-coding RNAs and
circular RNAs15. There are three kinds of proteins involved in
m6A regulation, called m6A methyltransferase, m6A demethy-
lase and m6A-binding protein, respectively, that decide the fate
of RNAs (Figure 1).

m6A methyltransferase
m6A methyltransferase, also called “writers”, possesses the
capacity to add amounts of RNA with m6A modification.
Researchers have found several methyltransferases and com-
plexes to catalyze m6A modification. METTL3-METTL14-

WTAP (Wilms tumor 1-associating protein) complex is discov-
ered as a writer earliest and is involved in the large majority of
m6A sites from RNA15,22,23. rRNA N6-adenosine-
methyltransferase ZCCHC4 has a role in m6A modification in
the 28S subunit of rRNA24 METTL5-TRMT112 (Homo sapiens
tRNA methyltransferase 11-2 homolog) complex is found to
catalyze m6A in the 18S subunit rRNA25. METTL16 is discov-
ered to catalyze the m6A in the U6 small nuclear RNA. It is
associated with splicing and the formation of m6A in U6-like
sequences in the methionine adenosyl-transferase 2A mRNA
that encodes the enzyme responsible for S-adenosylmethionine
biosynthesis26. Additionally, METTL16 also catalyzes the m6A
in a small part of other mRNAs and non-coding RNAs27.
There are also some other kinds of proteins that have been
confirmed as constituents of the methyltransferase complexes,
such as KIAA142928, putative RNA-binding protein 15
(RBM15; and its paralog RBM15B)29 and ZC3H1330,31.

m6A demethylase
Two Fe2+ and a-ketoglutarate-dependent m6A demethylases,
also known as “erasers”, can remove m6A methylated groups
from RNA. The standard erasers include FTO, also known as
AlkB homolog 918, and AlkB homolog 532. Another m6A
demethylase, AlkB homolog 333, has been recently identified
that preferentially acts upon m6A in tRNA, but not in mRNA
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Figure 1 | Molecular mechanisms and functions of N6-methyladenosine (m6A) methylation. The m6A methylation is catalyzed by the “writer”
complex mainly including methyltransferase-like protein (METTL) 3, METTL14, Wilms tumor 1-associating protein (WTAP), vir like m6A
methyltransferase associated (VIRMA), RBM15 (ribonucleic acid [RNA]-binding motif protein 15), and zinc finger CCCH-type containing 13 (ZC3H13).
The m6A modification is removed by “eraser” mainly including fat mass and obesity-associated protein (FTO) or AlkB homolog 5 (ALKBH5). “Reader”
proteins, including YTH domain-containing RNA-binding protein family (YTHDF) 1, YTHDF2, YTHDF3, YTHDC1, YTHDC2, human insulin-like growth
factor 2 (IGF2) messenger RNA (mRNA) binding protein family (IGF2BP) 1, IGF2BP2 and IGF2BP3, recognize m6A and determine target RNA fate.
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or rRNA. Additionally, the AlkB homolog 10B is an m6A
demethylase of mRNA in arabidopsis, which regulates mRNA
stability and influences the conversion of arabidopsis from veg-
etative growth to reproductive growth34.

m6A-binding protein
m6A-binding proteins, also known as “readers”, could combine
to the m6A modification sites in RNA and trigger diverse
downstream effects35. The readers found earliest are YTH
domain family proteins, consisting of YTH domain family pro-
tein 1–3 (YTHDF1-3; DF family) and YTH domain containing
protein 1–2 (YTHDC1-2; DC family)8,29,36. The DF family is
mainly located in the cytoplasm, and YTHDF1 and YTHDF3
could improve translation efficiency of mRNA with m6A modi-
fication, whereas YTHDF2 relates to shortening the half-life of
mRNA with m6A modification9,37. The DC family chiefly plays
roles in the nucleus. YTHDC1 combines with the m6A sites
and regulates mRNA expression levels through affecting alter-
native splicing36,38. YTHDC1 also helps the export of m6A
methylated transcripts39. YTHDC2 protein can be found both
inside and outside the nucleus. It can selectively bind to the
m6A sites of non-coding RNAs29, but what kinds of biological
functions will be activated by the occupancy is still unknown.
Several other readers, such as eukaryotic initiation factor 3,
heterogeneous nuclear ribonucleoprotein C (HNRNP C) and
HNRNP A2/B1, have been found. It was suggested that the
HNRNP A2/B1 protein might be responsible for the regulation
of the transcription of precursor microRNAs40, whereas the
HNRNP C protein might play roles in the local secondary
structure of mRNAs and long non-coding RNAs41. Eukaryotic
initiation factor 3 was found to bind to m6A sites in the
5’UTRs of mRNAs and promoted their translation42. One type
of RNA-binding protein, insulin-like growth factor 2 mRNA-
binding protein (IGF2BP, including IGF2BP1, IGF2BP2 and
IGF2BP3), was recently identified as another kind of reader
that could also distinguish m6A modifications. IGF2BPs pro-
moted the stability and storage of their target RNAs in an
m6A-dependent manner43.

