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Abstract

The cycle of day and night dominates life on earth. Therefore, almost all living organisms adopted 

a molecular clock linked to the light-dark cycles. It is now well established that this molecular 

clock is crucial for human health and wellbeing. Disruption of the molecular clockwork directly 

results in a myriad of disorders, including cardiovascular diseases. Further, the onset of many 

cardiovascular diseases such as acute myocardial infarction exhibits a circadian periodicity with 

worse outcomes in the early morning hours. Based on these observations, the research community 

became interested in manipulating the molecular clock to treat cardiovascular diseases. In recent 

years, several exciting discoveries of pharmacological agents or molecular mechanisms targeting 

the molecular clockwork have paved the way for circadian medicine’s arrival in cardiovascular 

diseases. The current review will outline the most recent circadian therapeutic advances related to 

the circadian rhythm protein Period2 (PER2) to treat myocardial ischemia and summarize future 

research in the respective field.
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Introduction

In the 1970s, research began to study the circadian system in Drosophila melanogaster. 

This led to discovering genes such as Period (Per) as critical molecular mechanisms of the 
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circadian clockwork (Tei, Okamura et al., 1997). In the early '80s, a multicenter analysis 

reported a circadian pattern for acute myocardial ischemia (MI), with a higher occurrence 

of MIs at 9.00h compared to 21.00h (Muller, Stone et al., 1985). These studies indicated 

that light cycles a critical for the onset of MI. Interestingly, an increase of MI during 

the winter, where light periods are shorter, is a well-documented phenomenon in the 

US (Spencer, Goldberg et al., 1998). Regardless, since MI follows a circadian pattern, it 

has been suggested that circadian rhythm disruption contributes to cardiovascular disease 

(Staels, 2006). Other studies also reported an increased incidence of unstable angina, sudden 

death, stroke, ventricular arrhythmias, cardiogenic shock, aortic aneurysm rupture, stent 

thrombosis, and transient myocardial ischemia in the early morning hours (Braunwald, 

2012). Clinical studies have found that myocardial ischemia is even significantly worse 

in the early morning when compared to other times of the day (Suarez-Barrientos, Lopez­

Romero et al., 2011; Ibanez, Suarez-Barrientos et al., 2012; Reiter, Swingen et al., 2012). 

Since these initial observations have been made, research has significantly contributed to our 

understanding of the underlying molecular mechanisms and their potential for therapy.

Research from our group has mainly been focused on the circadian protein Period 2 

(PER2) in cardioprotection. PER2 is a critical component of the circadian clockwork and 

is an essential regulator of the circadian amplitude. The importance of PER2 for circadian 

rhythmicity has been illustrated in mouse studies showing that the precise rhythmicity of 

PER2 is critical for driving cellular circadian oscillations (Hallows, Ptacek et al., 2013). 

Per2−/− mice have a significantly shorter night period, and Per2 deficiency is associated 

with changes in daily locomotor activity and disturbance of the resting period (Nakamura, 

Takumi et al., 2013). As many of the core clock proteins, PER2 also plays a vital role 

in metabolic processes. Per2−/− mice have altered lipid metabolism, reduced adiposity, and 

the lack of PER2 affects gene expression related to lipid metabolism (Grimaldi, Bellet et 

al., 2010). This phenotype has been attributed to the interaction of PER2 with the nuclear 

receptors PPARγ, PPARα, and REV-ERBα, which regulate cellular metabolism in white 

adipose tissue and the liver (Schmutz, Ripperger et al., 2010) (Grimaldi, Bellet et al., 2010). 

Furthermore, PER2 was found to regulate gluconeogenesis and glycogen catabolism by 

working in concert with nuclear receptors (Panda, Antoch et al., 2002; Schmutz, Ripperger 

et al., 2010) (Storch, Lipan et al., 2002). Our initial investigations also found a necessity 

of PER2 in cardioprotection by regulating metabolic pathways. Studies from in vivo stable 

isotope glucose tracers during baseline, myocardial ischemia, or myocardial ischemia and 

reperfusion injury revealed the inability of Per2−/− mice to rely on glycolysis during 

ischemia. Additionally, Per2−/− mice had an increase in the flux of the TCA cycle during 

ischemia, whereas wildtype mice attenuated TCA cycle flux (Eckle, Hartmann et al., 2012). 

