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Abstract Neuronal activity correlations are key to understanding how populations of neurons

collectively encode information. While two-photon calcium imaging has created a unique

opportunity to record the activity of large populations of neurons, existing methods for inferring

correlations from these data face several challenges. First, the observations of spiking activity

produced by two-photon imaging are temporally blurred and noisy. Secondly, even if the spiking

data were perfectly recovered via deconvolution, inferring network-level features from binary

spiking data is a challenging task due to the non-linear relation of neuronal spiking to endogenous

and exogenous inputs. In this work, we propose a methodology to explicitly model and directly

estimate signal and noise correlations from two-photon fluorescence observations, without

requiring intermediate spike deconvolution. We provide theoretical guarantees on the performance

of the proposed estimator and demonstrate its utility through applications to simulated and

experimentally recorded data from the mouse auditory cortex.

Introduction
Neuronal activity correlations are essential in understanding how populations of neurons encode

information. Correlations provide insights into the functional architecture and computations carried

out by neuronal networks (Abbott and Dayan, 1999; Averbeck et al., 2006; Cohen and Kohn,

2011; Hansen et al., 2012; Kohn et al., 2016; Kohn and Smith, 2005; Lyamzin et al., 2015;

Montijn et al., 2014; Smith and Sommer, 2013; Sompolinsky et al., 2001; Yatsenko et al., 2015).

Neuronal activity correlations are often categorized in two groups: signal correlations and noise cor-

relations (Cohen and Kohn, 2011; Cohen and Maunsell, 2009; Gawne and Richmond, 1993;

Josić et al., 2009; Lyamzin et al., 2015; Vinci et al., 2016). Given two neurons, signal correlation

quantifies the similarity of neural responses that are time-locked to a repeated stimulus across trials,

whereas noise correlation quantifies the stimulus-independent trial-to-trial variability shared by neu-

ral responses that are believed to arise from common latent inputs.

Two-photon calcium imaging has become increasingly popular in recent years to record in vivo

neural activity simultaneously from hundreds of neurons (Ahrens et al., 2013; Romano et al., 2017;

Stosiek et al., 2003; Svoboda and Yasuda, 2006). This technology takes advantage of intracellular

calcium flux mostly arising from spiking activity and captures calcium signaling in neurons in living

animals using fluorescence microscopy. The observed fluorescence traces of calcium concentrations,

however, are indirectly related to neuronal spiking activity. Extracting spiking activity from fluores-

cence traces is a challenging signal deconvolution problem and has been the focus of active research
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(Deneux et al., 2016; Friedrich et al., 2017; Grewe et al., 2010; Jewell et al., 2020; Jewell and

Witten, 2018; Kazemipour et al., 2018; Pachitariu et al., 2018; Pnevmatikakis et al., 2016;

Stringer and Pachitariu, 2019; Theis et al., 2016; Vogelstein et al., 2009; Vogelstein et al.,

2010).

The most commonly used approach to infer signal and noise correlations from two-photon data is

to directly apply the classical definitions of correlations for firing rates (Lyamzin et al., 2015), to fluo-

rescence traces (Fallani et al., 2015; Francis et al., 2018; Rothschild et al., 2010; Winkowski and

Kanold, 2013). However, it is well known that fluorescence observations are noisy and blurred surro-

gates of spiking activity, because of dependence on observation noise, calcium dynamics and the

temporal properties of calcium indicators. Due to temporal blurring, the resulting signal and noise

correlation estimates are highly biased. An alternative approach is to carry out the inference in a

two-stage fashion: first, infer spikes using a deconvolution technique, and then compute firing rates

and evaluate the correlations (Kerlin et al., 2019; Najafi et al., 2020; Ramesh et al., 2018;

Soudry et al., 2015; Yatsenko et al., 2015). These two-stage estimates are highly sensitive to the

accuracy of spike deconvolution, and require high temporal resolution and signal-to-noise ratios

(Lütcke et al., 2013; Pachitariu et al., 2018). Furthermore, these deconvolution techniques are

biased toward obtaining accurate first-order statistics (i.e. spike timings) via spatiotemporal priors,

which may be detrimental to recovering second-order statistics (i.e. correlations). Finally, both

approaches also undermine the non-linear dynamics of spiking activity as governed by stimuli, past

activity and other latent processes (Truccolo et al., 2005). There are a few existing studies that aim

at improving estimation of neuronal correlations, but they either do not consider signal correlations

(Rupasinghe and Babadi, 2020; Yatsenko et al., 2015), or aim at estimating surrogates of correla-

tions from spikes such as the connectivity/coupling matrix (Aitchison et al., 2017;

Mishchenko et al., 2011; Soudry et al., 2015; Keeley et al., 2020).

Here, we propose a methodology to directly estimate both signal and noise correlations from

two-photon imaging observations, without requiring an intermediate step of spike deconvolution.

We pose the problem under the commonly used experimental paradigm in which neuronal activity is

recorded during trials of a repeated stimulus. We avoid the need to perform spike deconvolution by

integrating techniques from point processes and state-space modeling that explicitly relate the sig-

nal and noise correlations to the observed fluorescence traces in a multi-tier model. Thus, we cast

signal and noise correlations within a parameter estimation setting. To solve the resulting estimation

problem in an efficient fashion, we develop a solution method based on variational inference

(Jordan et al., 1999; Blei et al., 2017), by combining techniques from Pólya-Gamma augmentation

(Polson et al., 2013) and compressible state-space estimation (Rauch et al., 1965;

Kazemipour et al., 2018; Ba et al., 2014). We also provide theoretical guarantees on the bias and

variance performance of the resulting estimator.

We demonstrate the utility of our proposed estimation framework through application to simu-

lated and real data from the mouse auditory cortex during presentations of tones and acoustic noise.

In application to repeated trials under spontaneous and stimulus-driven conditions within the same

experiment, our method reliably provides noise correlation structures that are invariant across the

two conditions. In addition, our joint analysis of signal and noise correlations corroborates existing

hypotheses regarding the distinction between their structures (Keeley et al., 2020;

Rumyantsev et al., 2020; Bartolo et al., 2020). Moreover, while application of our proposed

method to spatial analysis of signal and noise correlations in the mouse auditory cortex is consistent

with existing work (Winkowski and Kanold, 2013), it reveals novel and distinct spatial trends in the

correlation structure of layers 2/3 and 4. In summary, our method improves on existing work by: (1)

explicitly modeling the fluorescence observation process and the non-linearities involved in spiking

activity, as governed by both the stimulus and latent processes, through a multi-tier Bayesian for-

ward model, (2) joint estimation of signal and noise correlations directly from two-photon fluores-

cence observations through an efficient iterative procedure, without requiring intermediate spike

deconvolution, (3) providing theoretical guarantees on the performance of the proposed estimator,

and (4) gaining access to closed-form posterior approximations, with low-complexity and iterative

update rules and minimal dependence on training data. Our proposed method can thus be used as

a robust and scalable alternative to existing approaches for extracting signal and noise correlations

from two-photon imaging data.
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Results
In this section, we first demonstrate the utility of our proposed estimation framework through simu-

lation studies as well as applications on experimentally recorded data from the mouse auditory cor-

tex. Then, we present theoretical performance bounds on the proposed estimator. Before

presenting the results, we will give an overview of the proposed signal and noise correlation infer-

ence framework, and outline our contributions and their relationship to existing work. For the ease

of reproducibility, we have archived a MATLAB implementation of our proposed method in GitHub

(Rupasinghe, 2020) and have deposited the data used in this work in the Digital Repository at the

University of Maryland (Rupasinghe et al., 2021).

Signal and noise correlations
We consider a canonical experimental setting in which the same external stimulus, denoted by st, is

repeatedly presented across L independent trials and the spiking activity of a population of N neu-

rons are indirectly measured using two-photon calcium fluorescence imaging. Figure 1 (forward

arrow) shows the generative model that is used to quantify this procedure. The fluorescence obser-

vation in the lth trial from the jth neuron at time frame t, denoted by y
ðjÞ
t;l , is a noisy surrogate of the

intracellular calcium concentrations. The calcium concentrations in turn are temporally blurred surro-

gates of the underlying spiking activity n
ðjÞ
t;l , as shown in Figure 1.

In modeling the spiking activity, we consider two main contributions: (1) the common known stim-

ulus st affects the activity of the jth neuron via an unknown kernel dj, akin to the receptive field; (2)

the trial-to-trial variability and other intrinsic/extrinsic neural covariates that are not time-locked to

the stimulus st are captured by a trial-dependent latent process x
ðjÞ
t;l . Then, we use a Generalized Lin-

ear Model to link these underlying neural covariates to spiking activity (Truccolo et al., 2005). More

specifically, we model spiking activity as a Bernoulli process:

neuron 

latent Signal and Noise Correlations

...

...

×

...

...

+

latent
observation noise

calcium 
decay

latent noise
covariates

latent
kernel

latent spikes

observed stimulus

observed fluorescence
activity

k

n

m

...

...

Generative model

Inverse problem
(our contribution)

Figure 1. The proposed generative model and inverse problem. Observed (green) and latent (orange) variables

pertinent to the jth neuron are indicated, according to the proposed model for estimating the signal (blue) and

noise (red) correlations from two-photon calcium fluorescence observations. Calcium fluorescence traces y
ðjÞ
t; l

� �
of

L trials are observed, in which the repeated external stimulus stð Þ is known. The underlying spiking activity n
ðjÞ
t; l

� �
,

trial-to-trial variability and other intrinsic/extrinsic neural covariates that are not time-locked with the external

stimulus x
ðjÞ
t; l

� �
, and the stimulus kernel dj

� �
are latent. Our main contribution is to solve the inverse problem:

recovering the underlying latent signal Sð Þ and noise Nð Þ correlations directly from the fluorescence observations,

without requiring intermediate spike deconvolution.
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n
ðjÞ
t;l ~Bernoulli f x

ðjÞ
t;l ;dj

>st
� �� �

;

where fð�Þ is a mapping function, which could in general be non-linear.

The signal correlations aim to measure the correlations in the temporal response that are time-

locked to the repeated stimulus, st. On the other hand, noise correlations in our setting quantify con-

nectivity arising from covariates that are unrelated to the stimulus, including the trial-to-trial variabil-

ity (Keeley et al., 2020). Based on the foregoing model, we propose to formulate the signal

ðSsÞi;j
� �

and noise ðSxÞi;j
� �

covariance between the ith neuron and jth neuron as:

ðSsÞi;j :¼d>i cov st; stð Þdj; ðSxÞi;j :¼cov x
ðiÞ
t;l ;x

ðjÞ
t;l

� �
; (1)

where covð�; �Þ is the empirical covariance function defined for two vector time series ut and vt as

cov ut ;vtð Þ :¼ 1

T

PT
t¼1

ut � 1

T

PT
t0¼1

ut0
� �

vt � 1

T

PT
t0¼1

vt0
� �>

, for a total observation duration of T time frames.

Our main contribution is to provide an efficient solution for the so-called inverse problem: direct

estimation of Ss and Sx from the fluorescence observations, without requiring intermediate spike

deconvolution (Figure 1, backward arrow). The signal and noise correlation matrices, denoted by S

and N, can then be obtained by standard normalization of Ss and Sx:

ðSÞi;j :¼
ðSsÞi;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðSsÞi;i:ðSsÞj;j
q ; ðNÞi;j :¼

ðSxÞi;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSxÞi;i:ðSxÞj;j

q ; 8i; j¼ 1;2; � � � ;N: (2)

We note that when spiking activity is directly observed using electrophysiology recordings, the

conventional signal ðScon

s Þi;j
� �

and noise ðScon

x Þi;j
� �

covariances of spiking activity between the ith and

jth neuron are defined as (Lyamzin et al., 2015):

ðScon

s Þi;j :¼cov
1

L

XL

l¼1

n
ðiÞ
t;l ;

1

L

XL

l¼1

n
ðjÞ
t;l

 !
; ðScon

x Þi;j :¼
1

L

XL

l¼1

cov n
ðiÞ
t;l �

1

L

XL

l0¼1

n
ðiÞ
t;l0 ; n

ðjÞ
t;l �

1

L

XL

l0¼1

n
ðjÞ
t;l0

 !
; (3)

which after standard normalization in Equation 2 give the conventional signal ðSconÞi;j
� �

and noise

ðNconÞi;j
� �

correlations. While at first glance, our definitions of signal and noise covariances in Equa-

tion 1 seem to be a far departure from the conventional ones in Equation 3, we show that the con-

ventional notions of correlation indeed approximate the same quantities as in our definitions:

Scon » S and Ncon » N;

under asymptotic conditions (i.e. T and L sufficiently large). We prove this assertion of asymptotic

equivalence in Appendix 1, which highlights another facet of our contributions: our proposed esti-

mators are designed to robustly operate in the regime of finite (and typically small) T and L, aiming

for the very same quantities that the conventional estimators could only recover accurately under

ideal asymptotic conditions.

Existing methods used for performance comparison
In order to compare the performance of our proposed method with existing work, we consider three

widely available methods for extracting neuronal correlations. In simulation studies, we additionally

benchmark these estimates with respect to the known ground truth. The existing methods consid-

ered are the following:

Pearson correlations from the two-photon data
In this method, fluorescence observations are assumed to be the direct measurements of spik-
ing activity, and thus empirical Pearson correlations of the two-photon data are used to com-
pute the signal and noise correlations (Rothschild et al., 2010; Winkowski and Kanold, 2013;
Francis et al., 2018; Bowen et al., 2020). Explicitly, these estimates are obtained by simply

replacing n
ðjÞ
t;l in Equation 3 by y

ðjÞ
t;l , without performing spike deconvolution.

Two-stage Pearson estimation
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Unlike the previous method, in this case spikes are first inferred using a deconvolution tech-
nique. Then, following temporal smoothing via a narrow Gaussian kernel the Pearson correla-
tions are computed using the conventional definitions of Equation 3. For spike deconvolution,
we primarily used the FCSS algorithm (Kazemipour et al., 2018). In order to also demonstrate
the sensitivity of these estimates to the deconvolution technique that is used, we provide a
comparison with the f-oopsi deconvolution algorithm (Pnevmatikakis et al., 2016) in Fig-
ure 2—figure supplement 1.
Two-stage GPFA estimation
Similar to the previous method, spikes are first inferred using a deconvolution technique.
Then, a latent variable model called Gaussian Process Factor Analysis (GPFA) (Yu et al., 2009)
is applied to the inferred spikes in order to estimate the latent covariates and receptive fields.
Based on those estimates, the signal and residual noise correlations are derived through a for-
mulation similar to Equation 1 and Equation 2 (Ecker et al., 2014).

Simulation study 1: neuronal ensemble driven by external stimulus
We simulated calcium fluorescence observations according to the proposed generative model given

in Proposed forward model, from an ensemble of N ¼ 8 neurons for a duration of T ¼ 5000 time

frames. We considered L ¼ 20 repeated trials driven by the same external stimulus, which we mod-

eled by an autoregressive process (see Guidelines for model parameter settings for details). Figure 2

shows the corresponding estimation results.

The first column of Figure 2A shows the ground truth noise (top) and signal (bottom) correlations

(diagonal elements are all equal to one and omitted for visual convenience). The second column

shows estimates of the noise and signal correlations using our proposed method, which closely

match the ground truth. The third, fourth and fifth columns, respectively, show the results of the

Pearson correlations from the two-photon data, two-stage Pearson, and two-stage GPFA estimation

0

0.2

-0.2

Pearson Two-Stage PearsonProposed Ground Truth

2

4

6

(frames)

BA

8

-2

-4

 NMSE = 0.41  NMSE = 0.90  NMSE = 1.03

Two-Stage GPFA

 NMSE = 1.04

0

2

0

0.2

-0.2

2
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 NMSE = 0.23  NMSE = 1.22  NMSE = 1.50  NMSE = 1.23

0
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leakage = 0.23 leakage = 0.83 leakage = 0.91 leakage = 1.15

5

-10
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Figure 2. Results of simulation study 1. (A) Estimated noise and signal correlation matrices from different

methods. Rows from left to right: ground truth, proposed method, Pearson correlations from two-photon

recordings, two-stage Pearson estimates and two-stage GPFA estimates. The normalized mean squared error

(NMSE) of each estimate with respect to the ground truth and the leakage effect quantified by the ratio between

out-of-network and in-network power (leakage) are indicated below each panel. (B) Simulated external stimulus

(orange), latent trial-dependent process (red), fluorescence observations (black), estimated calcium concentrations

(purple), putative spikes (green), and estimated mean of the latent state (blue) by the proposed method, for the

first trial of neuron 1.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Sensitivity of two-stage estimates to the choice of the underlying spike deconvolution
technique.

Figure supplement 2. Performance of two-stage estimates based on ground truth spikes.

Figure supplement 3. Performance comparison under stimulus integration model mismatch.

Figure supplement 4. Performance under calcium decay model mismatch.

Figure supplement 5. Performance comparison under varying SNR levels and firing rates.

Figure supplement 6. Performance comparison under observation noise model mismatch.
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methods. Through a qualitative visual inspection, it is evident that these methods incur high false

alarms and mis-detections of the ground truth correlations.