ROLE OF M6A MODIFICATION IN ADIPOGENESIS
Adipogenesis is the program of cells from the adipose tissue pro-
liferating, differentiating and turning into cells that could assimi-
late lipids44. Adipogenesis consists of two vital stages: (ii)
commitment; and (ii) terminal differentiation45. In the commit-
ment stage, the pluripotent stem cells locate among the vascular
stroma of adipose tissue, responding to signals to determine into
preadipocytes46. Terminal differentiation is a process mediated
by a series of multiple transcription factors and epigenomic regu-
lators. CCAAT/enhancer-binding protein gene family and perox-
isome proliferator-activated receptor-c (PPARG) are generally
considered as essential transcription regulators47,48, and micro-
RNA and long non-coding RNA are two kinds of critical epige-
nomic regulators49,50 of adipogenesis. Wang et al.51 provided the
evidence that mRNA m6A methylation regulates adipogenesis in

porcine adipocytes, showing that m6A contributes essentially to
adipogenesis. m6A could change the expression level of mRNAs
in a mechanistic manner that encodes multiple regulators, includ-
ing transcription actors, and act as vital functional factors in adi-
pogenesis. In this part, we highlight the multiple roles of m6A in
adipogenesis based on different m6A regulators, respectively (Fig-
ure 2 and Table 1).

FTO
Although initial studies suggested that FTO influences obesity
susceptibility through altering the expression of the adjacent
genes, such as IRX3 or IRX552,53, the discovery of FTO as the
first genome-wide association studies-identified obesity gene in
200754,55, impelled scientists to focus on the roles of FTO in
obesity. Afterward, FTO was found to act on m6A demethylase
in 201118,19, and promoted m6A modification to become one
of the great topics of interest in obesity research.
FTO plays critical roles in adipogenesis by mediating m6A

demethylation and subsequently affecting the RNA metabolism
of regulators in adipogenesis. Zhao et al.7 reported FTO expres-
sion was negatively connected to the m6A level during adipoge-
nesis. FTO depletion interfered with adipogenesis of mouse
3T3-L1 preadipocytes by increasing the m6A levels surrounding
splice sites of runt-related transcription factor 1 partner tran-
scriptional co-repressor 1 (RUNX1T1), one of the regulators in
adipogenesis, thereby controlling the exonic splicing of
RUNX1T1 and inhibiting the expression of exon 6-skipped iso-
form RUNX1T1-S7. Another study also showed that FTO
enhanced the expression of the RUNX1T1-S in a
demethylation-dependent manner, then promoted mitotic clo-
nal expansion and adipogenesis of mice56. Zhang et al.57 found
that FTO knockdown resulted in upregulation of m6A, thereby
preventing the differentiation of mouse 3T3-L1 preadipocytes,
whereas ectopic overexpression of FTO rescued these changes.
However, over-expression of R96Q, the FTO missense mutant
lacking demethylase activity, did not interfere with m6A level
and differentiation of 3T3-L1 preadipocyte. Mechanistically,
FTO exerts its effect upstream of PPARG during adipogene-
sis57. in addition, Shen et al.58 found that overexpression of
FTO demethylated the mRNA of PPARG, leading to the
increase in the expression of PPARG, thus favoring the bone
marrow stem cells (BMSCs) to differentiate to adipocytes in
human and mice. Wu et al.59 reported FTO depletion highly
upregulated the m6A levels of cyclin A2 and cyclin-dependent
kinase 2, crucial cell cycle regulators, subsequently induced its
decreased protein expression, finally leading to the delayed
entry of MDI (3-isobutyl-1-methylxanthine, dexamethasone
and insulin)-induced 3T3-L1 preadipocytes into G2 phase, thus
extending cell cycle progress and restraining adipogenesis.
Wang et al.60 found ectopic suppression of FTO also downreg-
ulated the expression levels of autophagy-related 5 and
autophagy-related 7, the crucial autophagy regulators, in an
m6A-dependent fashion, resulting in attenuation of autophago-
some formation, thus preventing autophagy and adipogenesis
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in mice. In addition, Wu et al.61 showed knockdown of FTO
promoted the m6A levels of Janus kinase 2 and facilitated
mRNA degradation, and subsequently interfered with signal
transducer and activator of transcription 3 phosphorylation, ini-
tiating attenuated transcription of CCAAT/enhancer-binding
protein-b, a regulator of adipocyte differentiation, and inhibited
adipogenesis in porcine and mouse preadipocytes.
Some regulators can regulate FTO mediating adipogenesis.

