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Genome-level diversification of eight ancient tea
populations in the Guizhou and Yunnan regions
identifies candidate genes for core agronomic
traits
Litang Lu1,2, Hufang Chen1,2, Xiaojing Wang1, Yichen Zhao1,2, Xinzhuan Yao1, Biao Xiong1, Yanli Deng1 and
Degang Zhao2,3✉

Abstract
The ancient tea plant, as a precious natural resource and source of tea plant genetic diversity, is of great value for
studying the evolutionary mechanism, diversification, and domestication of plants. The overall genetic diversity among
ancient tea plants and the genetic changes that occurred during natural selection remain poorly understood. Here, we
report the genome resequencing of eight different groups consisting of 120 ancient tea plants: six groups from
Guizhou Province and two groups from Yunnan Province. Based on the 8,082,370 identified high-quality SNPs, we
constructed phylogenetic relationships, assessed population structure, and performed genome-wide association
studies (GWAS). Our phylogenetic analysis showed that the 120 ancient tea plants were mainly clustered into three
groups and five single branches, which is consistent with the results of principal component analysis (PCA). Ancient
tea plants were further divided into seven subpopulations based on genetic structure analysis. Moreover, it was found
that the variation in ancient tea plants was not reduced by pressure from the external natural environment or artificial
breeding (nonsynonymous/synonymous= 1.05). By integrating GWAS, selection signals, and gene function prediction,
four candidate genes were significantly associated with three leaf traits, and two candidate genes were significantly
associated with plant type. These candidate genes can be used for further functional characterization and genetic
improvement of tea plants.

Introduction
The leaves of the tea plant Camellia sinensis (L.)

O. Kuntze var. sinensis (2n= 2x= 30) are used to produce
different kinds of tea, making tea an important economic
crop worldwide. With its attractive aroma and pleasant
taste1,2, tea is the most popular nonalcoholic caffeine-

containing beverage in the world and is consumed daily
by more than three billion people across 160 countries.
Tea beverages are rich in beneficial compounds, such as
polyphenols, caffeine, theanine, vitamins, polysaccharides,
volatile oils, and minerals, which have been shown to
reduce the risk of developing cancer and cardiovascular,
cerebrovascular, and nervous system diseases3–7. The
Camellia species encompasses highly diverse crops that
produce secondary metabolites in the buds and young
leaves, which were targets of selection during the process
of domestication. Thus, the leaf inclusions and morpho-
logical characteristics of tea plants can be used as an
indicator of the selection process in tea plant breeding. At
present, cultivated tea plants include two main varieties:
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C. sinensis var. sinensis (Chinese type tea; CSS) and C.
sinensis var. assamica (Assam type tea; CSA)8,9.
Analyses of genome-wide genetic diversity and the

identification of genes associated with excellent traits that
contribute to domestication and improvement play an
essential role in the breeding of superior varieties10–12.
Genome-wide association studies (GWAS) using whole-
genome resequencing identified new genes influencing
agronomic traits in crop plants13–17. The release of the tea
genome database laid the foundation for genome rese-
quencing and GWAS18. Resequencing dozens of tea cul-
tivars has allowed preliminary understanding of the
genetic variation patterns during tea plant domestication
and varietal improvement; however, the high degree of
heterozygosity in tea cultivars has hindered the correla-
tion of selected loci with improvement and domestication
related traits.
Ancient tea plants grew naturally for hundreds of years

without any human cultivation, and the genetic diversity
of these plants is important for studying the origin,
spread, and classification of tea plants. The ancient tea
plants were mainly distributed in the Yunnan-Guizhou
Plateau. In this study, we resequenced (more than 10x) a
large set of plants representative of the various morpho-
types of ancient tea plants from the Yunnan-Guizhou
Plateau. Phylogenetic relationships and population
structure were assessed and GWAS was performed. RT-
qPCR was used to verify the expression pattern of genes
mined using GWAS in representative ancient tea plants
from eight ancient tea populations. Our findings provide
useful information for future breeding and molecular
identification of tea plants.