To quantify these comparisons, the normalized mean square error (NMSE) of different estimates

with respect to the ground truth are shown below each of the subplots (Figure 2A). Our proposed

method achieves the lowest NMSE compared to the others. Furthermore, we observed a significant

mixing between signal and noise correlations in these other estimates. To quantify this leakage

effect, we first classified each of the correlation entries as in-network or out-of-network, based on

being non-zero or zero in the ground truth, respectively (see Performance evaluation). We then com-

puted the ratio between the power of out-of-network components and the power of in-network

components as a measure of leakage. The leakage ratios are also reported in Figure 2A. The leak-

age of our proposed estimates is the lowest of all four techniques, in estimating both the signal and

noise correlations. In order to further probe the performance of our proposed method, the simu-

lated external stimulus st, latent trial-dependent process x
ð1Þ
t;1 , simulated observations y

ð1Þ
t;1 , estimated

calcium concentration bzð1Þt;1 , the putative spikes bnð1Þt;1 :¼ bzð1Þt;1 � abzð1Þt�1;1 , and the estimated mean of the

latent state m
ð1Þ
xt;1 , for the first trial of the first neuron are shown in Figure 2B. These results demon-

strate the ability of the proposed estimation framework in accurately identifying the latent pro-

cesses, which in turn leads to an accurate estimation of the signal and noise correlations as shown in

Figure 2B.

The main sources of the observed performance gap between our proposed method and the

existing ones are the bias incurred by treating the fluorescence traces as spikes, low spiking rates,

non-linearity of spike generation with respect to intrinsic and external covariates, and sensitivity to

spike deconvolution. For the latter, we demonstrated the sensitivity of the two-stage Pearson esti-

mates to the choice of the deconvolution technique in Figure 2—figure supplement 1. Further-

more, in order to isolate the effect of said non-linearities on the estimation performance, we applied

the two-stage methods to ground truth spikes in Figure 2—figure supplement 2. Our analysis

showed that both two-stage estimates incur significant estimation errors even if the spikes were

recovered perfectly, mainly due to the limited number of trials (L ¼ 20 here). In accordance with our

theoretical analysis of the asymptotic behavior of the conventional signal and noise correlation esti-

mates given in Appendix 1, we also showed in Figure 2—figure supplement 2 that the performance

of the two-stage Pearson estimates based on ground truth spikes, but using L ¼ 1000 trials, dramati-

cally improves. Our proposed method, however, was capable of producing reliable estimates with

the number of trials as low as L ¼ 20, which is typical in two-photon imaging experiments.

Analysis of robustness with respect to modeling assumptions
While the preceding results are quite favorable to our proposed method, the underlying generative

models were the same as those used to estimate signal and noise correlations, which is in contrast

to conventional real data validation with known ground truth. Access to ground truth correlations in

two-photon imaging experimental settings, however, is quite challenging. In order to further probe

the robustness of our proposed method in the absence of ground truth data, we utilized surrogate

data that parallel the setting of Figure 2, but deviate from our modeling assumptions.

1. Robustness to stimulus integration model mismatch. First, we considered surrogate data gen-
erated with a non-linear stimulus integration model by replacing the linear receptive field com-

ponent d>j st with d>j st þ ðedj;1
>
stÞ2 þ ðedj;2

>
stÞ2, where edj;1 and edj;2 are akin to quadratic receptive

field components. We assumed a linear stimulus integration model in our estimation frame-

work (i.e., edj;1 ¼ edj;2 ¼ 0). Figure 2—figure supplement 3 shows the resulting correlation esti-
mates. While the performance of our proposed signal correlation estimates degrade under
this setting as compared to Figure 2, our proposed estimates still outperform existing meth-
ods. In addition, the model mismatch in the stimulus integration component does not affect
the accuracy of noise correlation estimation in our method.

2. Robustness to calcium decay model mismatch. Next, we tested our proposed estimation
framework on data simulated with a different calcium decay model. Specifically, we simulated
data with second-order autoregressive calcium dynamics, and at a lower signal-to-noise ratio
(SNR) compared to the setting of Figure 2, and used our inference framework which assumes
first order calcium dynamics for estimation. Figure 2—figure supplement 4 shows the corre-
sponding noise and signal correlations estimated by the proposed method under these
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conditions. Even though the performance slightly degrades (in terms of NMSE and leakage
ratio), our method is able to recover the underlying correlations faithfully under this setting.

3. Robustness to SNR level and firing rate. Next, we compared the performance of Pearson and
Two-Stage Pearson methods with our proposed method under varying SNR levels and average
firing rates, as shown in Figure 2—figure supplement 5. While the performance of all meth-
ods degrades at low SNR levels or firing rates (SNR < 10 dB, firing rate < 0.5 Hz), our pro-
posed method outperforms the existing methods for a wide range of SNR and firing rate
values. To quantify this comparison, we have also indicated the mean and standard deviation
of the relative performance gain of our proposed estimates across SNR levels and firing rates
as insets in Figure 2—figure supplement 5.

4. Robustness to observation noise model mismatch. Finally, we repeated the foregoing compari-
sons under varying SNR levels and firing rates, only now we included an additional observation
noise model mismatch. Similar to the treatment in Deneux et al., 2016, we considered two
temporally correlated observation noise models: white noise with a low frequency drift (Fig-
ure 2—figure supplement 6, top panels) and pink noise (Figure 2—figure supplement 6,
bottom panels). In accordance with the results in Figure 2—figure supplement 5, our pro-
posed method outperforms the existing ones for a wide range of SNR and firing rate values
and under both observation noise model mismatch conditions. From Figure 2—figure supple-
ment 6C and F, it can be observed that the ground truth spikes are favorably recovered as a
byproduct of our method, even though the estimated calcium concentrations are contami-
nated by the temporally correlated fluctuations in observation noise. This in turn results in
accurate signal and noise correlation estimates.

Simulation study 2: spontaneous activity
Next, we present the results of a simulation study in the absence of external stimuli (i.e. st ¼ 0), per-

taining to the spontaneous activity condition. It is noteworthy that the proposed method can readily

be applied to estimate noise correlations during spontaneous activity, by simply setting the external

stimulus st and the receptive field dj to zero in the update rules (see Proposed forward model for

details). We simulated the ensemble spiking activity based on a Poisson process (Smith and Brown,

2003) using a discrete time-rescaling procedure (Brown et al., 2002; Smith and Brown, 2003), so

that the data are generated using a different model than that used in our inference framework (i.e.

Bernoulli process with a logistic link as outlined in Proposed forward model). As such, we eliminated

potential performance biases in favor of our proposed method by introducing the aforementioned

model mismatch. We simulated L ¼ 20 independent trials of spontaneous activity of N ¼ 30 neurons,

observed for a time duration of T ¼ 5000 time frames. The number of neurons in this study is notably

larger than that used in the previous one, to examine the scalability of our proposed approach with

respect to the ensemble size.

Figure 3 shows the comparison of the noise correlation matrices estimated by our proposed

method, Pearson correlations from two-photon recordings, two-stage Pearson, and two-stage GPFA

estimates, with respect to the ground truth. The Pearson and the two-stage estimates are highly
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Figure 3. Results of simulation study 2. Estimated noise correlation matrices using different methods based from

spontaneous activity data. Rows from left to right: ground truth, proposed method, Pearson correlations from two-

photon recordings, two-stage Pearson and two-stage GPFA estimates. The normalized mean squared error

(NMSE) of each estimate with respect to the ground truth and the ratio between out-of-network power and in-

network power (leakage) are shown below each panel.
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variable and result in excessive false detections. Our proposed estimate, however, closely follows

the ground truth, which is also reflected by the comparatively lower NMSE and leakage ratios, in

spite of the mismatch between the models used for data generation and inference. In addition, our

proposed method exhibits favorable scaling with respect to the ensemble size, thanks to the under-

lying low-complexity variational updates (see Low-complexity parameter updates for details).

Real data study 1: mouse auditory cortex under random tone
presentation
We next applied our proposed method to experimentally recorded two-photon observations from

the mouse primary auditory cortex (A1). The dataset consisted of recordings from 371 excitatory

neurons in layer 2/3 A1, from which we selected N ¼ 16 responsive neurons (i.e. neurons that exhib-

ited at least one spiking event in at least half of the trials considered; see Guidelines for model

parameter settings). A random sequence of four tones was presented to the mouse, with the same

sequence being repeated for L ¼ 10 trials. Each trial consisted of T ¼ 3600 time frames, and each

tone was 2 s long followed by a 4 s silent period (see Experimental procedures for details). We con-

sidered an integration window of R ¼ 25 frames for stimulus encoding (see Guidelines for model

parameter settings for details). The comparison of the noise and signal correlation estimates

obtained by our proposed method, Pearson correlations from two-photon recordings, two-stage

Pearson and two-stage GPFA methods is shown in Figure 4A. The spatial map of the 16 neurons

considered in the analysis in the field of view is shown in Figure 4B. Figure 4C shows the stimulus

tone sequence st , two-photon observations y
ð1Þ
t;1 , estimated calcium concentration bzð1Þt;1 , putative

spikes bnð1Þt;1 :¼ bzð1Þt;1 � abzð1Þt�1;1 and the estimated mean of the latent state m
ð1Þ
xt;1 , for the first trial of the

first neuron.

We estimated the Best Frequency (BF) of each neuron as the tone that resulted in the highest

level of fluorescence activity. The results in Figure 4A are organized such that the neurons with the

same BF are neighboring, with the BF increasing along the diagonal. Thus, expectedly

(Bowen et al., 2020) our proposed method as well as the Pearson and two-stage Pearson estimates

show high signal correlations along the diagonal. However, the two-stage GPFA estimates do not

reveal such a structure. By visual inspection, as also observed in the simulation studies, the Pearson

correlations from two-photon recordings, two-stage Pearson and two-stage GPFA estimates have

significant leakage between the signal and noise correlations, whereas our proposed signal and

noise correlation estimates in Figure 4A suggest distinct spatial structures.

To quantify this visual comparison, we used a statistic based on the Tanimoto similarity metric

(Lipkus, 1999), denoted by TsðX;YÞ for two matrices X and Y. As a measure of dissimilarity, we used

TdðX;YÞ :¼ 1� TsðX;YÞ (see Performance evaluation for details). The comparison of TdðbS; bNÞ for the
four estimates is presented in the second column of Table 1. To assess statistical significance, for

each comparison we obtained null distributions corresponding to chance occurrence of dissimilar-

ities using a shuffling procedure as shown in Figure 4D, and then computed one-tailed p-values

from those distributions (see Performance evaluation for details). Table 1 and Figure 4D includes

these p-values, which show that the proposed estimates (boldface numbers in Table 1, second col-

umn) indeed have the highest dissimilarity between signal and noise correlations. The higher leakage

effect in the other three estimates is also reflected in their smaller TdðbS; bNÞ values.
To further investigate this effect, we have depicted the scatter plots of signal vs. noise correla-

tions estimated by each method in Figure 4E. To examine the possibility of the leakage effect on a

pairwise basis, we performed linear regression in each case. The slope of the model fit, the p-value

for the corresponding t-test, and the R2 values are reported in the third and fourth columns of

Table 1 (the slope and p-values are also shown as insets in Figure 4E). Consistent with the results of

Winkowski and Kanold, 2013, the Pearson estimates suggest a significant correlation between the

signal and noise correlation pairs (as indicated by the higher slope in Figure 4E). However, none of

the other estimates (including the proposed estimates) in Figure 4E register a significant trend

between signal and noise correlations. This further corroborates our assessment of the high leakage

between signal and noise correlations in Pearson estimates, since such a leakage effect could result

in overestimation of the trend between the signal and noise correlation pairs. The signal and noise

correlations estimated by our proposed method show no pairwise trend, suggesting distinct
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patterns of stimulus-dependent and stimulus-independent functional connectivity (Kohn et al.,

2016; Montijn et al., 2014; Rothschild et al., 2010; Keeley et al., 2020).

A key advantage of our proposed method over the Pearson and two-stage approaches is the

explicit modeling of stimulus integration. The relevant parameter in this regard is the length of the

stimulus integration window R. While in our simulation studies the value of R was known, it needs to

be set by the user in real data applications. To this end, domain knowledge or data-driven methods

such as cross-validation and model order selection can be utilized (see Guidelines for model parame-

ter settings for details). Noting that the number of parameters to be estimated linearly scales with R,

it must be chosen large enough to capture the stimulus effects, yet small enough to result in
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Figure 4. Application to experimentally-recorded data from the mouse A1. (A) Estimated noise (top) and signal (bottom) correlation matrices using

different methods. Rows from left to right: proposed method, Pearson correlations from two-photon data, two-stage Pearson and two-stage GPFA

estimates. (B) Location of the selected neurons with the highest activity in the field of view. (C) Presented tone sequence (orange), observations (black),

estimated calcium concentrations (purple), putative spikes (green) and estimated mean latent state (blue) in the first trial of the first neuron. (D) Null

distributions of chance occurrence of dissimilarities between signal and noise correlation estimates using different methods. The observed test statistic

in each case is indicated by a dashed vertical line. (E) Scatter plots of signal vs. noise correlations for individual cell pairs (blue dots) corresponding to

each method. Data were normalized for comparison by computing z-scores. For each case, the linear regression model fit is shown in red, and the

slope and p-value of the t-test are indicated as insets.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Probing the effect of stimulus integration window length on the performance of the proposed estimates.

Figure supplement 2. Inspecting the inferred latent processes under high fluorescence activity due to rapid increase in firing rate.
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favorable computational complexity. Here, given that the typical tone response duration of mouse

A1 neurons is < 1 s (Linden et al., 2003; DeWeese et al., 2003; Petrus et al., 2014), with a sam-

pling frequency of fs ¼ 30 Hz, we surmised that a choice of R ~ 30 suffices to capture the stimulus

effects. We further examined the effect of varying R on the proposed correlation estimates in Fig-

ure 4—figure supplement 1. As shown, small values of R (e.g. R ¼ 1 or 10) may not be adequate to

fully capture stimulus integration effects. By considering values of R in the range 25� 50, we

observed that the correlation estimates remain stable. We thus chose R ¼ 25 for our analysis.

Careful inspection of the second panel in Figure 4C shows that the fluorescence activity often sat-

urates to ~4 times its baseline value. This effect is due to successive closely spaced spikes, which

implies the occurrence of more than one spike per frame and thus violates our Bernoulli modeling

assumption. To inspect the performance of our method more carefully under this scenario, we show

in Figure 4—figure supplement 2 a zoomed-in view of the estimated latent processes bzð1Þt;1 (calcium

concentration) and bnð1Þt;1 (putative spikes) for a sample data segment with high fluorescence activity.

The estimated latent processes reveal two mechanisms leveraged by our inference method to miti-

gate the aforementioned model mismatch: first, our proposed method predicts spiking events in

adjacent time frames to compensate for rapid increase in firing rate and thus infers calcium concen-

tration levels that match the observed fluorescence; secondly, even though our generative model

Table 1. Dissimilarity metric statistics for the estimates in Figure 4A (also illustrated in Figure 4D), linear regression statistics of the

comparison between signal and noise correlations in Figure 4E, and the average NMSE across 50 trials used in the shuffling

procedure illustrated in Figure 5A.

Dissimilarity TdðbS; bNÞ Regression statistics (Figure 4E) Shuffling test (Figure 5)

Estimate Figure 4D Slope (p-value) R2 Value NMSE in bN NMSE in bS
Proposed 0:8725 ðp<10�4Þ 0:02 ðp ¼ 0:84Þ 4� 10

�4 1:07� 0:16 1:32� 0:19

Pearson 0:6675 ðp ¼ 0:71Þ 0:33 ðp ¼ 2� 10
�4Þ 0.11 0 0

Two-stage Pearson 0:7325 ðp ¼ 0:09Þ 0:15 ðp ¼ 0:10Þ 0.02 1:84� 0:34 0:55� 0:12

Two-stage GPFA 0:7625 ðp<10�4Þ 0:02 ðp ¼ 0:86Þ 3� 10
�4 2:32� 0:52 2:26� 0:51
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Figure 5. Assessing the specificity of different estimation results shown in Figure 4. Rows from left to right:

proposed method, Pearson correlations from two-photon data, two-stage Pearson and two-stage GPFA estimates.

(A) The estimated noise correlations using different methods after random temporal shuffling of the observations.

The mean and standard deviation of the NMSE across 50 trials are indicated below each panel. (B) Histograms of

the noise correlation estimates between the first and third neurons over the 50 temporal shuffling trials. The

estimate based on the original (un-shuffled) data in each case is indicated by a dashed vertical line.
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assumes that there is only one spiking event in a given time frame, this restriction is mitigated in our

inference framework by relaxing the constraint bnðjÞt;l :¼ bz
ðjÞ
t;l � abzðjÞt�1;l � 1, as explained in Low-complex-

ity parameter updates. While this relaxation was performed for the sake of tractability of the inverse

solution, it in fact leads to improved estimation results under episodes of rapid increase in firing

rate, by allowing the putative spike magnitudes bnðjÞt;l to be greater than 1. The latter is evident in the

magnitude of the inferred spikes in Figure 4—figure supplement 2, following the rise of fluores-

cence activity.

Given that the ground truth correlations are not available for a direct comparison, we instead per-

formed a test of specificity that reveals another key limitation of existing methods. Fluorescence

observations exhibit structured dynamics due to the exponential intracellular calcium concentration

decay (as shown in Figure 4C, for example), which are in turn related to the underlying spikes that

are driven non-linearly by intrinsic/extrinsic stimuli as well as the properties of the indicator used. As

such, an accurate inference method is expected to be specific to this temporal structure. To test

this, we randomly shuffled the T time frames consistently in the same order in all trials, in order to

fully break the temporal structure governing calcium decay dynamics, and then estimated correla-

tions from these shuffled data using the different methods. The resulting estimates of noise correla-

tions are shown in Figure 5A for one instance of such shuffled data. The average NMSE for a total

of 50 shuffled samples with respect to the original un-shuffled estimates (in Figure 4A) are tabulated

in the fifth and sixth columns of Table 1, and are also indicated below each panel in Figure 5A.