Wu et al.62 showed that epigallocatechin gallate (EGCG), the
maximum catechin in green tea, was essential in anti-obesity
and anti-adipogenesis by reducing the expression of FTO and
increasing overall levels of RNA m6A methylation. Another
study by Song et al.63 showed that zinc finger protein 217
could activate the transcription of m6A demethylase FTO and
reduce the m6A level, and thus promote adipogenic differentia-
tion of mouse 3T3L1 cells. Additionally, Shen et al.58 found
that FTO could be regulated by growth differentiation fac-
tor 11, then reduced the m6A level of PPARG and promoted
mouse BMSCs to differentiate to adipocytes. Li et al. found
miR-149-3p mimic decreased the adipogenic differentiation
potential of mouse BMSCs by targeting FTO64. Furthermore,
Wang et al.65 reported that nicotinamide adenine dinucleotide
phosphate directly bound FTO, independently increased FTO
activity, and promoted RNA m6A demethylation and adipoge-
nesis in mice.

METTL3
METTL3, the most important m6A methylase, plays a key role
in adipogenesis by mediating m6A methylation of some

regulators of adipogenesis. Wang et al.51 provided the first evi-
dence that overexpression of METTL3 inhibited adipogenesis
and increased the mRNA m6A level in porcine adipocytes.
Then, Kobayashi et al.66 found that the m6A RNA methyl-
transferase complex of WTAP, METTL3 and METTL14 posi-
tively regulated adipogenesis by accelerating cell cycle transition
in mitotic clonal expansion in mice. Next, Yao et al.67 found
that knockdown of METTL3 in porcine BMSCs decreased
mRNA m6A levels of Janus kinase 1. It increased its mRNA
stability, and subsequently led to the activation of the Janus
kinase 1/activator of transcription 5/CCAAT/enhancer-binding
protein-b pathway, thus promoting BMSCs adipogenic differen-
tiation. Furthermore, Liu et al.68 showed that METTL3 upregu-
lated m6A levels of cyclin D1 mRNA and consequently
reduced the expression of cyclin D1, accordingly resulting in a
block of cell cycle progression and inhibition of adipogenesis in
mouse 3T3-L1 preadipocytes. In addition, Liu et al.68 found
that METTL3-mediated anti-adipogenesis can be regulated by
zinc finger protein 217.
It is well known that m6A is a common epigenetic modifica-

