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ABSTRACT We report an improved, nearly closed, high-quality draft genome recon-
struction of the Candida albicans CHN1 strain (ATCC MYA-4779), a human isolate,
using Illumina and Nanopore sequencing. Covering six complete and two partial nu-
clear chromosomes along with a partial mitochondrial genome, this assembly is
14,787,852 bases in size, with 5,935 genes.

The Candida albicans CHN1 strain is a human isolate that has been shown to stably
colonize cefoperazone-pretreated mice (1–3). DNA sequencing of this isolate was

performed using the long-read Nanopore MinION and high-accuracy Illumina MiSeq
platforms, with a hybrid assembly being used for genome reconstruction. Yeast cells
were grown in Sabouraud dextrose broth (Difco, Detroit, MI) at 37°C. The Qiagen
DNeasy blood and tissue kit was used to isolate DNA for Illumina sequencing. Library
preparation using the PrepX DNA library kit (number 640101; TaKaRa) was followed by
bead size selection for inserts of 220 bp. Sequencing on the MiSeq platform was per-
formed with 500 cycles at the University of Michigan DNA Sequencing Core. A total of
6,941,089 raw read pairs (2 � 251 bp) were subjected to adapter trimming using
TrimGalore v0.5.0 (https://github.com/FelixKrueger/TrimGalore) and Cutadapt v1.18 (4)
with a minimum Phred score of 30. The resulting 6,820,861 paired-end reads were
then merged together using FLASH v1.2.11 (5) with a minimum overlap of 25 nucleo-
tides, leading to 6,634,784 single-end reads. High-molecular-weight DNA for Nanopore
sequencing was isolated using the Zymolyase-based extraction protocol recom-
mended by Oxford Nanopore Technologies (ONT) for yeast DNA, with modifications
from the Qiagen DNeasy blood and tissue kit. Library preparation was performed using
the rapid sequencing kit SQK-RAD004 from ONT, and no size selection or shearing was
applied. Nanopore sequencing was performed locally on the MinION platform. A total
of 485,750 raw reads, with an estimated N50 of 23,280 bases, were obtained after base
calling with Guppy v3.2.9. Reads were trimmed and filtered to remove adapter contam-
ination using SNIKT v0.1.1 (https://github.com/piyuranjan/SNIKT) and seqtk v1.3
(https://github.com/lh3/seqtk). NanoPlot v1.28.2 (6) was used for quality checking
(380,747 single-end reads, with a read N50 of 20,290 bases).

De novo assembly of the Nanopore reads was performed using Flye v2.7 (7) with
three iterations of error correction. The Illumina high-accuracy short reads were used to
perform another independent error correction (polishing) of the contigs using BWA
v0.7.17 (8) and Pilon v1.23 (9). The resulting assembly contained 23 contigs, with a larg-
est contig length of 3,195,262 bases, a total throughput of 14,787,852 bases, an assembly
N50 value of 1,642,426 bases, and a GC content of 33.62%, as assessed by QUAST v5.0.2
(10). BUSCO v4.0.6 (11) was used with the saccharomycetes_odb10 data set to estimate
the genome completeness of the assembly as 98.1% (of 2,137 benchmarking universal
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single-copy ortholog [BUSCO] groups) with 35 missing core single-copy genes (CSCGs)
from this lineage at the class level. As a comparison, C. albicans strain SC5314 (NCBI
assembly number ASM18296v3 and RefSeq accession number GCF_000182965.3) has a
completeness of 98.8% with 22 missing CSCGs, suggesting that some of these genes
may no longer constitute the core C. albicans genome. The assembly contigs were then
aligned with the strain SC5314 genome using MUMmer v4.0.0beta2 (12) and analyzed
using Mauve v20150226 (13) for estimation of chromosomal completeness, organization,
and synteny. Chromosomes 1 to 6 were recovered in full in this assembly. Chromosomes
7 and R were recovered in two and three long contigs, respectively. The mitochondrial
genome was recovered in three contigs. Several small fragments that overlapped
genomic regions in the SC5314 and CHN1 synteny comparisons were also retrieved. This
genome is known to be diploid (14), and overlaps may represent sections of chromo-
somes with alternate alleles.

Data availability. This whole-genome shotgun project has been deposited in
DDBJ/ENA/GenBank under the accession number JAFFGX000000000. The version
described in this paper is version JAFFGX010000000. The C. albicans CHN1 GenBank
Assembly accession number is GCA_017309835.1. The raw reads are available under
accession numbers SRX9854709 (Illumina) and SRX9854710 (Nanopore) within
BioProject PRJNA692229.
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