A visual inspection of Figure 5A shows that the Pearson correlations from two-photon recordings

expectedly remain unchanged. Since this method treats each time frame to be independent, tempo-

ral shuffling does not impact the correlations in anyway. On the other extreme, both of the two-

stage estimates seem to detect highly variable and large correlation values, despite operating on

data that lacks any relevant temporal structure. Our proposed method, however, remarkably produ-

ces negligible correlation estimates. Although both the two-stage and proposed estimates show var-

iability with respect to the shuffled data (Table 1, fifth column), the standard deviation of the NMSE

values of our proposed method are considerably smaller than those of the two-stage methods

(Table 1, fifth column). For further inspection, the histograms of a single element (ðbNÞ
1;3) of the esti-

mated correlation matrices across the 50 shuffling trials are shown in Figure 5B. The original un-shuf-

fled estimates are marked by the dashed vertical lines in each case. The proposed estimate in

Figure 5B is highly concentrated around zero, even though the un-shuffled estimate is non-zero.

However, the two-stage estimates produce correlations that are widely variable across the shuffling

trials. This analysis demonstrates that our proposed method is highly specific to the temporal struc-

ture of fluorescence observations, whereas the Pearson correlations from two-photon recordings,

two-stage Pearson and two-stage GPFA methods fail to be specific.

Real data study 2: spontaneous vs. stimulus-driven activity in the mouse
A1
To further validate the utility of our proposed methodology, we applied it to another experimen-

tally-recorded dataset from the mouse A1 layer 2/3. This experiment pertained to trials of presenting

a sequence of short white noise stimuli, randomly interleaved with silent trials of the same duration.

Figure 6A shows a sample trial sequence. The two-photon recordings thus contained episodes of

stimulus-driven and spontaneous activity (see Experimental procedures for details). Under this exper-

imental setup, it is expected that the noise correlations are invariant across the spontaneous and

stimulus-driven conditions. In accordance with the foregoing results of real data study 1, we also

expect the signal and noise correlation patterns to be distinct. Each trial considered in the analysis

consisted of T ¼ 765 frames (see Experimental procedures for details). We selected N ¼ 10 respon-

sive neurons (according to the criterion described in Guidelines for model parameter settings), each

with L ¼ 10 trials. Similar to real data study 1, we chose a stimulus integration window of length

R ¼ 25 frames.

Figure 6B shows the resulting noise and signal correlation estimates under the spontaneous

(bNspon, top) and stimulus-driven (bNstim and bSstim, bottom) conditions. Figure 6C shows the spatial map

of the 10 neurons considered in the analysis in the field of view. A visual inspection of the first col-

umn of Figure 6B indeed suggests that bNspon and bNstim are saliently similar, and distinct from bSstim.
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The Pearson correlations obtained from two-photon data (second column) and the two-stage Pear-

son and GPFA estimates (third and fourth columns, respectively), however, evidently lack this struc-

ture. As in the previous study, we quantified this visual comparison using the similarity metric

TsðX;YÞ and the dissimilarity metric TdðX;YÞ (see Performance evaluation for details). These statistics

are reported in Table 2 along with the p-values (null distributions are shown in Figure 6—figure

supplement 1), which show that the only significant outcomes (boldface numbers) are those of our

proposed method. While it is expected from the experiment design for the noise correlations under

the two settings to be similar, the only method that detects this expected outcome with statistical

significance is our proposed method. Moreover, the statistically significant dissimilarity between the
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Figure 6. Comparison of spontaneous and stimulus-driven activity in the mouse A1. (A) A sample trial sequence

in the experiment. Stimulus-driven (stim) trials were recorded with randomly interleaved spontaneous (spon) trials

of the same duration. (B) Estimated noise and signal correlation matrices under spontaneous (top) and stimulus-

driven (bottom) conditions. Rows from left to right: proposed method, Pearson correlations from two-photon data,

two-stage Pearson and two-stage GPFA estimates. (C) Location of the selected neurons with highest activity in the

field of view. (D) Stimulus onsets (orange), observations (black), estimated calcium concentrations (purple) and

putative spikes (green) for the first trial from two pairs of neurons with high signal correlation (top) and high noise

correlation (bottom), as identified by the proposed estimates.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Histograms of the similarity/dissimilarity metrics under the shuffling procedure.

Table 2. Similarity/dissimilarity metric statistics for the estimates in Figure 6.

Estimation method TsðbNspon; bNstimÞ TdðbSstim; bNstimÞ
Proposed 0.5716 (p ¼ 0:003) 0.7946 (p ¼ 0:004)

Pearson 0.3031 (p ¼ 0:61) 0.5032 (p ¼ 0:92)

Two-stage Pearson 0.2790 (p ¼ 0:05) 0.7862 (p ¼ 0:39)

Two-stage GPFA 0.2008 (p ¼ 0:50) 0.7792 (p ¼ 0:22)
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signal and noise correlations of our proposed estimates corroborate the hypothesis that signal and

noise are encoded by distinct functional networks (Kohn et al., 2016; Montijn et al., 2014;

Rothschild et al., 2010; Keeley et al., 2020).

Furthermore, Figure 6D shows the time course of the stimulus, observations, estimated calcium

concentrations and putative spikes for the first trial from two pairs of neurons with high signal corre-

lation (j ¼ 2; 8, top) and high noise correlation (j ¼ 3; 5, bottom). As expected, the putative spiking

activity of the neurons with high signal correlation (top) are closely time-locked to the stimulus

onsets. The activity of the two neurons with high noise correlation (bottom), however, is not time-

locked to the stimulus onsets, even though the two neurons exhibit highly correlated activity. The

correlations estimated via the proposed method thus encode substantial information about the

inter-dependencies of the spiking activity of the neuronal ensemble.

Real data study 3: spatial analysis of signal and noise correlations in the
mouse A1
Lastly, we applied our proposed method to examine the spatial distribution of signal and noise cor-

relations in the mouse A1 layers 2/3 and 4 (data from Bowen et al., 2020). The dataset included

fluorescence activity recorded during multiple experiments of presenting sinusoidal amplitude-mod-

ulated tones, with each stimulus being repeated across several trials (see Experimental procedures

and Bowen et al., 2020 for experimental details). In each experiment, we selected on average

around 20 responsive neurons for subsequent analysis (according to the criterion described in Guide-

lines for model parameter settings). For brevity, we compare the estimates of signal and noise corre-

lations using our proposed method only with those obtained by Pearson correlations from the two-

photon data. The latter method was also used in previous analyses of data from this experimental

paradigm (Winkowski and Kanold, 2013).

In parallel to the results reported in Winkowski and Kanold, 2013, Figure 7A and Figure 7B

illustrate the correlation between the signal and noise correlations in layers 2/3 and 4, respectively.

Consistent with the results of Winkowski and Kanold, 2013, the signal and noise correlations

exhibit positive correlation in both layers, regardless of the method used. However, the correlation

coefficients (i.e. slopes in the insets) identified by our proposed method are notably smaller than

those obtained from Pearson correlations, in both layer 2/3 (Figure 7A) and layer 4 (Figure 7B).

Comparing this result with our simulation studies suggests that the stronger linear trend between

the signal and noise correlations observed using the Pearson correlation estimates is likely due to

the mixing between the estimates of signal and noise correlations. As such, our method suggests

that the signal and noise correlations may not be as highly correlated with one another as indicated

in previous studies of layer 2/3 and 4 in mouse A1 (Winkowski and Kanold, 2013).

Next, to evaluate the spatial distribution of signal and noise correlations, we plotted the correla-

tion values for pairs of neurons as a function of their distance for layer 2/3 (Figure 7C) and layer 4

(Figure 7D). The distances were discretized using bins of length 10�m. The scatter of the correla-

tions along with their median at each bin are shown in all panels. Then, to examine the spatial trend

of the correlations, we performed linear regression in each case. The slope of the model fit, the

p-value for the corresponding t-test, and the R2 values are reported in Table 3 (the slope and p-val-

ues are also shown as insets in Figure 7C and D).

From Table 3 and Figure 7C and D (upper panels), it is evident that the signal correlations show

a significant negative trend with respect to distance, using both methods and in both layers. How-

ever, the slope of these negative trends identified by our method (boldface numbers in Table 3) is

notably steeper than those identified by Pearson correlations. On the other hand, the trends of the

noise correlations with distance (bottom panels) are different between our proposed method and

Pearson correlations: our proposed method shows a significant negative trend in layer 2/3, but not

in layer 4, whereas the Pearson correlations of the two-photon data suggest a significant negative

trend in layer 4, but not in layer 2/3. In addition, the slopes of these negative trends identified by

our method (boldface numbers in Table 3) are steeper than or equal to those identified by Pearson

correlations.

Our proposed estimates also indicate that noise correlations are sparser and less widespread in

layer 4 (Figure 7D) than in layer 2/3 (Figure 7C). To further investigate this observation, we depicted

the two-dimensional spatial spread of signal and noise correlations in both layers and for both meth-

ods in Figure 7E and F, by centering each neuron at the origin and overlaying the individual spatial
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Figure 7. Comparison of signal and noise correlations across layers 2/3 and 4. (A) Scatter-plot of noise vs. signal correlations (blue) for individual cell-

pairs in layer 2/3, based on the proposed (left) and Pearson estimates (right). Data were normalized for comparison by computing z-scores. The linear

model fits are shown in red, and the slope and p-value of the t-tests are indicated as insets. Panel (B) corresponds to layer 4 in the same organization as

panel A. (C) Signal (top) and noise (bottom) correlations vs. cell-pair distance in layer 2/3, based on the proposed (left) and Pearson estimates (right).

Distances were binned to 10�m intervals. The median of the distributions (black) and the linear model fit (red) are shown in each panel. The slope of

the linear model fit, and the p-value of the t-test are also indicated as insets. Dashed horizontal lines indicate the zero-slope line for ease of visual

Figure 7 continued on next page
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spreads. The horizontal and vertical axes in each panel represent the relative dorsoventral and ros-

trocaudal distances, respectively, and the heat-maps represent the magnitude of correlations. Com-

paring the proposed noise correlation spread in Figure 7E with the corresponding spread in

Figure 7F, we observe that the noise correlations in layer 2/3 are indeed more widespread and

abundant than in layer 4, as can be expected by more extensive intralaminar connections in layer 2/3

vs. 4 (Watkins et al., 2014; Meng et al., 2017a; Meng et al., 2017b; Kratz and Manis, 2015).

The spatial spreads of signal and noise correlations based on the Pearson estimates are remark-

ably similar in both layers (Figure 7E and F, right panels), whereas they are saliently different for our

proposed estimates (Figure 7E and F, left panels). This further corroborates our hypothesis on the

possibility of high mixing between the signal and noise correlation estimates obtained by the Pear-

son correlation of two-photon data. To further examine the differences between the signal and noise

correlations, the marginal distributions along the dorsoventral and rostrocaudal axes are shown in

Figure 7E and F, selectively overlaid for ease of visual comparison. To quantify the differences

between the spatial distributions of signal and noise correlations estimated by each method, we per-

formed Kolmogorov-Smirnov (KS) tests on each pair of marginal distributions, which are summarized

in Figure 7—figure supplement 1. Although the marginal distributions of signal and noise correla-

tions are significantly different in all cases from both methods, the effect sizes of their difference (KS

statistics) are higher for our proposed estimates compared to those of the Pearson estimates.

Finally, the spatial spreads of correlations for either method and in each layer suggest non-uni-

form angular distributions with possibly directional bias. To test this effect, we computed the angular

marginal distributions and performed KS tests for non-uniformity, which are reported in Figure 7—

figure supplement 2. These tests indicate that all distributions are significantly non-uniform. In addi-

tion, the angular distributions of both signal and noise correlations in layer 4 exhibit salient modes in

the rostrocaudal direction, whereas they are less directionally selective in layer 2/3 (Figure 7—figure

supplement 2).

In summary, the spatial trends identified by our proposed method are consistent with empirical

observations of spatially heterogeneous pure-tone frequency tuning by individual neurons in audi-

tory cortex (Winkowski and Kanold, 2013). The improved correspondence of our proposed method

compared to results obtained using Pearson correlations could be the result of the demixing of sig-

nal and noise correlations in our method. As a result of the demixing, our proposed method also

suggests that noise correlations have a negative trend with distance in layer 2/3, but are much

sparser and spatially flat in layer 4. In addition, the spatial spread patterns of signal and noise corre-

lations are more structured and remarkably more distinct for our proposed method than those

obtained by the Pearson estimates.

Figure 7 continued

comparison. Panel D corresponds to layer 4 in the same organization as panel C. (E) Spatial spread of signal (top) and noise (bottom) correlations in

layer 2/3, based on the proposed (left) and Pearson estimates (right). The horizontal and vertical axes in each panel respectively represent the relative

dorsoventral and rostrocaudal distances between each cell-pair, and the heat-map indicates the magnitude of correlations. Marginal distributions of the

signal (blue) and noise (red) correlations along the dorsoventral and rostrocaudal axes for the proposed method (darker colors) and Pearson method

(lighter colors) are shown at the top and right sides of the sub-panels. Panel F corresponds to layer 4 in the same organization as panel E.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Comparing the marginal distributions of signal and noise correlations along the dorsoventral and rostrocaudal axes.

Figure supplement 2. Marginal angular distributions of signal and noise correlations.

Table 3. Linear regression statistics for the analysis of correlations vs. cell-pair distance.

Statistics of layer 2/3 correlations Statistics of layer 4 correlations

Correlations Slope (p-value) R2 Value Slope (p-value) R2 Value

Proposed Signal Corr. �9� 10�5 (p ¼ 0:002) 0.012 �1� 10�4 (p ¼ 3� 10
�6) 0.023

Pearson Signal Corr. �5� 10
�5 (p ¼ 0:02) 0.007 �3� 10

�5 (p ¼ 0:02) 0.005

Proposed Noise Corr. �1� 10�4 (p ¼ 0:005) 0.010 �5� 10�5 (p ¼ 0:06) 0.004

Pearson Noise Corr. �4� 10
�5 (p ¼ 0:1) 0.003 �5� 10

�5 (p ¼ 0:02) 0.005
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Theoretical analysis of the bias and variance of the proposed
estimators
Finally, we present a theoretical analysis of the bias and variance of the proposed estimator. Note

that our proposed estimation method has been developed as a scalable alternative to the intractable

maximum likelihood (ML) estimation of the signal and noise covariances (see Overview of the pro-

posed estimation method). In order to benchmark our estimates, we thus need to evaluate the qual-

ity of said ML estimates. To this end, we derived bounds on the bias and variance of the ML

estimators of the kernel dj for j ¼ 1; � � � ;N and the noise covariance Sx. In order to simplify the treat-

ment, we posit the following mild assumptions:

Assumption (1). We assume a scalar time-varying external stimulus (i.e. st ¼ st, and hence

dj ¼ dj; d ¼ ½d1; d2; � � � ; dN �> ). Furthermore, we set the observation noise covariance to be Sw ¼ s2

wI,

for notational convenience.

Assumption (2). We derive the performance bounds in the regime where T and L are large, and

thus do not impose any prior distribution on the correlations, which are otherwise needed to miti-

gate overfitting (see Preliminary assumptions).

Assumption (3). We assume the latent trial-dependent process and stimulus to be slowly varying

signals, and thus adopt a piece-wise constant model in which these processes are constant within

consecutive windows of length W (i.e. xt;l ¼ xWk ;l and st ¼ sWk
, for ðk � 1ÞW þ 1 � t<kW and

k ¼ 1; � � � ;K with Wk ¼ ðk � 1ÞW þ 1 and KW ¼ T) for our theoretical analysis, as is usually done in

spike count calculations for conventional noise correlation estimates.

Our main theoretical result is as follows:

Theorem 1 (Performance Bounds) Let q> 1

64
, 0<�<1=2, and 0<h � 1=2 be fixed constants,

s2

m :¼ maxiðSxÞi;i and s2

s :¼ 1

K

PK
k¼1

s2Wk
. Then, under Assumptions (1 - 3), the bias and variance of the

maximum likelihood estimators bd and bSx, conditioned on an event AW with P AWð Þ � 1� h satisfy:

biasAW
bdj
� ����

��� � 1ffiffiffiffiffiffiffiffiffiffiffiffi
W1�2�

p C1 2sw

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þa2

p
þ 1

� �
þ t j;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarAW

bdj
� �r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðSxÞj;j
KLs2

s 1�hð Þ

s

þ 1ffiffiffiffiffiffiffiffiffiffiffiffi
W1�2�

p C2 2sw

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þa2

p
þ 1

� �
þ et j;

biasAW
ðbSxÞi;j
� ����

��� �
j Sxð Þi;jj

KLð1�hÞþ
ffiffiffiffiffiffiffiffiffiffiffiffi
logW

W1�2�

r
C3 14sw

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þa2

p
þ 3

� �
þ �i;j;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarAW

ðbSxÞi;j
� �r

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KL� 1ð Þ ðSxÞ2i;j þðSxÞi;iðSxÞj;j

� �

K2L2 1�hð Þ

vuut þ
ffiffiffiffiffiffiffiffiffiffiffiffi
logW

W1�2�

r
C4 2sw

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þa2

p
þ 1

� �
þ e�i;j;

for all i; j¼ 1;2; � � � ;N, if

logW �max
logð8KLN=hÞ

q
;
32s2

mq

�2
;
2 logð64qÞ
1� 2�

;
maxf6:25; 4 kmxk¥þmaxk;j jsWk

djj
� 	� �2g

8qs2
m

; log2

( )
;

where t j and et j denote bounded terms that are Oðs2

wÞ or O 1

W

� �
, �i;j and e�i;j denote bounded terms

that are Oðs2

wÞ or O 1

W1�2�

� �
and C1;C2;C3 and C4 are bounded constants given in Appendix 2.