tion of mRNA molecules, and METTL3 is one of the most
important enzymes. Therefore, METTL3 might induce m6A
modification on both positive and negative regulators involved
in adipogenesis. Also, m6A readers mediated various compli-
cated regulations on mRNA fate, including increasing or
decreasing the expression of m6A-modified regulators involved
in adipogenesis. These might be the essential reasons for the
discrepancy of the adverse role of METTL3 in adipogenesis in
differential studies.
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Figure 2 | N6-methyladenosine (m6A) methylation regulates adipogenesis by various mechanisms. Writers, erasers and readers can modulate m6A
modification, subsequently affecting the decay and translation of adipogenesis-associated regulators, finally regulating adipogenesis. In addition,
some regulator and natural compounds, such as nicotinamide adenine dinucleotide phosphate (NADP), zinc finger protein 217 (ZFP217), growth
differentiation factor 11 (GDF11) and epigallocatechin gallate (EGCG), can also modulate m6A modification and affect adipogenesis.
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YTHDF1 and YTHDF2
m6A-binding proteins, such as YTHDF1 and YTHDF2, were
also involved in adipogenesis by combining to the m6A modifi-
cation sites in RNA and triggering RNA decay or translation.
Jiang et al.69 found that m6A modification increased mitochon-
drial carrier 2 protein expression and promoted adipogenesis in
intramuscular preadipocytes in pigs. Mechanistically, YTHDF1
could recognize the m6A of mitochondrial carrier 2 mRNA
and promote its translation. YTHDF2 mediated m6A mRNA
decay and functioned as a critical regulator in adipogenesis.
Several studies showed that YTHDF2 could recognize the
m6A-modified mRNAs and caused the decay of these mRNAs,
then affected the activity and expression of some key regulators
involved in adipogenic differentiation61,63,67,70. Some studies
showed that YTHDF2 mediated m6A mRNAs decay and regu-
lated expression involved in cell cycle progression59,62 and mito-
tic clonal expansion68, thereby playing roles in adipogenesis. In
addition, Wang et al.60 found that YTHDF2 can also be
involved in adipogenesis by regulating the expression of
autophagy-associated regulators in an m6A-dependent manner.

ROLE OF M6A MODIFICATION IN LIPID METABOLISM
To date, several studies showed that m6A modification also
affected lipid metabolism. Yadav and Rajasekharan71 first dis-
covered that m6A modification was related to the regulation of
lipid metabolism in yeast cells. They showed that Ime4, yeast
m6A methyltransferase, epi-transcriptionally regulates triacyl-
glycerol metabolism through the long-chain fatty acyl-CoA syn-
thetase71. Another study also carried out by Yadav et al.72

found that IME4 gene loss caused mitochondrial malfunction.
Subsequently, triacylglycerol accumulated as lipid droplets72.
Additionally, Yadav et al. reported that IME4 gene played a
role in the peroxisomal biogenesis, and IME4 gene loss also
resulted in the peroxisomal malfunction of fatty acid oxida-
tion73.
Following this, scientists carried out several studies to explore

the function of m6A modification in the lipid metabolism of
mammalian cells. Luo et al.74 carried out m6A-modified RNA
immunoprecipitation sequencing to clarify differences of m6A
methylomes in normal mouse liver compared with fatty liver
triggered by a high-fat diet (HFD). They found the hyperme-
thylated coding genes on feeding a HFD were primarily
enriched in processes associated with lipid metabolism74. The
results suggested that m6A methylation might act as a critical
regulator of lipid metabolism. Wang et al.75 found that m6A
positively mediated the expression of patatin-like phospholipase
domain containing 2, one kind of protein regulating lipid meta-
bolism, and inhibited lipid accumulation in pigs75. Kang et al.76

reported FTO decreased m6A levels, and thus promoted triglyc-
eride (TG) deposition in HepG2 cells, showing that FTO medi-
ating m6A decrease promoted fat metabolism. Xie et al.77

found hepatocyte-specific knockdown of METTL3 in mice fed
a HFD could decrease fatty acid synthesis. Mechanistically,
knockdown of METTL3 depletion reduced the m6A methylated

and total mRNA level of fatty acid synthase, afterward it
restrained fatty acid metabolism77. Likewise, Zhong et al.78

reported that the accumulation of lipid in HepG2 cells was
inhibited through knockdown of METTL3 or YTHDF2. They
consequently supposed that m6A RNA methylation mediated
the interaction between the circadian clock and lipid
metabolism78.
Other studies showed that some natural compounds and

stress might regulate lipid metabolism by affecting m6A modifi-
cation. Lu et al.79 reported that curcumin in the diet impacted
m6A regulators expression and upregulated the abundance of
m6A in piglet livers, thus weakening hepatic lipid metabolism
disorder induced by lipopolysaccharide. Similarly, Wu et al.62

showed that EGCG inhibited lipid accumulation of 3T3-L1 pre-
adipocytes by targeting FTO-dependent demethylation of m6A.
Another study by Heng et al. showed that early fat deposition
was partially regulated by maternal heat stress through m6A
RNA methylation in neonatal piglets80.