This article will discuss a variety of PER2 mechanisms for cardioprotection and highlight 

preclinical therapies targeting these pathways. Our review fully adheres to the standards of 

Chronobiology International (Portaluppi, Smolensky et al., 2010).

Intense light elicited PER2 in cardioprotection

The appearance of sunlight and oxygen on our planet was without question the most 

drastic change to our environment (Zerkle, Poulton et al., 2017; Bartman & Eckle, 2019). 

Therefore almost all organisms on earth have developed so-called light- and oxygen- sensing 
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mechanisms. It does not come as a surprise that light sensing and oxygen sensing pathways 

are mechanistically linked (Hogenesch, Gu et al., 1998). The transcription factor hypoxia­

inducible factor 1α (HIF1A), which allows the cell to adapt to low oxygen levels (Semenza, 

2011) and the light-regulated circadian core protein Period2 [PER2, (Liu, Shen et al., 2012)] 

are both parts of a PAS-domain containing protein superfamily. The PAS-domain, which 

was first described in the drosophila proteins PER, ARNT, and SIM, allows both proteins to 

sense oxygen or light (Hogenesch, Gu et al., 1998; Taylor & Zhulin, 1999). Indeed, cardiac 

Hif1a mRNA cycles in a circadian manner (Eckle, Hartmann et al., 2012), and hypoxia 

elicited HIF1A alters circadian gene transcription (Adamovich, Ladeuix et al., 2017; Wu, 

Tang et al., 2017). Through evolution, this relationship between light and oxygen-sensing 

pathways has been highly conserved. As such, this relationship strongly supports a role for 

light elicited circadian rhythm proteins as therapeutic targets to treat disease states of low 

oxygen availability, such as MI.

Our group exposed mice to intense light (10,000 LUX) and demonstrated that intense 

light therapy significantly reduced troponin I levels and infarct sizes following MI (Eckle, 

Hartmann et al., 2012). Subsequent analysis found a robust induction of cardiac PER2, 

where infarct sizes correlated reciprocally with cardiac PER2 levels. Further investigations 

revealed that Per2−/− mice were deficient in generating lactate during myocardial ischemia. 

The inability to generate lactate was associated with a deficiency to upregulate HIF1A­

dependent glycolytic pathways. The importance of glycolysis and lactate production for the 

ischemic heart is illustrated by experiments inhibiting lactate production. In less than five 

minutes, the heart undergoes contracture-rigor, which usually occurs after 60-90 minutes 

of ischemia if anaerobic glycolysis is intact (Jennings & Reimer, 1991). In general, 

anaerobic glycolysis is a critical mechanism to adapt to ischemia and low oxygen conditions 

(Jennings & Reimer, 1991; Myrmel, McCully et al., 1994; Lopaschuk & Jaswal, 2010). A 

switch from a more "energy-efficient" state using fatty acids to a more "oxygen-efficient" 

usage of glucose is crucial to allow the heart to function under ischemic or hypoxic 

conditions (Neubauer, 2007; Aragones, Fraisl et al., 2009; Lopaschuk, Ussher et al., 2010; 

Lopaschuk & Jaswal, 2012). Our studies further demonstrated that light-elicited PER2 

induced transcript levels of numerous HIF1A regulated glycolytic enzymes in hearts from 

wildtype mice. The abolished induction of glycolytic enzymes in Per2−/− mice resulted in 

the depletion of energy storages and increased myocardial cell death during ischemia (Eckle, 

Hartmann et al., 2012). Together, these findings revealed that intense light stabilizes cardiac 

PER2, enhancing oxygen-efficient glycolysis and protecting the heart from ischemia (Fig.1). 

Intense light is an easy and cost-effective therapy, and hopefully, future studies will show its 

effectiveness in cardiovascular disease such as MI.