Proof. The proof of Theorem 1 is provided in Appendix 2.
&

In order to discuss the implications of this theoretical result, several remarks are in order:

Remark 1: Achieving near Oracle performance
A common benchmark in estimation theory is the performance of the idealistic oracle estima-
tor, in which an oracle directly observes the true latent process xt;l and the true kernel dj and
forms the correlation estimates. In this case, the oracle would incur zero bias and variance of
order O 1=KLð Þ in estimating dj, and outputs an estimate of Sx with bias and variance in the
order of O 1=KLð Þ. Theorem 1 indeed states that for sufficiently large W and small sw, the bias
and variance of the ML estimators are arbitrarily close to those of the oracle estimator. Recall
that our variational inference framework is in fact a solution technique for the regularized ML
problem. Hence, the bounds in Theorem 1 provide a benchmark for the expected
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performance of the proposed estimators, by quantifying the excess bias and variance over the
performance of the oracle estimator.
Remark 2: Effect of the observation noise and observation duration
As the assumed window of stationarity W ! ¥ (and hence the observation duration T ! ¥),

the loss of performance of the proposed estimators only depends on s2

w, the variance of the

observation noise. As a result, at a given observation noise variance s2

w, these bounds provide
a sufficient upper bound on the time duration of the observations required for attaining a

desired level of estimation accuracy. It is noteworthy that s2

w is typically small in practice, as it
pertains to the effective observation noise and is significantly diminished by pixel averaging of
the fluorescence traces following cell segmentation.
Remark 3: Effect of the number of trials
Finally, note that the bounds in Theorem 1 have terms that also drop as the number of trials L
grows. These terms in fact pertain to the performance of the oracle estimator. As the number
of trials grows (L ! ¥), the oracle estimates become arbitrarily close to the true parameters Sx

and dj. Thus, our theoretical performance bounds also provide a sufficient upper bound on the
number of trials L required for the oracle estimator to attain a desired level of estimation
accuracy.

Discussion
We developed a novel approach for the joint estimation of signal and noise correlations of neuronal

activities directly from two-photon calcium imaging observations and tested our method with experi-

mental data. Existing widely used methods either take the fluorescence traces as surrogates of spik-

ing activity, or first recover the unobserved spikes using deconvolution techniques, both followed by

computing Pearson correlations or connectivity matrices. As such, they typically result in estimates

that are highly biased and are heavily dependent on the choice of the spike deconvolution tech-

nique. We addressed these issues by explicitly relating the signal and noise covariances to the

observed two-photon data via a multi-tier Bayesian model that accounts for the observation process

and non-linearities involved in spiking activity. We developed an efficient estimation framework by

integrating techniques from variational inference and state-space estimation. We also established

performance bounds on the bias and variance of the proposed estimators, which revealed favorable

scaling with respect to the observation noise and trial length.

We demonstrated the utility of our proposed estimation framework on both simulated and

experimentally recorded data from the mouse auditory cortex. In our simulation studies, we evalu-

ated the robustness of our proposed method with respect to several model mismatch conditions

induced by the stimulus integration model, calcium decay, SNR level, firing rate, and temporally cor-

related observation noise. In all cases, we observed that our proposed estimates outperform the

existing methods in recovering the signal and noise correlations.

There are two main sources for the observed performance gap between our proposed method

and existing approaches. The first source is the favorable soft decisions on the timing of spikes

achieved by our method as a byproduct of the iterative variational inference procedure. An accurate

probabilistic decoding of spikes results in better estimates of the signal and noise correlations, and

conversely having more accurate estimates of the signal and noise covariances improves the proba-

bilistic characterization of spiking events. This is in contrast with both the Pearson correlations com-

puted from two-photon data and two-stage methods: in computing the Pearson correlations from

two-photon data, spike timing is heavily blurred by the calcium decay; in the two-stage methods,

erroneous hard decisions on the timing of spikes result in biases that propagate to and contaminate

the downstream signal and noise correlation estimation and thus results in significant errors.

The second source of performance improvement is the explicit modeling of the non-linear map-

ping from stimulus and latent covariates to spiking through a canonical point process model, which

is in turn tied to a two-photon observation model in a multi-tier Bayesian fashion. Our theoretical

analysis in Theorem 1 corroborates that this virtue of our proposed methodology results in robust

performance under limited number of trials. As we have shown in Appendix 1, as the number of tri-

als L and trial duration T tend to infinity, conventional notions of signal and noise correlation indeed

recover the ground truth signal and noise correlations, as the biases induced by non-linearities aver-

age out across trial repetitions. However, as exemplified in Figure 2—figure supplement 2, in order
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to achieve comparable performance to our method using few trials (e.g. L ¼ 20), the conventional

correlation estimates require considerably more trials (e.g. L ¼ 1000).

Application to two-photon data recorded from the mouse primary auditory cortex showed

that unlike the aforementioned existing methods, our estimates provide noise correlation struc-

tures that are expectedly invariant across spontaneous and stimulus-driven conditions within an

experiment, while producing signal correlation structures that are largely distinct from those

given by noise correlation. These results provide evidence for the involvement of distinct func-

tional neuronal network structures in encoding the stimulus-dependent and stimulus-independent

information.

Our analysis of the relationship between the signal and noise correlations in layers 2/3 and 4 in

mouse A1 indicated a smaller correlation between signal and noise correlations than previously

reported (Winkowski and Kanold, 2013). Thus, our proposed method suggests that the signal and

noise correlations reflect distinct circuit mechanisms of sound processing in layers 2/3 vs 4. The spa-

tial distribution of signal correlations obtained by our method was consistent with previous work

showing significant negative trends with distance (Winkowski and Kanold, 2013). However, in addi-

tion, our proposed method revealed a significant negative trend of noise correlations with distance

in layer 2/3, but not in layer 4, in contrast to the outcome of Pearson correlation analysis. The lack of

a negative trend in layer 4 could be attributed to the sparse nature of the noise correlation spread in

layer 4, as revealed by our analysis of two-dimensional spatial spreads. The latter analysis indeed

revealed that the noise correlations in layer 2/3 are more widespread than those in layer 4, consis-

tent with existing work based on whole-cell patch recordings (Meng et al., 2017a; Meng et al.,

2017b).

The two-dimensional spatial spreads of signal and noise correlations obtained by our method are

more distinct than those obtained by Pearson correlations. The spatial spreads also allude to direc-

tionality of the functional connectivity patterns, with a notable rostrocaudal preference in layer 4.

This result seems surprising in light of existing evidence for quasi-rostrocaudal organization of the

tonotopic axis in mouse A1 (Romero et al., 2020). However, given the heterogeneity of tuning in

both layers 2/3 and 4 with a best frequency interqartile range of ~1–1.5 octaves over the imaging

field (Bowen et al., 2020) and using supra-threshold tones, we expect that the tones will drive not

only neurons with the corresponding best frequency, but also neurons tuned to neighboring fre-

quencies. Moreover, there is high connectivity between layer 4 cells within a few 100 mm across the

tonotopic axis (Kratz and Manis, 2015; Meng et al., 2017a), potentially amplifying and broadening

the effect of supra-threshold tones.

Our proposed method can scale up favorably to larger populations of neurons, thanks to the

underlying low-complexity variational updates in the inference procedure. Due to its minimal depen-

dence on training data, our estimation framework is also applicable to single-session analysis of two-

photon data with limited number of trials and duration. Another useful byproduct of the proposed

framework is gaining access to approximate posterior densities in closed-form, which allows further

statistical analyses such as construction of confidence intervals. Our proposed methodology can thus

be used as a robust and scalable alternative to existing approaches for extracting neuronal correla-

tions from two-photon calcium imaging data.

A potential limitation of our proposed generative model is the assumption that there is at most

one spiking event per time frame for each neuron, in light of the fact that typical two-photon imag-

ing frame durations are in the range of 30–100 ms. Average spike rates of excitatory neurons in

mouse A1 layers 2/3 and 4 are of the order of < 10 Hz (Petrus et al., 2014; Forli et al., 2018) and

thus our model is reasonable for the current study, although it might not be optimal during bursting

activity. It is noteworthy that we relax this assumption in the inference framework by allowing the

magnitude of putative spikes to be greater than one, thus alleviating the model mismatch during

episodes of rapid increase in firing rate. This assumption can also be made more precise by adopting

a Poisson model, but that would render closed-form variational density updates intractable.

Furthermore, in the regime of extremely low spiking rate and high observation noise, the

proposed method may fail to capture the underlying correlations faithfully and its performance

degrades to those of existing methods based on Pearson correlations, as we have shown

through our simulation studies. Nevertheless, our method addresses key limitations of conven-

tional signal and noise correlation estimators that persist even in high spiking rate and high SNR

conditions.
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Our proposed estimation framework can be used as groundwork for incorporating other notions

of correlation such as the connected correlation function (Martin et al., 2020), and to account for

non-Gaussian and higher order structures arising from spatiotemporal interactions (Kadirvelu et al.,

2017; Yu et al., 2011). Other possible extensions of this work include leveraging variational infer-

ence beyond the mean-field regime (Wang and Blei, 2013), extension to time-varying correlations

that underlie rapid task-dependent dynamics, and extension to non-linear models such as those

parameterized by neural networks (Aitchison et al., 2017). In the spirit of easing reproducibility, a

MATLAB implementation of our proposed method as well as the data used in this work are made

publicly available (Rupasinghe, 2020; Rupasinghe et al., 2021).

Materials and methods

Proposed forward model
Suppose we observe fluorescence traces of N neurons, for a total duration of T discrete-time frames,

corresponding to L independent trials of repeated stimulus. Let yt;l :¼ ½yð1Þt;l ; y
ð2Þ
t;l ; � � � ; y

ðNÞ
t;l �>,

zt;l :¼ ½zð1Þt;l ; z
ð2Þ
t;l ; � � � ; z

ðNÞ
t;l �>, and nt;l :¼ ½nð1Þt;l ; n

ð2Þ
t;l ; � � � ; n

ðNÞ
t;l �> be the vectors of noisy observations, intracel-

lular calcium concentrations, and ensemble spiking activities, respectively, at trial l and frame t. We

capture the dynamics of yt;l by the following state-space model:

yt;l ¼Azt;lþwt;l; zt;l ¼ azt�1;lþnt;l;

where A2R
N�N represents the scaling of the observations, wt;l is zero-mean i.i.d. Gaussian noise

with covariance Sw, and 0� a<1 is the state transition parameter capturing the calcium dynamics

through a first order model. Note that this state-space is non-Gaussian due to the binary nature of

the spiking activity, that is, n
ðjÞ
t;l 2 f0;1g. We model the spiking data as a point process or Generalized

Linear Model with Bernoulli statistics (Eden et al., 2004; Paninski, 2004; Smith and Brown, 2003;

Truccolo et al., 2005):

n
ðjÞ
t;l ~Bernoulli l

ðjÞ
t;l

� �
; l

ðjÞ
t;l ¼f x

ðjÞ
t;l ;dj

>st
� �

;

where l
ðjÞ
t;l is the conditional intensity function (Truccolo et al., 2005), which we model as a non-linear

function of the known external stimulus st and the other latent intrinsic and extrinsic trial-dependent

covariates, xt;l :¼ ½xð1Þt;l ;x
ð2Þ
t;l ; � � � ;x

ðNÞ
t;l �>. While we assume the stimulus st 2R

M to be common to all neu-

rons, we model the distinct effect of this stimulus on the jth neuron via an unknown kernel dj 2R
M ,

akin to the receptive field.

The non-linear mapping of our choice is the logistic link, which is also the canonical link for a Ber-

noulli process in the point process and Generalized Linear Model frameworks (Truccolo et al.,

2005). Thus, we assume:

f x
ðjÞ
t;l ;dj

>st
� �

¼
exp x

ðjÞ
t;l þdj

>st
� �

1þ exp x
ðjÞ
t;l þdj

>st
� � :

Finally, we assume the latent trial dependent covariates to be a Gaussian process xt;l ~N ðmx;SxÞ,
with mean mx :¼ ½�ð1Þx ;�ð2Þx ; � � � ;�ðNÞx �> and covariance Sx.

The probabilistic graphical model in Figure 8 summarizes the main components of the aforemen-

tioned forward model. According to this forward model, the underlying noise covariance matrix that

captures trial-to-trial variability can be identified as Sx. The signal covariance matrix, representing

the covariance of the neural activity arising from the repeated application of the stimulus st, is given

by Ss :¼ D> cov st; stð ÞD, where D :¼ ½d1; d2; � � � ; dN � 2 R
M�N . The signal and noise correlation matrices,

denoted by S and N, can then be obtained by standard normalization of Ss and Sx:

ðSÞi;j :¼
ðSsÞi;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðSsÞi;i:ðSsÞj;j
q ; ðNÞi;j :¼

ðSxÞi;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSxÞi;i:ðSxÞj;j

q ; 8i; j¼ 1;2; � � � ;N:
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The main problem is thus to estimate fSx;Dg from the noisy and temporally blurred data

yt;l
� 	T;L

t¼1;l¼1
.

Overview of the proposed estimation method
First, given a limited number of trials L from an ensemble with typically low spiking rates, we need

to incorporate suitable prior assumptions to avoid overfitting. Thus, we impose a prior pprðSxÞ on the

noise covariance, to compensate sparsity of data. A natural estimation method to estimate fSx;Dg in

a Bayesian framework is to maximize the observed data likelihood p
�
fyt;lgT;Lt;l¼1

��Sx;D
�
, that is maxi-

mum likelihood (ML). Thus, we consider the joint likelihood of the observed data and latent pro-

cesses to perform Maximum a Posteriori (MAP) estimation:

pðy;z;x;SxjDÞ ¼ pprðSxÞ
YT;L

t;l¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞN jSwj

q exp �1

2
ðyt;l �Azt;lÞ>S�1

w ðyt;l �Azt;lÞ
� �

�
YT ;L;N

t;l;j¼1

exp x
ðjÞ
t;l þdj

>st
� �� �zðjÞ

t;l
�az

ðjÞ
t�1;l

1þ exp x
ðjÞ
t;l þdj

>st
� �

YT;L

t;l¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞN jSxj

q exp �1

2
ðxt;l �mxÞ>S�1

x ðxt;l �mxÞ
� �

:

(4)

Inspecting this MAP problem soon reveals that estimating Sx and D is a challenging task: (1) stan-

dard approaches such as Expectation-Maximization (EM) (Shumway and Stoffer, 1982) are intracta-

ble due to the complexity of the model, arising from the hierarchy of latent processes and the non-

linearities involved in their mappings and (2) the temporal coupling of the likelihood in the calcium

concentrations makes any potential direct solver scale poorly with T .

Thus, we propose an alternative solution based on Variational Inference (VI) (Beal, 2003;

Blei et al., 2017; Jordan et al., 1999). VI is a method widely used in Bayesian statistics to approxi-

mate unwieldy posterior densities using optimization techniques, as a low-complexity alternative

strategy to Markov Chain Monte Carlo sampling (Hastings, 1970) or empirical Bayes techniques

such as EM. To this end, we treat fxt;lgT ;Lt;l¼1
and Sx as latent variables and fzt;lgT;Lt;l¼1

and D as unknown

Figure 8. Probabilistic graphical model of the proposed forward model. The fluorescence observations at the tth

time frame and lth trial: yt;l, are noisy surrogates of the intracellular calcium concentrations: zt;l. The calcium

concentration at time t is a function of the spiking activity nt;l, and the calcium activity at the previous time point

zt�1;l. The spiking activity is driven by two independent mechanisms: latent trial-dependent covariates xt;l, and

contributions from the known external stimulus st , which we model by D>st (in which the receptive field D is

unknown). Then, we model xt;l as a Gaussian process with constant mean mx, and unknown covariance Sx. Finally,

we assume the covariance Sx to have an inverse Wishart prior distribution with hyper-parameters cx and �x. Based

on this forward model, the inverse problem amounts to recovering the signal and noise correlations by directly

estimating Sx and D (top layer) from the fluorescence observations yt;l
� 	T;L

t¼1;l¼1
(bottom layer).
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parameters to be estimated. We introduce a framework to update the latent variables and parame-

ters sequentially, with straightforward update rules. We will describe the main ingredients of the

proposed framework in the following subsections. Hereafter, we use the shorthand notations

y :¼ fyt;lgT;Lt;l¼1
, z :¼ fzt;lgT;Lt;l¼1

, and x :¼ fxt;lgT;Lt;l¼1
.

Preliminary assumptions
For the sake of simplicity, we assume that the constants a, A, Sw and mx are either known or can be

consistently estimated from pilot trials. Next, we take pprðSxÞ to be an Inverse Wishart density:

Sx ~ InvWishNðcx;�xÞ;

which turns out to be the conjugate prior in our model. Thus, cx and �x will be the hyper-parameters

of our model. Procedures for hyper-parameter tuning and choosing the key model parameters are

given in subsections Hyper-parameter tuning and Guidelines for model parameter settings,

respectively.