THE ROLE OF M6A IN INSULIN SYNTHESIS, SECRETION
AND SENSITIVITY
Obesity is related to dysfunction of insulin secretion and sensi-
tivity, and a higher risk of type 2 diabetes mellitus in serious
obese rodents and humans. Recent studies showed that m6A
played a role in regulating insulin secretion and sensitivity.
Men et al.81 found acute depletion of METTL14 in b-cells of
adult mice led to glucose intolerance due to a reduction in
insulin secretion in b-cells. Mechanistically, they reported that
acute METTL14 deletion in b-cells caused glucose intolerance
by activating the inositol-requiring enzyme 1a/spliced X-box
protein binding 1 pathway. Xie et al.77 reported that m6A
methylated RNA and METTL3 expression levels were higher in
mice fed with HFD for 16 weeks, compared with the standard
chow diet. Hepatocyte-specific knockdown of METTL3 in mice
fed with HFD enforced sensitivity of insulin. It inhibited the
synthesis of fatty acid, and exploration of the mechanism
showed that METTL3 knockdown reduced the m6A methy-
lated and total mRNA level of fatty acid synthase, and accord-
ingly restrained fatty acid metabolism77. Also, De Jesus et al.82

showed that m6A mRNA methylation played roles in regulat-
ing human b-cell biology, including cell cycle progress, insulin
secretion, and the insulin/insulin-like growth factor-1–protein
kinase B–pancreatic and duodenal homeobox 1 pathway in
humans and mice. These studies showed that m6A was essen-
tial for insulin secretion and sensitivity, which might emerge as
the therapeutic target of obesity and diabetes.

CLINICAL RELEVANCE OF M6A TARGETED STRATEGY
IN OBESITY
Along with studies clarifying functions of m6A in obesity, it
becomes necessary to test if m6A could be a possible therapeu-
tic target of obesity and obesity-associated metabolic diseases.
However, as yet, there are no optional inhibitors of m6A regu-
lators for clinical practice.
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Since the discovery of FTO as an m6A demethylase in 2011,
it became the highlight of researching m6A targeted therapy18.
In 2012, the natural agent, rhein, was proven to inhibit FTO-
dependent m6A demethylation by intervening with FTO bind-
ing to the m6A substrate in cells directly83. In 2014, a selective
FTO inhibitor was developed, which could inhibit the m6A
demethylase activity of FTO selectively and upregulate the m6A
levels in cells84. Next, several FTO inhibitors, including meclofe-
namic acid, MO-I-500, compound 12 and R-2-
hydroxyglutarate, were reported to inhibit the m6A demethylase
activity of FTO32,85–87, which have the potential for cancer
treatment. In a recent study, entacapone, an inhibitor of
catechol-O-methyltransferase for treatment of Parkinson’s dis-
ease, was identified by scientists as a chemical inhibitor of
FTO, which induced effects on metabolic homeostasis by
inhibiting FTO activity selectively88. Wu et al. found EGCG,
the maximum catechin in green tea, could target FTO and
inhibit adipogenesis62. These two studies showed that enta-
capone and EGCG seemed to have the potential to treat obesity
and other metabolic diseases.
In another study, miR-149-3p could restrain the adipogenic

differentiation potential of mouse BMSCs by targeting FTO,
which showed that microRNA might also have the therapeutic
potential for obesity64. Furthermore, novel anti-metabolic agents
aimed at other m6A regulators might be optimal treatment as
well. For instance, METTL3 activators are possibly effective in
treating obesity through inhibiting BMSCs adipogenic differen-
tiation67, whereas YTHDF1 inhibitors are likely to inhibit adi-
pogenesis by intervening in m6A-YTHDF1-regulated mRNA
translation in intramuscular preadipocytes75.

CONCLUSIONS
New evidence showed that m6A was significant in adipogene-
sis, lipid metabolism and insulin sensitivity. There have been
some achievements in developing the potential targets of m6A
for treatment. Nevertheless, we have uncovered a small part of
the roles of m6A in regulating obesity. Thus, it is necessary to
clarify and characterize the m6A-dependent mechanisms closely
related to obesity-associated features, such as adipogenesis, lipid
metabolism, metabolic inflammation and insulin sensitivity,
which will identify new therapeutic targets contributing to
exploring new treatment for obesity and associated metabolic
diseases.
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