Adenosine, a critical regulator of intense light elicited PER2 in 

cardioprotection

Interestingly, the discovery of light elicited PER2 was initially based on studies investigating 

adenosine signaling in cardioprotection. Extracellular adenosine signaling is an essential 

cellular adaptive mechanism (Ohta & Sitkovsky, 2001; Sitkovsky, Lukashev et al., 2004; 

Thiel, Chouker et al., 2005; Fredholm, 2007). In the extracellular space, adenosine 
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originates from 5’-adenosine monophosphate (AMP) via ecto-5'-nucleotidase (CD73) 

mediated phosphohydrolysis. Adenosine then signals through four well-described adenosine 

receptors, the ADORA1, ADORA2A, ADORA2B, or ADORA3 (Fredholm, 2007; Hasko, 

Linden et al., 2008). During hypoxia or ischemia, extracellular adenosine production and 

signaling increase significantly (Eckle, Krahn et al., 2007; Eckle, Grenz et al., 2008). 

Enhanced activation of adenosine receptors can then mediate endothelial barrier protective 

or anti-inflammatory effects (Eltzschig, Thompson et al., 2004; Eckle, Faigle et al., 2008; 

Rosenberger, Schwab et al., 2009). These adenosine signaling effects are ultimately organ 

protective during ischemia (Lappas, Day et al., 2006; Hart, Much et al., 2008) (Yang, 

Day et al., 2005; Linden, 2006). On the other side, genetic ablation of ADORA2B 

signaling abolishes ischemic-preconditioning elicited cardioprotection (Kohler, Eckle et al., 

2007; Eckle, Kohler et al., 2008; Eltzschig, 2009). Interestingly, ischemic preconditioning, 

where short non-lethal ischemic periods precede a more extended ischemic period, has 

been described as the most potent cardioprotective mechanism discovered at the bench. 

Regardless, these studies implicate adenosine signaling events as a central mechanism in 

cardioprotection.

After our group had found a dominant role for ADORA2B signaling in cardioprotection, 

we performed a microarray study from ischemic-preconditioned murine hearts with genetic 

ablation of ADORA2B receptors to gain better insight into ADORA2B signaling events. 

These studies revealed a critical role for the circadian rhythm protein PER2 in mediating 

adenosine-elicited cardio adaptive responses during ischemia. Interestingly, Period1 (PER1) 

was the second top gene regulated by ADORA2b signaling in our array. Follow-up studies 

in Per1−/− mice also found larger infarct sizes when compared to wildtype controls which, 

however, was not significant (Eckle, Hartmann et al., 2012). This observation supports 

findings that PER1 and PER2 have distinct roles in the mouse clock mechanism (Zheng, 

Albrecht et al., 2001).

Consistent with previous studies implicating the molecular network of circadian rhythm 

proteins in the regulation of cellular metabolism (Rudic, McNamara et al., 2004; Turek, 

Joshu et al., 2005), we observed a critical role of PER2 in mediating a metabolic switch 

during myocardial ischemia towards more oxygen efficient glycolysis.

Not surprisingly, studies exploring liver metabolism under light-dark cycles and constant 

darkness identified adenosine as a circulating circadian signaling molecule (Zhang, 

Kaasik et al., 2006). These studies implicated adenosine signaling as a mechanism for 

synchronizing the central and the peripheral clock. Indeed, our group found that intense light 

increased cardiac adenosine levels under normoxia (Fig.1). Further, Adora2b deficiency 

in mice resulted in abolished light-cardioprotection. Therefore, we have proposed that 

adenosine signals the 'cardioprotective' effect of light from the brain to the heart. However, 

our studies were restricted to the use of whole-body knockout mice. Future studies in mice 

with a brain-specific deletion of adenosine signaling will be necessary to fully understand 

the role of adenosine in peripheral clock synchronization. Regardless, one drug class that 

can reset the circadian system and induce the circadian protein PER2 are cAMP enhancers 

(Ripperger & Albrecht, 2012), as cAMP is the core component of PER2 regulation (Wang 

& Zhou, 2010). Forskolin, an adenylyl cyclase activator, is the prototype of such a drug 
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(Wang & Zhou, 2010). Besides, our laboratory studies found that the ADORA2B receptor is 

a potent inducer of cardiac PER2 by enhancing cAMP signaling pathways (Eckle, Hartmann 

et al., 2012). Moreover, Per2 deficiency completely abolished the specific ADORAB2 

agonist BAY 60-6583 mediated protection from myocardial ischemia (Eckle, Hartmann 

et al., 2012). Together, these studies highlight the use of ADORA2B agonists to activate 

circadian mediated cardioprotection (Fig. 2).