Decoupling via Pólya-Gamma augmentation
Direct application of VI to problems containing both discrete and continuous random variables

results in intractable densities. Specifically, finding a variational distribution for xt;l in our model with

a standard distribution is not straightforward, due to the complicated posterior arising from co-

dependent Bernoulli and Gaussian random variables. In order to overcome this difficulty, we employ

Pólya-Gamma (PG) latent variables (Pillow and Scott, 2012; Polson et al., 2013; Linderman et al.,

2016). We observe from Equation 4 that the posterior density, pðxjz;D;SxÞ is conditionally indepen-

dent in t; l with:

pðxt;ljz;D;SxÞ / pðxt;ljSxÞ
YN

j¼1

exp x
ðjÞ
t;l þdj

>st
� �� �zðjÞ

t;l
�az

ðjÞ
t�1;l

1þ exp x
ðjÞ
t;l þdj

>st
� � :

Thus, upon careful inspection, we see that this density has the desired form for the PG augmenta-

tion scheme (Polson et al., 2013). Accordingly, we introduce a set of auxiliary PG-distributed i.i.d.

latent random variables vt;l :¼ ½!ð1Þ
t;l ;!

ð2Þ
t;l ; � � � ;!

ðNÞ
t;l �>, !

ðjÞ
t;l ~PGð1;0Þ for 1� j�N, 1� t� T and 1� l� L,

to derive the complete data log-likelihood:

logpðy;z;x;v;SxjDÞ

¼�TL

2
log jSxjþ logppr Sxð Þþ

XT ;L

t;l¼1

�
� 1

2
yt;l�Azt;l
� �>

S
�1

w yt;l�Azt;l
� �

�1

2

�
xt;l�mx

�>
S
�1

x

�
xt;l �mx

�

þ
XN

j¼1

n�
z
ðjÞ
t;l �az

ðjÞ
t�1;l �

1

2

�
x
ðjÞ
t;l þdj

>st
� �

� 1

2
!
ðjÞ
t;l x

ðjÞ
t;l þdj

>st
� �2

þ logp
PGð1;0Þ !

ðjÞ
t;l

� �o�
þC;

(5)

where v :¼ vt;l

� 	T;L
t;l¼1

and C accounts for terms not depending on y;z;x;v, Sx and D. The complete

data log-likelihood is notably quadratic in zt;l, which as we show later admits efficient estimation pro-

cedures with favorable scaling in T.

Deriving the optimal variational densities
In this section, we will outline the procedure of applying VI to the latent variables

x ¼ xt;l
� 	T;L

t;l¼1
;v ¼ vt;l

� 	T;L
t;l¼1

and Sx, assuming that the parameter estimates bz and bD of the previous

iteration are available. The methods that we propose to update the parameters bz and bD subse-

quently, will be discussed in the next section.

The objective of variational inference is to posit a family of approximate densities Q over the

latent variables, and to find the member of that family that minimizes the Kullback-Leibler (KL) diver-

gence to the exact posterior:

q�ðx;v;Sxjbz; bDÞ ¼
q2Q

argminKL qðx;v;Sxjbz; bDÞ



pðx;v;Sxjy;bz; bDÞ

� �
:
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However, evaluating the KL divergence is intractable, and it has been shown (Blei et al., 2017)

that an equivalent result to this minimization can be obtained by maximizing the alternative objective

function, called the evidence lower bound (ELBO):

ELBOðqÞ ¼E½logpðx;v;Sx;yjbz; bDÞ��E½logqðx;v;Sxjbz; bDÞ�:

Further, we assume Q to be a mean-field variational family (Blei et al., 2017), resulting in the

overall variational density of the form:

q x;v;Sxð Þ ¼ q Sxð Þ
YT;L

t;l¼1

q xt;l
� �YN

j¼1

q !
ðjÞ
t;l

� � !
: (6)

Under the mean field assumptions, the maximization of the ELBO can be derived using the opti-

mization algorithm ‘Coordinate Ascent Variational Inference’ (CAVI) (Bishop, 2006; Blei et al.,

2017). Accordingly, we see that the optimal variational densities in Equation 6 take the forms:

log q� xt;l
� �

/ E
q� Sxð Þq� vt;lð Þ logp xt;ljvt;l;Sx;y;bz; bD

� �h i
;

log q� !
ðjÞ
t;l

� �
/ E

q� xt;lð Þ logp !
ðjÞ
t;l jxt;l;Sx;y;bz; bD

� �h i
;

log q� Sxð Þ / Eq� xð Þ logp Sxjx;y;bz; bD
� �h i

:

Upon evaluation of these expectations, we derive the optimal variational distributions as:

q�ðxt;lÞ~Nðmxt;l ;Qxt;lÞ; q�ð!ðjÞ
t;l Þ~PGð1;c

ðjÞ
t;l Þ; q�ðSxÞ~ InvWishNðPx;gxÞ;

whose parameters mxt;l :¼ ½mð1Þ
xt;l
;mð2Þ

xt;l
; � � � ;mðNÞ

xt;l
�T , Qxt;l , c

ðjÞ
t;l , Px, and gx can be updated given parameter

estimates bD and bz:

Qxt;l ¼ ðeVt;lþgxP
�1

x Þ�1; mxt;l ¼Qxt;lðbzt;l�abzt�1;l �
1

2
1� eVt;l

bD>st þgxP
�1

x mxÞ;

Px :¼ cx þ
PT;L

t;l¼1

Qxt;l þmxt;lm
>
xt;l

�mxm
>
xt;l

�mxt;lm
>
x þmxm

>
x

n o
; c

ðjÞ
t;l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qxt;l

� �
j;j
þ m

ðjÞ
xt;l þbdj

>
st

� �2r
;

and gx :¼ �x þTL, with eVt;l 2R
N�N denoting a diagonal matrix with entries ðeVt;lÞj;j :¼

1

2c
ðjÞ
t;l

tanh

�
c
ðjÞ
t;l

2

�

and 12R
N denoting the vector of all ones.

Low-complexity parameter updates
Note that even though z is composed of the latent processes zt;l, we do not use VI for its inference,

and instead consider it as an unknown parameter. This choice is due to the temporal dependencies

arising from the underlying state-space model in Equation 4, which hinders a proper assignment of

variational densities under the mean field assumption. We thus seek to estimate both z and D using

the updated variational density q�ðx;v;SxÞ.
First, note that the log-likelihood in Equation 5 is decoupled in l, which admits independent

updates to fzt;lgTt¼1
, for l ¼ 1; � � � ; L. As such, given an estimate bD, we propose to estimate fzt;lgTt¼1

as:

fbzt;lgTt¼1
¼

fzt;lgTt¼1

argmax Eq�ðx;v;SxÞ log p y; z; x;v;SxjbD
� �h i

¼
fzt;lgTt¼1

argmin
PT

t¼1

1

2
yt;l � Azt;l
� �>

S
�1

w yt;l � Azt;l
� �

�PN
j¼1

m
ðjÞ
xt;l þ bdj

>
st

� �
z
ðjÞ
t;l � az

ðjÞ
t�1;l

� �n o
;

under the constraints 0 � z
ðjÞ
t;l � az

ðjÞ
t�1;l � 1, for t ¼ 1; � � � ; T and j ¼ 1; � � � ;N. These constraints are a

direct consequence of n
ðjÞ
t;l ¼ z

ðjÞ
t;l � az

ðjÞ
t�1;l being a Bernoulli random variable with E n

ðjÞ
t;l

h i
2 ½0; 1�. While

this problem is a quadratic program and can be solved using standard techniques, it is not readily

decoupled in t, and thus standard solvers would not scale favorably in T .

Instead, we consider an alternative solution that admits a low-complexity recursive solution by

relaxing the constraints. To this end, we relax the constraint zt;l � azt�1;l � 1 and replace the
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constraint zt;l � azt�1;l � 0 by penalty terms proportional to jzðjÞt;l � az
ðjÞ
t�1;lj. The resulting relaxed prob-

lem is thus given by:

fzt;lgTt¼1

min
XT

t¼1

1

2
yt;l �Azt;l
� �>

S
�1

w yt;l �Azt;l
� �

þ
XN

j¼1

n
ðjÞ
t;l z

ðjÞ
t;l �az

ðjÞ
t�1;l

���
���

( )
; (7)

where n
ðjÞ
t;l :¼ b jmðjÞ

xt;l þbdj
>
stj with b� 1 being a hyper-parameter. Given that the typical spiking rates

are quite low in practice, m
ðjÞ
xt;l þbdj

>
st is expected to be a negative number. Thus, we have assumed

that �m
ðjÞ
xt;l �bdj

>
st ¼ jmðjÞ

xt;l þbdj
>
st j.

The problem of Equation 7 pertains to compressible state-space estimation, for which fast recur-

sive solvers are available (Kazemipour et al., 2018). The solver utilizes the Iteratively Re-weighted

Least Squares (IRLS) (Ba et al., 2014) framework to transform the absolute value in the second term

of the cost function into a quadratic form in zt;l, followed by Fixed Interval Smoothing (FIS)

(Rauch et al., 1965) to find the minimizer. At iteration k, given a current estimate z½k�1�, the problem

reduces to a Gaussian state-space estimation of the form:

yt;l ¼Azt;lþwt;l; zt;l ¼ azt�1;l þ vt;l; (8)

with wt;l ~N ð0;SwÞ and vt;l ~N ð0;S½k�
vt;l
Þ, where S

½k�
vt;l

2R
N�N is a diagonal matrix with

ðS½k�
vt;l
Þj;j :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bzðjÞ½k�1�
t;l

�abzðjÞ½k�1�
t�1;lð Þ2þ"2

q
=n

ðjÞ
t;l , for some small constant ">0. This problem can be efficiently solved

using FIS, and the iterations proceed for a total of K times or until a standard convergence criterion

is met (Kazemipour et al., 2018). It is noteworthy that our proposed estimator of the calcium con-

centration zt;l can be thought of as soft spike deconvolution, which naturally arises from our varia-

tional framework, as opposed to the hard spike deconvolution step used in two-stage estimators.

Finally, given q�ðx;v;SxÞ and the updated bz, the estimate of dj for j ¼ 1; 2; � � � ;N can be updated

in closed-form by maximizing the expected complete log-likelihood Eq�ðx;v;SxÞ log pðy;bz; x;v;SxjDÞ½ �:

bdj ¼
PT;L

t;l¼1

ðeVt;lÞj;jstst>
� � !�1

PT;L

t;l¼1

�
bzðjÞt;l �abzðjÞt�1;l�

1

2

� �
st �ðeVt;lÞj;jmðjÞ

xt;l
st

� !
:

The VI procedure iterates between updating the variational densities and parameters until con-

vergence, upon which we estimate the noise and signal covariances as:

bSx :¼modefq�ðSxÞg ¼
Px

gx þNþ 1
; bSs :¼ bD>

E½stst>� bD:

The overall combined iterative procedure is outlined in Algorithm 1. Furthermore, a MATLAB

implementation of this algorithm is publicly available in Rupasinghe, 2020. It is worth noting that a

special case of our proposed variational inference procedure can be used to estimate signal and

noise correlations from electrophysiology recordings. Given that spiking activity, that is fnt;lgT;Lt;l¼1
, is

directly observed in this case, the solution to the optimization problem in Equation (7) is no longer

required. Thus, the parameters Sx and D can be estimated using a simplified variational procedure,

which is outlined in Algorithm 2 in Appendix 3.

Guidelines for model parameter settings
There are several key model parameters that need to be set by the user prior to the application of

our proposed method. Here, we provide our rationale and criteria for choosing these parameters,

which could also serve as guidelines in facilitating the applicability and adoption of our method by

future users. We will also provide the specific choices of these parameters used in our simulation

studies and real data analyses.

Number of neurons selected for the analysis (N)
While our proposed method scales-up well with the population size due to low-complexity update

rules involved, including neurons with negligible spiking activity in the analysis would only increase
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the complexity and potentially contaminate the correlation estimates. Thus, we performed an initial

pre-processing step to extract N neurons that exhibited at least one spiking event in at least half of

the trials considered.

Stimulus integration window length (R)
The number of lags R considered in stimulus integration is a key parameter that can be set through

data-driven approaches or using prior domain knowledge. Examples of common data-driven criteria

include cross-validation, Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC),

which balance the estimation accuracy and model complexity (Arlot and Celisse, 2010; Ding et al.,

2018).

To quantify the effect of R on model complexity, we first describe the stimulus encoding model in

our framework. Suppose that the onset of the pth tone in the stimulus set (p ¼ 1; � � � ;P, where P is the

number of distinct tones) is given by a binary sequence f
ðpÞ
t 2 f0; 1g. The choice of R implies that the

response at time t post-stimulus depends only on the R most recent time lags. As such, the effective

stimulus at time t corresponding to tone p is given by s
ðpÞ
t :¼ ½f ðpÞt ; f

ðpÞ
t�1
; � � � ; f ðpÞt�Rþ1

�> 2 R
R. By including

all the P tones, the overall effective stimulus at the tth time frame is given by

st :¼ ½sð1Þ>t ; � � � ; sðPÞ>t �> 2 R
RP. The stimulus modulation vector dj would thus be RP-dimensional. As a

result, the number of parameters (M ¼ RP) to be estimated linearly increases with R. By using addi-

tional domain knowledge, we chose R to be large enough to capture the stimulus effects, and at the

same time to be small enough to control the complexity of the algorithm.

As an example, given that the typical tone response duration of mouse primary auditory neurons

is < 1 s (Linden et al., 2003; DeWeese et al., 2003; Petrus et al., 2014), with a sampling frequency

of fs ¼ 30 Hz, a choice of R ~ 30 would suffice to capture the stimulus effects. By further examining

the effect of varying R on the proposed correlation estimates in Figure 4—figure supplement 1, we

chose R ¼ 25 for our real data analyses.

Observation noise covariance (Sw) and scaling matrix (A)
We assumed that the observation noise covariance Sw is diagonal, and estimated the diagonal ele-

ments using the background fluorescence in the absence of spiking events, for each neuron. We set

A ¼ aI, where I 2 R
N�N represents the identity matrix, and estimated a by considering the average

increase in fluorescence after the occurrence of isolated spiking events. Specifically, we derived the

average fluorescence activity of multiple trials triggered to the fluorescence rise onset, and set a as

the increment in the magnitude of this average fluorescence immediately following the rise onset.

State transition parameter (a)
We chose a in the range ½0:95; 0:98�, which match the slow dynamics of the calcium indicator in our

data. We tested the robustness of our estimates under different choices of a in this range through

the method outlined in Hyper-parameter tuning, and accordingly chose the optimal value of a.

Mean of the latent trial-dependent process (mx)
We estimated mx as a constant that is proportional to the average firing rate. To this end, we param-

etrized each component of mx as �
ðjÞ
x ¼ �a� þ b�

1

LT

PT ;L
t;l¼1

y
ðjÞ
t;l , for j ¼ 1; � � � ;N. The constants a� and b�

were chosen such that �2 � �ðjÞx � �10, which gives the range of baseline parameters compatible

with observed firing rates in our experimental data.

Parameter choices for simulation study 1
In the first simulation study, we set a ¼ 0:98, b ¼ 8, A ¼ 0:1I, mx ¼ �4:51 and Sw ¼ 2� 10

�4I

(I 2 R
8�8 represents the identity matrix and 1 2 R

8 represents the vector of all ones), so that the SNR

of simulated data was in the same range as that of experimentally-recorded data. We used a 6
th

order autoregressive process with a mean of -1 as the stimulus (st), and considered R ¼ 2 (M ¼ 2)

lags of the stimulus (i.e. st ¼ ½st; st�1�>) in both the generative model and inference procedure. The

components of the linear and quadratic stimulus modulation vectors, that is dj, edj;1 and edj;2, were
chosen at random uniformly in the range ½�0:5; 0:5�. The variance of st was set in each case such that
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the average power of the overall signal component (d>j st for the linear model, and

d>j st þ ðedj;1
>
stÞ2 þ ðedj;2

>
stÞ2 for the non-linear model) was comparable to the average power of the

noise component (x
ðjÞ
t;l ).

Algorithm 1 Estimation of Sx and D through the proposed iterative procedure

Inputs: Ensemble of fluorescence measurements yt;l
� 	T;L

t;l¼1
, constants a;A;Sw and mx, hyper-parameters cx, �x, b and �, tolerance at convergence d and

the external stimulus st

Outputs: bSx and bD
Initialization: Initial choice of Svt;l ,

eVt , bSx and bD, residual ¼ 10 d, gx ¼ �x þ LT

1: while residual � d do
Estimate calcium concentrations using Fixed Interval Smoothing
2: for l ¼ 1; � � � ;L do
Forward filter:
3: for t ¼ 1; :::;T do
4: zðtjt�1Þ;l ¼ a zðt�1jt�1Þ;l
5: Pðtjt�1Þ;l ¼ a2 Pðt�1jt�1Þ;l þ Svt;l

6: Bt;l ¼ Pðtjt�1Þ; lA
>ðAPðtjt�1Þ;lA

> þ SwÞ�1

7: zðtjtÞ;l ¼ zðtjt�1Þ;l þ Bt;lðyt;l � A zðtjt�1Þ;lÞ
8: PðtjtÞ;l ¼ ðI� Bt;l AÞPðtjt�1Þ;l
9: end for
Backward smoother:
10: for t ¼ T � 1; :::; 1 do
11: ẑt;l ¼ zðtjtÞ;l þ a PðtjtÞ;l P

�1

ðtþ1jtÞ;lðẑtþ1;l � zðtþ1jtÞ;lÞ
12: end for
13: end for
Update variational parameters
14: for t ¼ 1; � � � ;T and l ¼ 1; � � � ; L do

15: Qxt;l ¼ ðeVt;l þ gxP
�1

x Þ�1

16: mxt;l ¼ Qxt;l ðbzt;l � abzt�1;l � 1

2
1� eVt;l

bD>st þ gxP
�1

x mxÞ
17: v

ðjÞ
t;l :¼ bjmðjÞ

xt;l þ d̂Tj st j
18: for j ¼ 1; � � � ;N do

19: c
ðjÞ
t;l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qxt;l

� �
j;j
þ m

ðjÞ
xt;l þ bdj

>
st

� �2r

20: ðeVt;lÞj;j :¼
1

2c
ðjÞ
t;l

tanh

�
c
ðjÞ
t;l

2

�

21: end for
22: end for

23: Px :¼ cx þ
PT;L

t;l¼1

Qxt;l þmxt;lm
>
xt;l

� mxm
>
xt;l

�mxt;lm
>
x þ mxm

>
x

n o

Update IRLS covariance approximation
24: for l ¼ 1; � � � ;L; t ¼ 1; � � � ;T and j ¼ 1; � � � ;N do

25: ðSvt;l Þj;j :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð̂zðjÞt;l � aẑ

ðjÞ
t�1;lÞ2 þ "2

q
=v

ðjÞ
t;l

26: end for
Update outputs and the convergence criterion
27: for j ¼ 1; � � � ;N do

28: bdj ¼
PT;L

t;l¼1

ðeVt;lÞj;jstst>
� � !�1

PT ;L

t;l¼1

bzðjÞt;l � abzðjÞt�1;l �
1

2

� �
st � ðeVt;lÞj;jmðjÞ

xt;l
st

� � !

29: end for

30: ðbDÞprev ¼ bD, bD ¼ bd1;bd2; � � � ;bdN
h i

31: ðbSxÞprev ¼ bSx, bSx ¼ Px

gxþNþ1

32: residual ¼ kðbSxÞprev � bSxk2=kðbSxÞprevk2 þ kðbDÞprev � bDk2=kðbDÞprevk2
33: end while

34: Return bSx and bD

Parameter choices for simulation study 2
In the second simulation study, we set a ¼ 0:98, A ¼ 0:1I, mx ¼ �4:51 and Sw ¼ 10

�4I (I 2 R
30�30 rep-

resents the identity matrix and 1 2 R
30 represents the vector of all ones) when generating the fluo-

rescence traces yt;l
� 	T;L

t;l¼1
, so that the SNR of the simulated data was in the same range as of real
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calcium imaging observations. Furthermore, we simulated the spike trains based on a Poisson pro-

cess (Smith and Brown, 2003) using the discrete time re-scaling procedure (Brown et al., 2002;

Smith and Brown, 2003). Following the assumptions in Brown et al., 2002, we used an exponential

link to simulate the observations:

n
ðjÞ
t;l ~Poisson l

ðjÞ
t;l

� �
; l

ðjÞ
t;l ¼ exp x

ðjÞ
t;l

� �
;

as opposed to the Bernoulli-logistic assumption in our recognition model. Then, we estimated the

noise covariance bSx using the Algorithm 1, with a slight modification. Since there are no external

stimuli, we set st ¼ 0 and D¼ 0. Accordingly, in Algorithm 1, we initialized bD¼ 0 and did not perform

the update on bD in the subsequent iterations.

Parameter choices for real data study 1
The dataset consisted of recordings from 371 excitatory neurons, from which we selected N ¼ 16

responsive neurons for the analysis. Each trial consisted of T ¼ 3600 time frames (the sampling fre-

quency was 30 Hz, and each trial had a duration of 120 s), with the presentation of a random

sequence of four tones (P ¼ 4). The spiking events were very sparse and infrequent, and hence this

dataset fits our model with at most one spiking event in a time frame.

We considered R ¼ 25 (M ¼ 100) time lags in this analysis and further examined the effect of vary-

ing R in Figure 4—figure supplement 1. We set a ¼ 0:95 and A ¼ I (I 2 R
16�16 represents the iden-

tity matrix).

Parameter choices for real data study 2
Each trial consisted of T ¼ 765 frames (25.5 s) at a sampling frequency of 30 Hz. The A1 neurons

studied here had low response rates (in both time and space), with only ~ 10 neurons exhibiting spik-

ing activity in at least half of the trials. Thus, we selected N ¼ 10 neurons and L ¼ 10 trials for the

analysis, and chose R ¼ 25 lags of the stimulus (M ¼ 25) in the model for the stimulus-driven condi-

tion. We set a ¼ 0:95 and A ¼ 0:75I (I 2 R
10�10 represents the identity matrix).

Parameter choices for real data study 3
Each experiment consisted of L ¼ 5 trials of P ¼ 9 different tone frequencies repeated at four differ-

ent amplitude levels, resulting in each concatenated trial being ~ 180 s long (see Bowen et al., 2020

for more details). We set the number of stimulus time lags considered to be R ¼ 25 (M ¼ 225). For

each layer, we analyzed fluorescence observations from six experiments. In each experiment, we

selected the most responsive N ~ 20 neurons for the subsequent analysis. We set a ¼ 0:95 and A ¼ I.

Performance evaluation
Simulation studies
Since the ground truth is known in simulations, we directly compared the performance of each signal

and noise correlation estimate with the ground truth signal and noise correlations, respectively. Sup-

pose the ground truth correlations are given by the matrix X and the estimated correlations are

given by the matrix bX. To quantify the similarity between X and bX, we defined the following two

metrics:

Normalized Mean Squared Error (NMSE): The NMSE computes the mean squared error of bX with

respect to X using the Frobenius Norm:

NMSE :¼ kX� bXk2F
kXk2F

:

Ratio between out-of-network power and in-network power (leakage): First, we identified the in-

network and out-of-network components from the ground truth correlation matrix X. Suppose that if

the true correlation between the ith neuron and the jth neuron is non-zero, then Xð Þi;j
���

���>dx, for some

dx>0. Thus, we formed a matrix Xin that masks the in-network components, by setting Xin
� �

i;j
¼ 1 if
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Xð Þi;j
���

���>dx and Xin
� �

i;j
¼ 0 if Xð Þi;j

���
���� dx. Likewise, we also formed a matrix Xout that masks the out-of-

network components, by setting Xoutð Þi;j¼ 1 if Xð Þi;j
���

���� dx and Xoutð Þi;j¼ 0 if Xð Þi;j
���

���>dx. Then, using

these two matrices we quantified the leakage effect of bX comparative to X by:

leakage :¼ kbX �Xoutk2F
kbX �Xink2F

;

where ð�Þ denotes element-wise multiplication.

Real data studies
To quantify the similarity and dissimilarity between signal and noise correlation estimates, we used a

statistic based on the Tanimoto similarity metric (Lipkus, 1999), denoted by TsðX;YÞ for two matri-

ces X and Y. For two vectors a and b with non-negative entries, the Tanimoto coefficient (Lip-

kus, 1999) is defined as:

Tða;bÞ :¼ aTb

aTaþbTb� aTb
:

The Tanimoto similarly metric between two matrices can be defined in a similar manner, by vecto-

rizing the matrices. Thus, we formulated a similarity metric between two correlation matrices X and

Y as follows. Let Xþ :¼maxfX;0Ig and X� :¼maxf�X;0Ig, with the maxf�; �g operator interpreted

element-wise. Note that X¼Xþ �X�, and Xþ;X� have non-negative entries. We then defined the

similarity matrix by combining those of the positive and negative parts as follows:

TsðX;YÞ :¼ "TðXþ;YþÞþ ð1� "ÞTðX�;Y�Þ

where "2 ½0;1� denotes the percentage of positive entries in X and Y. As a measure of dissimilarity,

we used TdðX;YÞ :¼ 1�TsðX;YÞ. The values of TdðbS; bNÞ in Table 1 and TsðbNspon; bNstimÞ and

TdðbSstim; bNstimÞ reported in Table 2 were obtained based on the foregoing definitions.

To further assess the statistical significance of these results, we performed following randomized

tests. To test the significance of TsðbNspon; bNstimÞ, for each comparison and each algorithm, we fixed

the first matrix (i.e. bNspon) and randomly shuffled the entries of the second one (i.e. bNstim) while

respecting symmetry. We repeated this procedure for 10000 trials, to derive the null distributions

that represented the probabilities of chance occurrence of similarities between two random groups

of neurons.

To test the significance of TdðbS; bNÞ and TdðbSstim; bNstimÞ, for each comparison and each algorithm,

again we fixed the first matrix (i.e. signal correlations). Then, we formed the elements of the second

matrix (akin to noise correlations) as follows. For each element of the second matrix, we assigned

either the same element as the signal correlations (in order to model the leakage effect) or a random

noise (with same variance as the elements in the noise correlation matrix) with equal probability. As

before, we repeated this procedure for 10,000 trials, to derive the null distributions that represent

the probabilities of chance occurrence of dissimilarities between two matrices that have some leak-

age between them.

Hyper-parameter tuning
The hyper-parameters that directly affect the proposed estimation are the inverse Wishart prior

hyper-parameters: cx and �x. Given that �x appears in the form of gx :¼ TLþ �x, we will consider cx

and gx as the main hyper-parameters for simplicity. Here, we propose a criterion for choosing these

two hyper-parameters in a data-driven fashion, which will then be used to construct the estimates of

the noise covariance matrix bSx and weight matrix bD. Due to the hierarchy of hidden layers in our

model, an empirical Bayes approach for hyper-parameter selection using a likelihood-based perfor-

mance metric is not straightforward. Hence, we propose an alternative empirical method for hyper-

parameter selection as follows.
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For a given choice of cx and gx, we estimate bSx and bD following the proposed method. Then,

based on the generative model in Proposed forward model, and using the estimated values of bSx

and bD, we sample an ensemble of simulated fluorescence traces by ¼ fbyðlÞt gT ;Lt;l¼1
, and compute the met-

ric d cx; gxð Þ:

dðcx;gxÞ :¼Dfrob covðby;byÞ;covðy;yÞð Þ;

where covð�; �Þ denotes the empirical covariance and DfrobðX;YÞ :¼ kX�Yk2F. Note that DfrobðX;YÞ is

strictly convex in X. Thus, minimizing Dfrob X;Yð Þ over X for a given Y has a unique solution. Accord-

ingly, we observe that d cx;gxð Þ is minimized when covðby;byÞ is nearest to covðy;yÞ. Therefore, the cor-

responding estimates bSx and bD that generated by, best match the second-order statistics of y that

was generated by the true parameters Sx and D.

The typically low spiking rate of sensory neurons observed in practice may render the estimation

problem ill-posed. It is thus important to have an accurate choice of the scale matrix cx in the prior

distribution. However, an exhaustive search for optimal tuning of cx is not computationally feasible,

given that it has NðN þ 1Þ=2 free variables. Thus, the main challenge here is finding the optimal

choice of the scale matrix cx;opt.

To address this challenge, we propose the following method. First, we fix cx;init ¼ t I, where t is a

scalar and I 2 R
N�N is the identity matrix. Next, given cx;init we find the optimal choice of gx as:

gx;init ¼
gx2Sg

argmin dðcx;init;gxÞ ;

where Sg is a finite set of candidate solutions for gx>N� 1. Let bSx;init denote the noise covariance

estimate corresponding to hyper-parameters cx;init;gx;init

� �
. We will next use bSx;init to find a suitable

choice of cx. To this end, we first fix gx;opt :¼ TLþ e�x, for some N� 1<e�x � TL. Note that by choosing

e�x to be much smaller than TL, the final estimates become less sensitive to the choice of gx. Then,

we construct a candidate set S for cx;opt by scaling bSx;init with a finite set of scalars h2R
þ, i.

e. S :¼ hbSx;init; h2R
þ

n o
. To select cx;opt, we match it with the choice of gx;opt by solving:

cx;opt ¼
cx2S 
argmin d cx;gx;opt

� �
:

Finally, we use these hyper-parameters cx;opt;gx;opt

� �
to obtain the estimators bSx and bD as the out-

put of the algorithm.

Experimental procedures
All procedures were approved by the University of Maryland Institutional Animal Care and Use Com-

mittee. Imaging experiments were performed on a P60 (for real data study 1) and P83 (for real data

study 2) female F1 offspring of the CBA/CaJ strain (The Jackson Laboratory; stock #000654) crossed

with transgenic C57BL/6J-Tg(Thy1-GCaMP6s)GP4.3Dkim/J mice (The Jackson Laboratory; stock

#024275) (CBAxThy1), and F1 (CBAxC57). The third real data study was performed on data from

P66-P93 and P166-P178 mice (see Bowen et al., 2020 for more details). We used the F1 generation

of the crossed mice because they have good hearing into adulthood (Frisina et al., 2011).

We performed cranial window implantation and two-photon imaging as previously described in

Francis et al., 2018; Liu et al., 2019; Bowen et al., 2019. Briefly, we implanted a cranial window of

3 mm in diameter over the left auditory cortex. We used a scanning microscope (Bergamo II series,

B248, Thorlabs) coupled to Insight X3 laser (Spectra-physics) (study 1) or pulsed femtosecond Ti:Sap-

phire two-photon laser with dispersion compensation (Vision S, Coherent) (studies 2 and 3) to image

GCaMP6s fluorescence from individual neurons in awake head-fixed mice with an excitation wave-

lengths of l ¼ 920 nm and l ¼ 940 nm, respectively. The microscope was controlled by ThorImageLS

software. The size of the field of view was 370� 370�m. Imaging frames of 512� 512 pixels (pixel size

0:72�m) were acquired at 30 Hz by bidirectional scanning of an 8 kHz resonant scanner. The imaging

depth was around 200�m below pia.
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Data pre-processing
A circular ROI was manually drawn over each cell body to extract raw fluorescence traces from indi-

vidual cells. Neuropil contamination subtraction and baseline correction were performed on the raw

fluorescence traces of each cell (Francis et al., 2018; Liu et al., 2019; Bowen et al., 2020) accord-

ing to Fcell�anFneuropil�baseline

baseline
, where an was set to 0.7 in real data study 1 (Francis et al., 2018), 0.8 in real

data study 2 (Liu et al., 2019) and 0.9 in real data study 3 (Bowen et al., 2020). The two-photon

observations yt;l
� 	T;L

t;l¼1
used in our analyses are the output of this pre-processing step.

Stimuli for real data study 1
During imaging experiments, we presented four tones (4, 8, 16, and 32 kHz) at 70 dB SPL. The tones

were 2 s in duration with an inter-trial silence of 4 s. For the sequence of tones, we first generated a

randomized sequence that consisted of five repeats for each tone (20 tones in total) and then the

same sequence was repeated for 10 trials.

Stimuli for real data study 2
During imaging experiments, we presented a 75 dB SPL 100 ms broadband noise (4–48 kHz) as the

auditory stimulus. Each trial was 5.1 s long (1 s pre-stimulus silence + 0.1 s stimulus + 3 s post-stimu-

lus silence), and the inter-trial duration was 3 s. Spontaneous neuronal activity was collected from

activity during randomly interleaved no-stimuli trials of the same duration, and these trials had com-

plete silence throughout the trial duration (5.1 s long).

Then, we extracted 50 such trials from each type, and formed 10 (L ¼ 10) trials each of 25.5 s

duration (T ¼ 765 frames) for the subsequent analysis, by concatenating five 5.1 s trials. This final

step was performed to increase the effective trial duration.

Stimuli for real data study 3
During imaging experiments, sounds were played at four sound levels (20, 40, 60, and 80 dB SPL).

Auditory stimuli consisted of sinusoidal amplitude-modulated (SAM) tones (20 Hz modulation, cosine

phase), ranging from 3 to 48 kHz. The frequency resolution was two tones/octave (0.5 octave spac-

ing) and each of these tonal stimuli was 1 s long, repeated five times with a 4�6 s inter-stimulus

interval (see Bowen et al., 2020 for details).
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Appendix 1

Relationship to existing definitions of Signal and Noise correlations
Recall that the conventional definitions of signal and noise covariance of spiking activity between the

ith and jth neuron are (Lyamzin et al., 2015):
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, is the empirical covariance. The correla-

tions, are then derived by the standard normalization:
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Suppose that the spiking events follow the forward model:
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where f :R2 ! ½0;1� is a differentiable non-linear mapping. We assume xt;l and st to be independent.
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from the law of large numbers. Then, if we consider the Taylor series expansion of f x
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ðjÞ
t;l represent the higher order terms. Then, as L!¥, we get:

ðScon
s Þi;j »cov di

>st
� �

f
di

>stð Þ �ðiÞx ;0
� �

; dj
>st

� �
f

dj
>stð Þ �ðjÞx ;0
� �� �

þ �t;l;

since lim
L!¥

1

L

PL

l¼1

x
ðjÞ
t;l

� �
¼ �ðjÞx by the Law of Large numbers. Thus, we see that:

ðScon
s Þi;j » CSdi

>cov st ; stð Þdj þ �t;l
¼CSðSsÞi;jþ �t;l;

where CS is a constant and �t;l is typically small if the latent process xt;l and the stimulus st are con-

centrated around their means. Then, the signal correlations are obtained by normalization of the sig-

nal covariance as in Equation 9, through which the scaling factor CS cancels and we get:

ðSconÞi;j » ðSÞi;j:
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Thus, as T;L!¥, we see that S is indeed the signal correlation matrix that is aimed to be approx-

imated by the conventional definitions.