Circadian PER2 amplitude enhancement in cardioprotection

In studies on intense light in cardioprotection, we initially used short light exposure 

times (Eckle, Hartmann et al., 2012). After studies investigating numerous light treatment 

protocols, we discovered that housing mice under intense instead of ambient light conditions 

(14h light:10h darkness, 10,000 LUX, full-spectrum with UV filter) robustly reduced infarct 

sizes in a PER2 dependent manner. As a mechanism, we found enhancement of the PER2 

amplitude (He, Nohara et al., 2016; Wang, van Spyk et al., 2017) which was abolished 

in blind mice and initiated HIF1A-mediated transcription before an ischemic event [Fig.1, 

(Bartman, Oyama et al., 2017; Oyama, Bartman et al., 2019)].

Circadian amplitude enhancement has been implicated as a protective mechanism in 

different settings (Hatori, Vollmers et al., 2012; He, Nohara et al., 2016) and is currently 

under intense investigation (Gloston, Yoo et al., 2017; Wang, van Spyk et al., 2017; Gile, 

Scott et al., 2018). Therefore, we performed an unbiased, wide genome array to achieve 

mechanistic insight, profiling intense light-dependent gene expression changes in the non­

ischemic heart. This array uncovered Angiopoietin-like 4 (ANGPTL4) as the gene with the 

most robust upregulation via light elicited PER2.

ANGPTL4 is upregulated in cardiac endothelial cells via HIF1A (Inoue, Kohro et al., 2014) 

and maintains vascular integrity during reperfusion injury following MI (Galaup, Gomez et 

al., 2012). Endothelial disruption is a recognized critical event in MI (Singhal, Symons et al., 

2010), leading to functional abnormality, cellular edema, and apoptosis (Sezer, van Royen et 

al., 2018). Despite this knowledge, clinically applicable strategies to protect the endothelial 

barrier have not been established yet.

Our studies demonstrated that intense light-elicited cardioprotection or improved endothelial 

barrier function was abolished entirely in endothelial-specific Per2−/− mice (Oyama, 

Bartman et al., 2019). Subsequent studies found light induction of ANGPTL4 to be PER2 

dependent and revealed light elicited increases of HIF1A binding to the promoter region 

of Angptl4. These data indicate that intense light stimulated amplitude amplification of 

endothelial PER2 boosts vascular integrity via induction of HIF1A-ANGPTL4, which is 

cardioprotective.

Recent studies found troponin values to peak in patients undergoing aortic valve 

replacement during the early morning hours. They, therefore, confirmed the diurnal nature 

of myocardial ischemia (Montaigne, Marechal et al., 2018). While we cannot change 

the circadian pattern of myocardial injury, the administration of intense light therapy, 

e.g., before high-risk surgery to enhance the circadian amplitude, might provide robust 
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cardioprotection through an entire day. Data from intense light elicited circadian amplitude 

enhancement demonstrated increased cardiac PER2 peak and trough levels associated with 

cardioprotection during a complete circadian cycle [Fig. 1, (Eckle, Hartmann et al., 2012; 

Oyama, Bartman et al., 2019)]. Therefore, this strategy could potentially decrease troponin 

levels in the morning and evening times. Future studies will be necessary to understand 

the clinical impact of intense light therapy or circadian PER2 amplitude enhancement in 

cardioprotection.

An anti-inflammatory role for PER2 in heart ischemia

The circadian clock is critical for innate and adaptive immunity (Gibbs, Blaikley et al., 

2012; Narasimamurthy, Hatori et al., 2012; Silver, Arjona et al., 2012). This has been well 

established since the initial discovery that the circadian clock controls Toll-like receptor-9 

mediated inflammation. Interestingly, numerous studies have shown that toll-like receptors 

and innate immunity are essential during myocardial ischemia and reperfusion injury (Eckle 

& Eltzschig, 2011; Eltzschig & Eckle, 2011; Timmers, Pasterkamp et al., 2012). Also, 

the circadian clock controls TNFα , which plays a significant role in innate immunity 