Next, let us consider ðNconÞi;j. Similar to foregoing analysis of the signal covariance, as T ! ¥ we

get:

ðScon
x Þi;j »

1

L

X

l

cov l
ðiÞ
t;l �

1

L

X

l0
l
ðiÞ
t;l0 ;l

ðjÞ
t;l �

1

L

X

l0
l
ðjÞ
t;l0

 !
:

Then, from a Taylor series expansion, we get:

ðScon
x Þi;j »

1

L

X

l

cov

 
x
ðiÞ
t;lf x

ðiÞ
t;lð Þ �ðiÞx ;0
� �

� 1

L

X

l0
x
ðiÞ
t;l0f
�
x
ðiÞ
t;l0

� �ðiÞx ;0
� �

þ �ðiÞt;l ;

x
ðjÞ
t;lf x

ðjÞ
t;lð Þ �ðjÞx ;0
� �

� 1

L

X

l0
x
ðjÞ
t;l0f
�
x
ðjÞ
t;l0

� �ðjÞx ;0
� �

þ �ðjÞt;l

!
;

where �
ðiÞ
t;l and �

ðjÞ
t;l represent the higher order terms. Then, as L!¥:

ðScon
x Þi;j »

1

L

X

l

cov x
ðiÞ
t;l ��ðiÞx

� �
f

x
ðiÞ
t;lð Þ �ðiÞx ;0
� �

; x
ðjÞ
t;l ��ðjÞx

� �
f

x
ðjÞ
t;lð Þ �ðjÞx ;0
� �� �

þ �t;l;

from the law of large numbers. Accordingly, we see that:

ðScon
x Þi;j » CN

1

L

X

l

cov x
ðiÞ
t;l ��ðiÞx ;x

ðjÞ
t;l ��ðjÞx

� �
þ �t;l

¼CN ðSxÞi;jþ �t;l;

where CN is a constant and �t;l is typically small if the latent process xt;l and the stimulus st are con-

centrated around their means. Then, the noise correlations are derived by normalization of the noise

covariance given in Equation 9. This cancels out the scaling factor CN , and we get:

ðNconÞi;j » ðNÞi;j:

Thus, we similarly conclude that as T;L!¥, the conventional definition of noise correlation Ncon

indeed aims to approximate N.

As a numerical illustration, we demonstrated in Figure 2—figure supplement 2 that the conven-

tional definitions of the correlations indeed approximate our proposed definitions, but require much

larger number of trials to be accurate. More specifically, in order to achieve comparable perfor-

mance to our method using L ¼ 20 trials, the conventional correlation estimates require L ¼ 1000

trials.
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Appendix 2

Proof of Theorem 1
In what follows, we present a comprehensive proof of Theorem 1. Recall the following key

assumptions:

Assumption (1). We assume a scalar time-varying external stimulus (i.e. st ¼ st, and hence dj ¼
dj; d ¼ ½d1; d2; � � � ; dN �> ). Furthermore, we set the observation noise covariance to be Sw ¼ s2

wI, for

notational convenience.

Assumption (2). We derive the performance bounds in the regime where T and L are large, and

thus do not impose any prior distribution on the correlations (i.e. pprðSxÞ / 1), which are otherwise

needed to mitigate overfitting (see Preliminary assumptions).

Assumption (3). We assume the latent trial-dependent process and stimulus to be slowly varying

signals, and thus adopt a piece-wise constant model in which these processes are constant within

consecutive windows of length W (i.e., xt;l ¼ xWk ;l and st ¼ sWk
, for ðk � 1ÞW þ 1 � t<kW and k ¼

1; � � � ;K with Wk ¼ ðk � 1ÞW þ 1 and KW ¼ T) for our theoretical analysis, as is usually done in spike

count calculations for conventional noise correlation estimates.

Proof of Theorem 1. First, recall the proposed forward model (see Proposed forward model)

under Assumption (1 – 3):

yt;l ¼ Azt;l þwt;l;
zt;l ¼ azt�1;lþnt;l;

n
ðjÞ
t;l ~ Bernoulli f x

ðjÞ
Wk ;l

� �� �
;

xWk ;l ~N mx þ sWk
d; Sxð Þ;

where f �ð Þ :¼ expð�Þ
1þexpð�Þ, is the logistic function. Note that we have re-defined the latent process xt;l by

absorbing the stimulus activity std to the mean of xt;l for notational convenience, without loss of gen-

erality. Hereafter, we also assume that A¼ I without loss of generality. For a truncation level B (to be

specified later), consider the event

AW :¼ x
ðjÞ
Wk ;l

���
���� Band

1

2ð1þ exp ðBÞÞ � n
ðjÞ
Wk ;l

� 1� 1

2ð1þ exp ðBÞÞ for j¼ 1; � � � ;N;k¼ 1; � � � ;K and l¼ 1; � � � ;L
� �

;

such that nWk ;l ¼ n
ð1Þ
Wk ;l

;n
ð2Þ
Wk ;l

; � � � ;nðNÞWk ;l

h i>
:¼ 1

W

PW
w¼1

nðk�1ÞWþw;l.

First, we derive convenient forms of the maximum likelihood estimators via the Laplace’s approxi-

mations and asymptotic expansions (Wong, 2001) through the following lemma:

Lemma 1

Conditioned on event AW , the maximum likelihood estimators of the stimulus kernel of the jth neu-

ron and the noise covariance between the ith and jth neurons take the forms:

bdj ¼ edj 1þO s2

w

� �� �
1þO 1

W

� �� �
and

ðbSxÞi;j ¼ ðeSxÞi;j 1þO s2

w

� �� �
1þO 1

W

� �� �
;

where

edj ¼
1

L
PK

k¼1
s2Wk

XK;L

k;l¼1

sWk
f�1 enðjÞWk ;l

� �
��ðjÞx

� �
and

ðeSxÞi;j ¼
1

KL

XK;L

k;l¼1

f�1 enðiÞWk ;l

� �
��ðiÞx � sWk

edi
� �

f�1 enðjÞWk ;l

� �
��ðjÞx � sWk

edj
� �

;

with
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enWk ;l ¼ enð1ÞWk ;l
;enð2ÞWk ;l

; � � � ;enðNÞWk ;l

h i>
:¼ 1

W

XW

w¼1

yðk�1ÞWþw;l �ayðk�1ÞWþw�1;l

� �
and f�1ðzÞ :¼ lnðz=ð1� zÞÞ:

Proof of Lemma 1.

First, maximizing the data likelihood, we derive the estimators:

bdj ¼
dj

argmax pðyjSx;dÞ ¼

Z
1

L
PK

k¼1
s2
Wk

PK;L

k;l¼1

sWk
x
ðjÞ
Wk ;l

��ðjÞx
� � !

pðyjnÞpðnjxÞpðxjSx;dÞdndx
R
pðyjnÞpðnjxÞpðxjSx;dÞdndx

; (10)

and

ðbSxÞi;j ¼
ðSxÞi;j

argmax pðyjSx;dÞ

¼

Z
1

KL

PK;L

k;l¼1

x
ðiÞ
Wk ;l

��ðiÞx �sWk
bdi

� �
x
ðjÞ
Wk ;l

��ðjÞx �sWk
bdj

� � !
pðyjnÞpðnjxÞpðxjSx;dÞdndx

R
pðyjnÞpðnjxÞpðxjSx;dÞdndx

;

(11)

where Wk ¼ ðk� 1ÞW þ 1. Then, we simplify these integrals based on the saddle point method of

asymptotic expansions (Wong, 2001). To that end, first consider the numerator of Equation 10

denoted by Ið1Þnum. First, we evaluate the integration in Ið1Þnum with respect to the variable n. To that end,

note:

Ið1Þnum ¼
Z

hð1ÞnumðnÞexp ðA1f1ðnÞÞdn;

where hð1ÞnumðnÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞTNLs2TNL

w

p
Z

1

L
PK

k¼1
s2
Wk

PK;L
k;l¼1

sWk
x
ðjÞ
Wk ;l

��ðjÞx
� �� �

pðnjxÞpðxjSx;dÞdx, A1 ¼ 1

s2
w
, f1ðnÞ ¼

� 1

2

P
t;l;j y

ðjÞ
t;l �

Pt
k¼1

at�kn
ðjÞ
t;l

� �2
and dn is shorthand notation for the product measure of the discrete

random vector n. Observing that rf1ðbnÞ ¼ 0 for bn :¼ bnt;l ¼ yt;l�ayt�1;l

� 	T;L
t;l¼1

, using the method of

asymptotic expansions, Ið1Þnum can be evaluated as:

Ið1Þnum ¼ hð1ÞnumðbnÞ� exp ðA1f1ðbnÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞTLN

�A1 Hðf1Þj j

s

1þO 1

A1

� �� �
; (12)

where the determinant of the Hessian matrix Hðf1Þj j, is a negative function of a. Note that the covari-

ance of this Gaussian integral �ðHðf1ÞÞ�1

� �
is a function of a2 ð0;1Þ, and hence is bounded. Thus, all

higher order error terms in Equation 12 are also bounded, as higher order moments of Gaussian

distributions are functions of the covariance.

Next, we simplify the integral hð1ÞnumðbnÞ in Equation 12 using a similar procedure. We have:

hð1ÞnumðbnÞ ¼
Z

rð1ÞnumðxÞexp A2f2ðxÞð Þdx; (13)

where f2ðxÞ ¼
P

k;l;j en
ðjÞ
Wk ;l

x
ðjÞ
Wk ;l

� log 1þ exp x
ðjÞ
Wk ;l

� �� �� �
with

enWk ;l ¼ enð1ÞWk ;l
;enð2ÞWk ;l

; � � � ;enðNÞWk ;l

h i>
:¼ 1

W

XW

w¼1

bnðk�1ÞWþw;l;

rð1ÞnumðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞðWþ1ÞKLN

s2TNL
w jSxjKL

q exp �1

2

X

t

xWk ;l�mx � sWk
d

� �>
S�1

x xWk ;l �mx� sWk
d

� �
 !

� 1

L
PK

k¼1
s2
Wk

PK
k¼1

sWk ;l x
ðjÞ
Wk ;l

��ðjÞx
� �� �

;
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and A2 ¼W. Then, we note that the gradient of f2, rf2ðbxÞ ¼ 0 for bx :¼ bxðjÞWk ;l
¼f�1 enðjÞWk ;l

� �n oK;L;N

k;l;j¼1

, where

f�1ðzÞ :¼ logitðzÞ ¼ lnðz=ð1� zÞÞ. Accordingly, by re-applying the saddle point method of asymptotic

expansions, we evaluate the integral in Equation 13 as:

hð1ÞnumðbnÞ ¼ rð1ÞnumðbxÞ� exp ðA2f2ðbxÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞKLN
�A2jHðf2ðbxÞÞj

s

1þO 1

A2

� �� �
; (14)

where the determinant of the Hessian, jHðf2ðbxÞÞj ¼�Qk;l;jen
ðjÞ
Wk ;l

1�enðjÞWk ;l

� �
<0 when conditioned on

event AW . The higher order terms in Equation 14 will be bounded if the covariance of the saddle

point approximation �ðHðf2ðbxÞÞÞ�1

� �
is bounded, which we ensure by conditioning on event AW .

This completes the evaluation of Ið1Þnum.

Following the same sequence of arguments, we evaluate the denominator of Equation 10

denoted by I
ð1Þ
den. Accordingly, we derive:

I
ð1Þ
den ¼ h

ð1Þ
denðbnÞ� exp ðA1f1ðbnÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞTLN

�A1jHðf1Þj

s

1þO 1

A1

� �� �
;

h
ð1Þ
denðbnÞ ¼ r

ð1Þ
denðbxÞ� exp ðA2f2ðbxÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞKLN

�A2jHðf2ðbxÞÞj

s

1þO 1

A2

� �� �
;

(15)

where r
ð1Þ
denðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞðWþ1ÞKLN
s2TNL
w jSx jKL

p exp � 1

2

P
k;l xWk ;l�mx � sWk

d
� �>

S�1

x xWk ;l�mx � sWk
d

� �� �
: Finally, by

combining Equation 12, Equation 14 and Equation 15, the maximum likelihood estimator in Equa-

tion 10 takes the form:

bdj ¼
Ið1Þnum

I
ð1Þ
den

¼ edj
1þO 1

A1

� �� �
1þO 1

A2

� �� �

1þO 1

A1

� �� �
1þO 1

A2

� �� �¼ edj 1þO s2

w

� �� �
1þO 1

W

� �� �
:

Further, following the same sequence of reasoning, simplifying the numerator ðIð2ÞnumÞ and denomi-

nator ðIð2ÞdenÞ of Equation 11 yields:

ðbSxÞi;j ¼
Ið2Þnum

I
ð2Þ
den

¼ ðeSxÞi;j
1þO 1

A1

� �� �
1þO 1

A2

� �� �

1þO 1

A1

� �� �
1þO 1

A2

� �� �¼ ðeSxÞi;j 1þO s2

w

� �� �
1þO 1

W

� �� �
:

This concludes the proof of Lemma 1. &

Given that f�1ðzÞ is unbounded for z ¼ 0 or z ¼ 1, we consider another truncation:

f�1

B0 ðzÞ :¼ minfmaxff�1ðzÞ;�B0g;B0g, where B0 ¼ 2 log ð2 exp ðBÞ þ 1Þ. This choice of B0 guarantees that

over AW , f�1

B0 n
ðjÞ
Wk ;l

� ����
���<B0 for all j ¼ 1; � � � ;N, k ¼ 1; � � � ;K and l ¼ 1; � � � ; L: and thus f�1

B0 n
ðjÞ
Wk ;l

� �
¼

f�1 n
ðjÞ
Wk ;l

� �
on AW .

From Lemma 1, the bias and variance of the maximum likelihood estimators, bdj and ðbSxÞi;j are
upper-bounded, if those of edj and ðeSxÞi;j are bounded:

bias bdj
� ����

���� bias edj
� ����

���þ zj; Var bdj
� �

� Var edj
� �

þezj; (16)

and

bias ðbSxÞi;j
� ����

���� bias ðeSxÞi;j
� ����

���þ �i;j; Var ðbSxÞi;j
� �

� Var ðeSxÞi;j
� �

þ e�i;j; (17)

where zj, ezj, �i;j and e�i;j represent terms that are Oðs2

wÞ or O 1

W

� �
. Thus, we seek to derive the perfor-

mance bounds of edj and ðeSxÞi;j.
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Bounding the bias of bdj
Let us first consider edj. Note that:

bias edj
� ����

��� :¼ E edj
h i

� dj

���
���

¼ðaÞ E edj� dOracleð Þj
h i���

���

�
ðbÞ 1

L
PK

k¼1
s2Wk

XK;L

k;l¼1

sWk
j jE f�1

B0 enðjÞWk ;l

� �
� x

ðjÞ
Wk ;l

���
���

h i
;

(18)

where ðaÞ holds since the Oracle estimator, dOracleð Þj¼ 1

L
PK

k¼1
s2
Wk

PK;L
k;l¼1

sWk
x
ðjÞ
Wk ;l

��ðjÞx
� �

(i.e., observing

xt;l directly) is unbiased and ðbÞ follows through the application of Jensen’s inequality and triangle

inequality. To simplify this bound, the triangle inequality yields:

E f�1

B0 enðjÞWk ;l

� �
� x

ðjÞ
Wk ;l

���
���

h i
�E f�1

B0 enðjÞWk ;l

� �
�f�1

B0 n
ðjÞ
Wk ;l

� ����
���

h i
þE f�1

B0 n
ðjÞ
Wk ;l

� �
� x

ðjÞ
Wk ;l

���
���

h i
: (19)

Then, to bound each of these terms, we establish a piece-wise linear Lipschitz-type bound on

f�1

B0 ðzÞ. First, consider the first term E f�1

B0 enðjÞWk ;l

� �
�f�1

B0 n
ðjÞ
Wk ;l

� ����
���

h i
. We seek to upper-bound this

expectation by bounding f�1

B0 enðjÞWk ;l

� �
�f�1

B0 n
ðjÞ
Wk ;l

� ����
��� via the following technical lemma:

Lemma 2. Conditioned on event AW , the following bound holds for all j ¼ 1; � � � ;N, k ¼ 1; � � � ;K
and l ¼ 1; � � � ; L:

" enðjÞWk ;l
;n

ðjÞ
Wk ;l

� �
:¼ f�1

B0 enðjÞWk ;l

� �
�f�1

B0 n
ðjÞ
Wk ;l

� ����
���� g Bð Þ enðjÞWk ;l

� n
ðjÞ
Wk ;l

���
���;

where

g Bð Þ ¼max 4 1þ exp ðBÞð Þ2;4exp ð�BÞ log 2exp ðBÞþ 1ð Þ 1þ 2exp ðBÞþ 1ð Þ2
� �n o

:

Proof of Lemma 2. First, consider the case n
ðjÞ
Wk ;l

� 0:5. We bound the function " enðjÞWk ;l
;n

ðjÞ
Wk ;l

� �
in a

piece-wise fashion as follows. Note that f�1

B0 enðjÞWk ;l

� �
is convex for enðjÞWk ;l

� 0:5 and concave for

enðjÞWk ;l
� 0:5. Thus, it immediately follows that for enðjÞWk ;l

� n
ðjÞ
Wk ;l

, " enðjÞWk ;l
;n

ðjÞ
Wk ;l

� �
is convex and hence:

" enðjÞWk ;l
;n

ðjÞ
Wk ;l

� �
�

B0þf�1

B0 n
ðjÞ
Wk ;l

� ����
���

n
ðjÞ
Wk ;l

� 1

1þexpðB0Þ

���
���

n
ðjÞ
Wk ;l

�enðjÞWk ;l

� �
: (20)

Furthermore, for n
ðjÞ
Wk ;l

� enðjÞWk ;l
� 0:5, " enðjÞWk ;l

;n
ðjÞ
Wk ;l

� �
is concave, and hence is bounded by the tangent

at n
ðjÞ
Wk ;l

:

" enðjÞWk ;l
;n

ðjÞ
Wk ;l

� �
� 1

n
ðjÞ
Wk ;l

ð1� n
ðjÞ
Wk ;l

Þ
enðjÞWk ;l

� n
ðjÞ
Wk ;l

� �
: (21)

Finally, for the case of enðjÞWk ;l
� 0:5, consider the line,

h enðjÞWk ;l
;n

ðjÞ
Wk ;l

� �
:¼

B0�f�1

B0 n
ðjÞ
Wk ;l

� ����
���

1

1þexpð�B0Þ� n
ðjÞ
Wk ;l

���
���
enðjÞWk ;l

� n
ðjÞ
Wk ;l

� �
: (22)

From the convexity of " enðjÞWk ;l
;n

ðjÞ
Wk ;l

� �
, h enðjÞWk ;l

;n
ðjÞ
Wk ;l

� �
upper bounds " enðjÞWk ;l

;n
ðjÞ
Wk ;l

� �
for enðjÞWk ;l

� 0:5, since

h 0:5;n
ðjÞ
Wk ;l

� �
� " 0:5;n

ðjÞ
Wk ;l

� �
for n

ðjÞ
Wk ;l

� 0:5. Combining the piece-wise bounds in Equation 20, Equa-

tion 21 and Equation 22, we conclude that for n
ðjÞ
Wk ;l

� 0:5:
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� �
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;B0
� �
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� n
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���
���; (23)

where
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;B0
� �

¼max
1

n
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Wk ;l

ð1� n
ðjÞ
Wk ;l

Þ
;
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� ����
���

n
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Wk ;l

� 1
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���
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B0 n
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1

1þexpð�B0Þ� n
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���
���

8
<
:

9
=
;:

Due to the symmetry of " enðjÞWk ;l
;n

ðjÞ
Wk ;l

� �
, the same bound in Equation 23 can be established for

n
ðjÞ
Wk ;l

>0:5 as well.

Then, using f�1

B0 n
ðjÞ
Wk ;l

� ����
��� � B0 and conditioning on event AW , we simplify this bound as:

~g n
ðjÞ
Wk ;l

;B0
� �

�max 4 1þ exp ðBÞð Þ2;4B
0
1þ exp ðB0Þð Þ 1þ exp ðBÞð Þ

exp ðB0Þ� 2exp ðBÞþ 1ð Þ

� �
:

Finally, based on the fact that B0 ¼ 2 log 2exp ðBÞþ 1ð Þ, the latter is further upper bounded as:

~g n
ðjÞ
Wk ;l

;B0
� �

� g Bð Þ;

where

g Bð Þ ¼max 4 1þ exp ðBÞð Þ2;4exp ð�BÞ log 2exp ðBÞþ 1ð Þ 1þ 2exp ðBÞþ 1ð Þ2
� �n o

:

This concludes the proof of Lemma 2. &

Following Lemma 2, by conditioning on the event AW we have:

EAW
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B0 enðjÞWk ;l

� �
�f�1
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� ����
���

h i
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���
���

h i
: (24)

Then, we note that:
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Wk ;l

���
���

h i
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ðjÞ
Wk ;l

���
���
2

� �s
¼ðdÞ sw

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þa2

p
ffiffiffiffiffi
W

p ; (25)

where in ðcÞ we have used the Cauchy-Schwarz inequality, and in ðdÞ we have used the fact that the

observation noise across the W time instances is i.i.d. and white. From the bounds in Equation 24

and Equation 25, we conclude that the first expectation in Equation 19, conditioned on event AW

is bounded as:

EAW
f�1

B0 enðjÞWk ;l

� �
�f�1

B0 n
ðjÞ
Wk ;l

� ����
���

h i
� g Bð ÞEAW
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h i

� g Bð Þ sw
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ffiffiffiffiffi
W

p
P AWð Þ

:
(26)

The foregoing sequence of reasoning similarly follows for E f�1

B0 n
ðjÞ
Wk ;l

� �
� x

ðjÞ
Wk ;l

���
���

h i
, since 1

1þexp ðBÞ�

f x
ðjÞ
Wk ;l

� �
� 1� 1

1þexp ðBÞ for k¼ 1; � � � ;K, l¼ 1; � � � ;L and j¼ 1; � � � ;N (as a consequence of jxðjÞWk ;l
j<B for

k¼ 1; � � � ;K, l¼ 1; � � � ;L and j¼ 1; � � � ;N, conditioned on AW ). Accordingly, we derive the upper bound

on the second term in Equation 19, conditioned on event AW :
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�
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ffiffiffiffiffi
W

p
P AWð Þ

;

(27)

where ðeÞ follows from the application of Jensen’s inequality, ðf Þ follows from the formula for the var-

iance of a Binomial random variable, and ðgÞ follows from the inequality f x
ðjÞ
Wk ;l

� �
1�f x

ðjÞ
Wk ;l

� �� �
� 1=4,

for f x
ðjÞ
Wk ;l

� �
2 ½0;1�. Combining the results in Equation 26 and Equation 27, the overall expectation

in Equation 19, conditioned on the event AW is upper-bounded by:

EAW
f�1

B0 enðjÞWk ;l

� �
� x
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���
���
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� 2g Bð Þffiffiffiffiffi

W
p sw
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p
þ 1

2

� �
; (28)

where we have lower bounded the probability of the event AW by 1=2 (that is, P AWð Þ>1=2). Thus,
from Equation 18 and Equation 28 we derive:

biasAW
edj
� ����

��� � 2g Bð Þffiffiffiffiffi
W

p sw

ffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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j j

L
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�
ðhÞ 2g Bð Þ

ss

ffiffiffiffiffi
W

p sw
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p
þ 1

2

� �
;

where in ðhÞ we have used the Cauchy-Schwarz inequality
PK

k¼1
sWk
j j �

ffiffiffiffi
K

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1

s2Wk

q
while defining

s2

s :¼ 1

K

PK
k¼1

s2Wk
.

Then, for B � 2:5, we have g Bð Þ ¼ 4ð1þ exp ðBÞÞ2 and B0 ¼ 2 logð2 exp ðBÞ þ 1Þ � 3B. Let B :¼
sm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8q logW

p
for some q> 1

64
. Further, for some �<1=2, suppose that:

logW �max
logð8KLN=hÞ

q
;
32s2

mq

�2
;
2 logð64qÞ
1� 2�

;
max 6:25; 4 kmxk¥þmaxk;j jsWk

djj
� 	� �2n o

8qs2
m

; log2

8
<
:

9
=
;: (29)

Under these conditions,

g Bð Þ � 4 1þ expðsm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8q logW

p
Þ

� �2
�
ðiÞ
16 exp 2sm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8q logW

p� �
� 16W�; (30)

where in ðiÞ we have used the fact that ex � 1 for x� 0. Thus, under the conditions in Equation 29,

we have:

biasAW
edj
� ����

���� 32

ss

ffiffiffiffiffiffiffiffiffiffiffiffi
W1�2�

p sw

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þa2

p
þ 1

2

� �
: (31)

Finally, from Equation 16 and Equation 31, we conclude that:

biasAW
bdj
� ����

���� 1ffiffiffiffiffiffiffiffiffiffiffiffi
W1�2�

p C1 2sw

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þa2

p
þ 1

� �
þO s2

w

� �
þO 1

W

� �
;

where C1 :¼ 16

ss
.

Bounding the variance of bdj
Next, we prove the upper bound on the variance of the maximum likelihood estimator, bdj. To that

end, we upper-bound the variance of edj. First, using the Cauchy-Schwarz inequality, we have:
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: (32)

Then, we upper-bound the conditional second moment of edj�ðdOracleÞj
���

��� using the same techni-

ques as we used in bounding the first moment. Accordingly, we get:
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(33)

where in ðjÞ, we have used the Cauchy-Schwarz inequality and ðkÞ follows from

EAW
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� x
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� �2
, which can be proven by the same techniques as

before.

Next, we note that the variance of the Oracle estimator ðdOracleÞj is given by:
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Combining Equation 32, Equation 33, and Equation 34, we can upper-bound the conditional

variance of edj following Equation 32 as:
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:

Then, following Equation 16, under the conditions for W in Equation 29, we conclude the proof

of the conditional variance of bdj:
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; (35)

where C2 :¼ 8
ffiffi
2

p
ss
.

Bounding the bias of ðbSxÞi;j
Next, following the foregoing techniques, we upper-bound the bias and variance of the noise covari-

ance estimator ðbSxÞi;j. To that end, we first note:

bias ðeSxÞi;j
� ����

��� :¼ E ðeSxÞi;j
h i
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���

���

�
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h i���

���þ bias SOracleð Þi;j
� ����

���;
(36)

where ðlÞ follows from the triangle inequality, with the Oracle noise covariance estimator (i.e.,

observing xt;l directly), being defined as:

SOracleð Þi;j¼
1

KL

XK;L
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x
ðiÞ
Wk ;l
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� �
x
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��ðjÞx � sWk
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� �
:

Then, to simplify the first term in Equation 36, we use similar techniques as before. Accordingly,
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(37)

where ðmÞ follows through the application of Jensen’s inequality and triangle inequality. Next, condi-

tioned on the event AW we have:
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(38)

where �m ¼ kmxk¥ and we have used B0 ¼ 2 log 2exp ðBÞþ 1ð Þ. Similarly, conditioned on the event

AW the second term in Equation 37 can be bounded as:
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(40)

Then, by combining the bounds in Equation 38 and Equation 40 and using an instance of

Cauchy-Schwarz inequality
PK

k¼1
sWk
j j

� �2�K
PK

k¼1
s2Wk

, we see that the bound in Equation 37 condi-

tioned on the event AW can be expressed as:
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Next, we see that the oracle estimator follows an Inverse Wishart distribution, that is

KLSOracle ~ InvWishNðSx;KL� 1Þ. Therefore, we get:

E SOracle½ � ¼ ðKL� 1Þ
KL

Sx:

Thus, the bias of the oracle estimator is given by:

bias SOracleð Þi;j
� ����

���¼ 1

KL
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Combining the results in Equation 41 and Equation 42, the bias of ðeSxÞi;j can be bounded as:

biasAW
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� ����

��� �
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
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þ4g Bð Þffiffiffiffiffi
W

p Bþ�mð ÞþO g Bð Þ2
W

 !
:

(43)

Finally, under the conditions for W in Equation 29, the latter inequality simplifies to:

biasAW
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��� �
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�
ðoÞ j Sxð Þi;jj

KLð1�hÞþ 64sm
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2q logW
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r
14sw
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þO 1

W1�2�

� �
;

(44)

where in ðnÞ we have used 2 logð2exp ðBÞþ 1Þ � 3B and B>2�m and in ðoÞ we have used

BgðBÞ � 16L�sm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8q logL

p
, which follows from Equation 30. Thus, following Equation 17 we derive

the bound on the bias of the maximum likelihood estimator:

biasAW
ðbSxÞi;j
� ����

����
j Sxð Þi;jj
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;

where C3 :¼ 64sm

ffiffiffiffiffi
2q

p
.

Bounding the variance of ðbSxÞi;j
Next, we establish an upper bound on the variance of the maximum likelihood estimator of the noise

covariance. To that end, we upper-bound the variance of ðeSxÞi;j. First, using the Cauchy-Schwarz

inequality, we get:

Var ðeSxÞi;j
� �

:¼E ðeSxÞi;j �E ðeSxÞi;j
h i���

���
2

� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ðeSxÞi;j �ðSOracleÞi;j
���

���
2

� �s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var SOracleð Þi;j
� �r( )2

:

(45)

Then, we upper-bound the conditional second moment of ðeSxÞi;j�ðSOracleÞi;j
���

��� using the same

techniques used in bounding its first moment. Accordingly, we derive:
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(46)

where the last bound follows from the Cauchy-Schwarz inequality. Then, we derive:
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(47)

Using the final bound of Equation 47 in Equation 46, we get:
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(48)

where the last inequality follows from an instance of the Cauchy-Schwarz inequality, that is
PK

k¼1
sWk
j j

� �2�K
PK

k¼1
s2Wk

.

Then, following the observation KL SOracle ~ InvWishNðSx;KL� 1Þ, we derive the variance of

SOracleð Þi;j:

Var SOracleð Þi;j
� �

¼ d2i;j ¼
KL� 1ð Þ ðSxÞ2i;j þðSxÞi;iðSxÞj;j
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K2L2
: (49)

Combining Equation 45, Equation 48 and Equation 49, we express the upper bound on the

conditional variance of ðeSxÞi;j as:
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Then, following Equation 17 and the conditions in Equation 29, we conclude the proof of the

upper bound on the conditional variance of ðbSxÞi;j:
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where C4 :¼ 384sm
ffiffiffi
q

p
.

Finally, it only remains to prove that the event AW occurs with high probability for sufficiently

large W:

Lemma 3. The probability of occurrence of the event

AW ¼ x
ðjÞ
Wk ;l

���
���� Band

1
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� 1� 1
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� �

is upper-bounded as follows:

P AWð Þ � 1�h;

for some constant 0<h� 1=2 satisfying the conditions of Equation (29).

Proof of Lemma 3.

First, using the union bound, we have:
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Next, we bound the probabilities on the right hand side using Chernoff’s inequality

(Boucheron et al., 2013). First, note that:
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tion 29) and ðqÞ has been derived by applying the Chernoff’s bound on the Gaussian random vari-

able x
ðjÞ
Wk ;l

. From the same reasoning, we see that P x
ðjÞ
Wk ;l

<�B
� �

� exp � B2

8s2
m

� �
. Combining these two

results, we get the upper bound:
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Next, note that:
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where ðrÞ follows from the observation 1
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Thus, using the Chernoff’s inequality on sub-Gaussian random variables (Boucheron et al., 2013),

we derive the upper-bound ðsÞ in Equation 52. In a similar fashion, based on the observation
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By combining the bounds in Equation 51, Equation 52, and Equation 53, the upper bound on

P AWð Þ in Equation 50 takes the form:

P AWð Þ � 1� 2KLN exp � W
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 !
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:

Finally, under the assumptions in Equation 29, we further simplify this bound as:

P AWð Þ � 1� 2KLN exp �W1��
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� �
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;

where we have used W � 2 (which gives logW � 2 log logW) and logW � 2 logð64qÞ
1�2� to show that

W1��
64

� q logW. Thus, logW � logð8KLN=hÞ
q

ensures that P AWð Þ � 1�h, for 0<h� 1

2
. &

This concludes the proof of Theorem 1.&
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Appendix 3

Adapting the proposed signal and noise correlation estimates to
spiking observations
While Algorithm 1 takes two-photon fluorescence observations as input and produces estimates of

signal and noise correlation as output, it is possible to adapt it to spiking observations obtained by

electrophysiology recordings. The resulting algorithm is obtained by simplifying the variational infer-

ence procedure in Algorithm 1 and is given below for completeness:

Algorithm 2 Estimation of Sx and D from spiking observations

Inputs: Ensemble of spiking observations nt;l
� 	T;L

t;l¼1
, constant mx, hyper-parameters cx and �x, tolerance at

convergence d and the external stimulus st

Outputs: bSx and bD
Initialization: Initial choice of Px, eVt , bSx and bD, residual ¼ 10 d, gx ¼ �x þ LT

1. while residual � d do
Update variational parameters
2. for t ¼ 1; :::;T and l ¼ 1; :::;L do

3. Qxt;l ¼ ðeVt;l þ gxP
�1

x Þ�1

4. mxt;l ¼ Qxt;l ðnt;l � 1

2
1� eVt;l

bD>st þ gxP
�1

x mxÞ
5. for j ¼ 1; � � � ;N do

6. c
ðjÞ
t;l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� �
j;j
þ m

ðjÞ
xt;l þ bdj

>
st

� �2r

7. ðeVt;lÞj;j :¼
1

2c
ðjÞ
t;l

tanh

�
c
ðjÞ
t;l

2

�

8. end for
9. end for

10. Px :¼ cx þ
PT;L

t;l¼1

Qxt;l þmxt;lm
>
xt;l

� mxm
>
xt;l

�mxt;lm
>
x þ mxm

>
x

n o

Update outputs and the convergence criterion
11. for j ¼ 1; � � � ;N do

12. bdj ¼
PT ;L

t;l¼1

ðeVt;lÞj;jstst>
� � !�1 XT ;L

t;l¼1

�
n
ðjÞ
t;l �

1

2

� �
st � ðeVt;lÞj;jmðjÞ

xt;l
st

�!

13. end for

14. ðbDÞprev ¼ bD, bD ¼ bd1;bd2; � � � ;bdN
h i

15. ðbSxÞprev ¼ bSx, bSx ¼ Px

gxþNþ1

16. residual ¼ kðbSxÞprev � bSxk2=kðbSxÞprevk2 þ kðbDÞprev � bDk2=kðbDÞprevk2
17. end while

18. Return bSx and bD
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