(Petrzilka, Taraborrelli et al., 2009). Together, these findings strongly suggest that the 

circadian clock impacts the inflammatory response during cardiac ischemia and reperfusion 

injury. In general, studies on the circadian role in inflammation during myocardial ischemia 

are rare. In our investigations, a microarray screen discovered that Per2−/− mice initiated a 

proinflammatory program following myocardial ischemia and reperfusion injury (Bonney, 

Kominsky et al., 2013). Subsequent studies found a strong upregulation of TNFα and IL6 

in Per2−/− mice during reperfusion injury, confirming the microarray result. Data on PER2 

regulating inflammation in conjunction with findings that PER2 controls metabolism favor 

the idea that metabolism and inflammation are interconnected (Baker, Hayden et al., 2011). 

Indeed, deficiency of circadian rhythm proteins in mice results in a metabolic syndrome 

(Turek, Joshu et al., 2005; Staels, 2006; Gomez-Abellan, Hernandez-Morante et al., 2008; 

Bonney, Hughes et al., 2013). Further, patients with metabolic syndrome have higher 

inflammatory markers with an increased risk of developing cardiovascular disease (Haffner, 

2006). Therefore, understanding the systems linking circadian rhythmicity to cardiac cell 

metabolism and cardiac cell inflammation could provide novel insights into ischemic heart 

disease and future circadian-based therapeutic approaches.

The circadian microRNA MiR-21 in cardioprotection

In general, numerous circadian microRNAs are essential players in cardioprotection from 

ischemia. However, studies on cardiac circadian microRNAs are rare (Noyan, El-Mounayri 

et al., 2015). Profiling of PER2 dependent microRNAs in cardiac ischemia indicated a 

critical role for miR-21 (Bartman, Oyama et al., 2017). In vitro studies revealed that 

PER2 dependent miR-21 regulates glycolysis during cellular stress (Eckle, Hartmann et 

al., 2012). Similar to studies in Per2−/− mice, miR-21−/− abrogated intense light-elicited 

cardioprotection (Eckle, Hartmann et al., 2012). Further, we found increased cardiac miR-21 

levels in wildtype mice following intense light exposure. As mechanistic studies on light 

exposure in humans are scarce, we also used intense light in healthy human volunteers. 

Here, intense light exposure for 30 minutes over five days increased miR-21 or PER2 
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dependent phosphofructokinase activity in plasma samples (Eckle, Hartmann et al., 2012; 

Bartman, Oyama et al., 2017). Interestingly analyses of human metabolic changes upon 

intense light therapy are otherwise not existent. This seems surprising considering that the 

effectiveness of intense or bright light therapy in humans is well accepted, and intense 

light therapy is e.g., used to treat seasonal affective disorders (Terman, Terman et al., 1990; 

Terman, Terman et al., 2001). Besides, light therapy has been shown to reduce delirium 

(Yang, Choi et al., 2012) or improve human subjects' sleep (Phipps-Nelson, Redman et al., 

2003; Eckle, 2015). Regardless, our findings support light as a promising strategy to activate 

PER2 elicited cardioprotection (Eckle, Hartmann et al., 2012) and to increase the robustness 

of the circadian system in humans (Wright, McHill et al., 2013; Ritchie, 2015). More 

detailed studies on intense light therapy in humans will help us to dissect these mechanisms 

further.

The circadian amplitude enhancer nobiletin as therapy of MI

Based on studies uncovering a crucial role of PER2 in cardioprotection, our group 

evaluated pharmacological approaches to mimic light-elicited cardioprotection. Recent 

studies identified several circadian amplitude-enhancing small molecules in a high 

throughput screen (Chen, Yoo et al., 2012). One of the natural compounds identified was 

the flavonoid nobiletin, which robustly enhanced the amplitude of PER2 (He, Nohara et 

al., 2016). In these studies, nobiletin was found to enhance the amplitude of PER2 via 

Retinoic Acid Receptor-Related Orphan Receptor Alpha (RORα) (He, Nohara et al., 2016). 

Interestingly, RORα upregulates the above-mentioned PER2-regulated ANGPTL4, which 

improved cardiac repair and function following myocardial ischemia in recent studies (Cho, 

Kang et al., 2019).

Since the discovery of nobiletin, animal studies have shown that nobiletin protects from 

a metabolic syndrome (He, Nohara et al., 2016), from midazolam induced delirium (Gile, 

Scott et al., 2018), or from ischemia and reperfusion injury (Oyama, Bartman et al., 2018; 

Dusabimana, Kim et al., 2019; Zhang, Jiang et al., 2019; Güvenç, Cellat et al., 2020). 

Different mechanisms such as PI3K/AKT, SIRT-1/FOXO3a, or iNOS-eNOS were suggested. 

While most of these studies did not report the time of day when nobiletin was administered, 

it is not surprising that all the pathways investigated are PER2 regulated (Yang, He et 

al., 2012; Bhatwadekar, Yan et al., 2013; Wang, Zhao et al., 2016). Since our group 

demonstrated that intense light-elicited amplitude enhancement requires PER2, nobiletin 

mediated circadian amplitude enhancement and cardioprotection would be expected to 

require PER2. To further test the PER2-specificity of nobiletin, we treated wildtype or 

Per2−/− mice with nobiletin before myocardial ischemia. Here we found that nobiletin 

significantly reduced infarct sizes which was entirely abolished in Per2−/− mice (Oyama, 

Bartman et al., 2018). These studies revealed for the first time that the circadian amplitude 

enhancer nobiletin requires PER2 to mediate cardioprotection. Nobiletin could therefore 

represent a promising cardioprotective therapy in a clinical setting, such as critical care units 

(Brainard, Gobel et al., 2015b), where circadian disruption of PER2 is expected.
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The circadian amplitude enhancer SR9009 in cardiac remodeling

Myocardial ischemia and reperfusion injury increase cardiac inflammation in patients. 

Inflammation can then increase infarct sizes and ultimately leads to heart failure (Eltzschig 

& Eckle, 2011; Ibáñez, Heusch et al., 2015). As pointed out earlier, the circadian clockwork 

is an essential regulator of inflammatory processes. Nevertheless, the circadian role during 

heart ischemia-induced inflammation is not fully explored yet. An exquisite study by Dr. 

Martino and her research team recently discovered a critical part of REV-ERB alpha 

in myocardial ischemia and reperfusion injury (Reitz, Alibhai et al., 2019). REV-ERB 

alpha is a vital regulator of the circadian clockwork and mediates circadian regulation of 

innate immunity (Gibbs, Blaikley et al., 2012). REV-ERB alpha agonists were initially 

developed to treat metabolic disorders and reduced obesity, and improved hyperglycemia 

in diet-induced obese mice (Solt, Wang et al., 2012). If a REV-ERB alpha-agonist could 

also treat myocardial ischemia and reperfusion injury associated inflammation was unknown 

until recently. Dr. Martino's research team demonstrated that short-term targeting of the 

circadian core regulator REV-ERB alpha with the synthetic agonist SR9009 (Solt, Wang et 

al., 2012) improved cardiac repair following myocardial ischemia and reperfusion injury in 

mice. One single administration of SR9009 following myocardial ischemia and reperfusion 

injury dampened cardiac inflammation via inhibition of the NLRP3 inflammasome and 

thereby decreased the recruitment of inflammatory cells. The anti-inflammatory effects of 

SR9009 resulted in less myocardial scar tissue and improved myocardial function, measured 

by the left ventricle's ejection fraction. Mechanistically, SR9009 targeted the inflammasome 

in fibroblasts which was the cause of less scar formation.

Interestingly, SR9009 is a potent PER2 amplitude enhancer which is illustrated by studies 

on synthetic REV-ERB agonists regulating circadian behavior and metabolism (Solt, 

Wang et al., 2012). Our investigations uncovered that amplitude enhancement of PER2 is 

cardioprotective and that PER2 exerts anti-inflammatory effects during myocardial ischemia 

and reperfusion injury (Bonney, Kominsky et al., 2013; Oyama, Bartman et al., 2019). 

Based on these observations, future studies will have to evaluate the role of PER2 for an 

anti-inflammatory role of SR9009 in remodeling from myocardial ischemia.

In summary, these studies showed for the first time that REV-ERB alpha is critical for 

cardiac repair following ischemia and highlight that targeting the circadian clockwork is a 

powerful strategy to reduce myocardial ischemia and reperfusion injury. As these studies 

demonstrated improved cardiac function, one can postulate that this therapy would prevent 

the otherwise natural progression to heart failure following severe MI. Hopefully, this 

study will stimulate clinicians to initiate clinical trials using REV-ERB alpha agonists to 

further explore their efficacy and mechanisms in treating ischemia-associated inflammatory 

responses.

Light as circadian rhythm targeting therapy in humans

As intense or bright light is used as therapy [10,000 LUX] to treat seasonal mood disorders 

in humans (Yorguner Kupeli, Bulut et al., 2017), we evaluated light therapy's effects 

on circadian gene expression and associated metabolic pathways. Human healthy human 
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volunteers were exposed to intense light for 30 min from 8.30h to 9.00h on five consecutive 

days. Following light therapy, we collected blood samples at 9.00h each day. These studies 

revealed that intense light therapy increased PER2 protein levels in human buccal or plasma 

samples in the morning (9.00h) or even 12 h after light treatment in the evening (21.00h). 

Our data further suggested that intense light enhanced the circadian amplitude in different 

human tissue samples simultaneously. We also tested the effects of intense light therapy on 

plasma melatonin levels (Lewy, Wehr et al., 1980). We found that intense light significantly 

suppressed melatonin levels. In contrast, standard room light could not reduce substantially 

plasma melatonin levels required for the circadian clock to function.

Subsequent analyses revealed that intense light therapy also decreased plasma triglycerides. 

Plasma triglycerides have been suggested as a clinical marker for insulin sensitivity 

and efficient glucose metabolism (Ginsberg, Zhang et al., 2005). Therefore, this finding 

indicated that intense light might increase insulin sensitivity and thereby glucose 

metabolism. To get further mechanistic insight, we performed a targeted metabolomics 

screen from these human plasma samples. Here, we found mainly metabolic pathways such 

as glycolysis or the TCA cycle affected by intense light therapy (Oyama, Bartman et al., 

2019).

As sleep deprivation decreases insulin sensitivity and results in a diabetic phenotype in 

humans (Depner, Stothard et al., 2014), we next analyzed the impact of bright light therapy 

on healthy human subjects' sleep behavior. Using actigraphy analyses (Lee & Suen, 2017), 

we demonstrated that one week of intense light therapy reduced wake-up episodes after 

sleep onset, resulting in improved sleep efficiency. We further found that intense light 

therapy increased daily activities. Combined analyses of improved sleep and increased 

day-activity revealed that intense light increased the circadian amplitude in healthy human 

subjects. These human studies are in support of our findings in mice. In fact, they suggest 

that intense light therapy can increase the circadian amplitude and target similar PER2 

dependent metabolic pathways in humans as seen in our murine studies. Future translational 

studies in patients will be necessary to evaluate intense light for the treatment of diseases 

where low oxygen levels are the culprit, such as myocardial ischemia.

Intense light as anticoagulant therapy in humans

Acute coronary thrombosis can result in nonfatal myocardial infarction (Takada, Saito et al., 

2003). This process is well defined in patients with heart failure or with coronary artery 

disease. Circadian mechanisms regulating thrombosis have been reported but are limited due 

to the lack of tissue-specific studies (Zheng, Larkin et al., 1999; Tracey, Pan et al., 2012). 

We recently observed that tissue-specific deletion of PER2 in the megakaryocyte lineage 

resulted in increased platelet aggregation and increased myocardial damage. Further, we 

found that intense light therapy inhibited procoagulant pathways and reduced the clot rate in 

healthy human subjects.

Several studies on how circadian proteins influence coagulation have been published. 

Unfortunately, most studies have used whole body knockout mouse models to evaluate 

the circadian clock in hemostasis. A study using whole-body Per2 knockout mice found 

Oyama et al. Page 9

Chronobiol Int. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that Per2−/− null mice had reduced platelet counts, and platelets were compromised to 

aggregate (Zhao, Zhang et al., 2011). In another study, it was found that there was a diurnal 

rhythm in the expression of thrombopoietin in wildtype mice, and Clock mutant mice 

showed disrupted thrombopoietin expression (Tracey, Pan et al., 2012). In contrast to the 

study using whole body Per2−/− mice, however, Clock mutant mice showed an increase in 

thrombopoietin, a significant increase in megakaryocyte numbers and significantly higher 

platelet counts. Unfortunately, no analysis of the platelet function was performed. Another 

study using whole-body Bmal1−/− mice found enhanced platelet aggregation upon ADP 

stimulation (Somanath, Podrez et al., 2011). In our studies using mice with a Per2 deletion 

in the megakaryocyte lineage, we did not see changes in platelet counts but found increased 

platelet aggregation.

In general, these contradictory data indicate that different clock proteins control various 

functions in various tissues. Further, these data show that results from whole-body null mice 

affecting circadian core clock proteins are challenging to interpret and underscore the need 

for further research aimed at tissue-specific regulation of circadian mechanisms.

As discussed throughout this review, the importance of light as a regulator of the circadian 

system has been well described (Bonney, Hughes et al., 2013; Brainard, Gobel et al., 2015a; 

Brainard, Gobel et al., 2015b; Bartman, Oyama et al., 2017; Oyama, Bartman et al., 2019). 

Interestingly, studies on platelet turnover found that megakaryopoiesis is regulated by light 

signals which emerge from the suprachiasmatic nuclei, the master oscillator of circadian 

rhythms (Hartley, Sheward et al., 2009). Our studies have shown that light increases PER2 

levels in peripheral tissues in mice and humans (Oyama, Bartman et al., 2019). Based on 

these observations, we evaluated intense light as a therapy in healthy human subjects to 

possibly affect coagulation. Here a protein array revealed that intense light creates an anti­

thrombotic signature in plasma samples. Further, the clot rate, which is platelet dependent, 

was significantly reduced after five days of intense light therapy.

Conclusions

Discovering circadian rhythm mechanisms in myocardial ischemia and identifying novel 

therapeutic targets has revealed numerous options for future translational studies in 

humans. Intense light to enhance the circadian amplitude of PER2 and related pathways 

seems feasible and cost-efficient. However, this therapy might not become a reality in a 

clinical setting until appropriate high-intensity light sources are available in all hospitals. 

Pharmacological approaches such as nobiletin, BAY60-6583, or SR9009 to target PER2 

seem promising alternatives (Fig. 2). While some data exist on intense light therapy in 

humans, there are no data on drugs targeting circadian pathways in patients. As evidence 

emerges, this research will hopefully stimulate clinicians to investigate circadian medicine 

such as PER2 mediated cardioprotection in a clinical setting. In this endeavor, the time-of­

day administration of drugs, targeting PER2 pathways, will be critical to watch.
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Figure 1. Circadian Mechanisms in myocardial ischemia.
Left panel: intense light or adenosine signaling via the adenosine A2B receptor 

(ADORA2B) increases cAMP in the heart, resulting in increased PER2 protein levels. 

Intense light can also increase adenosine and cAMP by itself. PER2 binds to HIF1A and 

initiates the transcription of cardioprotective genes. Intense light increases the amplitude of 

PER2, which results in cardioprotection throughout a complete circadian cycle (IS=infarct 

size). Right panel: Amplitude enhancement of PER2 results in improved oxygen utilization 

via various mechanisms (e.g., MiR-21), improves the endothelial barrier function via 

ANGPTL4 mediated regulation of tight junctions, and can also inhibit thrombus formation.
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Figure 2. Targeting the circadian clock as therapy in myocardial ischemia and reperfusion 
injury.
Left panel: Intense light, cAMP, or circadian amplitude enhancers increase PER2, resulting 

in PER2 elicited cardioprotection. Right panel: Nobiletin, a natural flavonoid, enhances 

the PER2 amplitude via ROR-A. Forskolin activates adenylyl cyclase and increases cAMP. 

Forskolin is the traditional enhancer of circadian rhythms as cAMP is the core regulator of 

PER2. BAY 60-6583, a specific adenosine A2B receptor agonist which enhances cAMP, 

increases PER2 and mimics cardiac ischemic preconditioning. SR9009 is a REV-ERB 

agonist which decreases obesity by reducing fat mass and improves dyslipidemia and 

hyperglycemia. SR9009 also increases the amplitude of PER2.
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