Results
Sequencing and variant discovery
A total of 120 ancient tea plants from eight groups,

including six groups containing 90 individuals from
Guizhou Province and two groups containing 30 indivi-
duals from Yunnan Province, China, were evaluated in the
present study. The geographic distributions of these
plants are Xishui (XS), Pu’an (PA), Yanhe (YH), Shiqian
(SQ), Duyun (DY), and Sandu (SD) in Guizhou and Lin-
cang (DL) and Menghai (HK) in Yunnan. Detailed infor-
mation on the agronomic characteristics of the 120
ancient tea plants was obtained based on Chen’s study
(Fig. 1a, b and Tables S1 and S2)19.
Resequencing of the 120 ancient tea plants using the

Illumina HiSeq 2000 sequencing platform produced over
5.013 billion raw 150-bp paired-end reads, resulting in
5.01 Tb of clean data with an average coverage depth of
more than 10x (Table S3). Our resequenced reads were
mapped onto the published C. sinensis var. sinensis gen-
ome18,20,21. A total of 411,990,204 single nucleotide
polymorphisms (SNPs, Fig. 1c) and 18,880,978 indels

(insertions and deletions, range 1−54 bp, mean 6.6 bp,
Fig. 1d) were identified. Of the 8,082,370 filtered SNPs
(coverage depth ≥10, MAF <0.05, and miss rate ≤0.1),
1,404,774 and 175,824 SNPs were distributed in non-
coding and coding sequences, respectively. Moreover,
90,502 nonsynonymous SNPs (nsSNPs) were identified in
19,793 genes, and 10,596 frameshift indels were identified
in 26,943 genes (Fig. 1c, d). The 6300 variants had a large
effect, including SNPs causing premature stop codons or
longer-than-usual transcripts and indels resulting in fra-
meshifts, the introduction of stop codons, or other dis-
ruptions to protein-coding sequences. To evaluate the
selective constraints on ancient tea plants in their natural
habitat, the ratio of nonsynonymous to synonymous SNPs
(dN/dS) was calculated and found to be 1.05. In addition,
among all identified SNPs, 2.1% were located in coding
regions: 1.12% were nonsynonymous and 0.98% were
synonymous (Table S4). This result showed that the
proportion of nsSNPs in the coding regions of ancient tea
plants was significantly lower than that detected in pear
(7.7%), apple (10.5%), and soybean (1.9%), suggesting that
less genetic variation occurs in the coding regions of
ancient tea plants than in that of fruit trees and some
annual crops22–24. Moreover, the accuracy of SNP geno-
typing in randomly selected genomic regions containing a
single SNP site was assessed by PCR and Sanger
sequencing, revealing an SNP genotype accuracy as high
as 98.1%.

Phylogenetic analysis and population structure of ancient
tea plants
To explore the phylogenetic relationships among the

120 ancient tea plants, a phylogenetic tree was con-
structed by the neighbor-joining (NJ) method using
8,082,370 SNPs. According to the phylogenetic relation-
ships, the 120 ancient tea plants were mainly clustered
into three groups (I−III) and five single branches (Fig. 2a).
Among them, group I contained all the members of XS,
DL, SD, and PA and three members of YH; group II
contained all the members of HK; and group III contained
members of DY, SQ, and YH and was located close to the
cultivated tea plant in the phylogenetic tree (Table S5).
This finding is consistent with those of the previous stu-
dies25. Changes in population structure were further
assessed under different K values (Fig. 2b). Analysis of
cross-validation error (CV error) revealed that seven
populations (K= 7) represented the best model for these
120 individual ancient tea plants, while the value of CV
error changed little as K increased from 2 to 7. At K= 2,
the HK members were separated from the main groups.
The population structure at K= 3 was consistent with the
three clustered groups in the phylogenetic tree. The XS
and DL members were clustered together away from the
main groups at K= 4, and at K= 5 and 6, the DL and
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some of the YH members were clearly separated from the
main groups. These results are not only consistent with
the geographic distribution of ancient tea plants but are
supported by the phylogenetic analysis, indicating that the
species in different subgroups (DY, SQ, YH, HK, XS, SD,
PA, and DL) from relatively close areas had common
geographic origins and that species from the different
geographic areas developed independently. The changes
in the population structure among the 120 ancient tea
plants were mainly related to members of XS, SD, PA, and
DL. To identify potential population stratification, prin-
cipal component analysis (PCA) was used to explore
relationships among the 120 ancient tea plants using
~8M SNPs (Fig. 2c and Fig. S1). PCA revealed three
major clusters corresponding to clusters 1−3 from the
phylogenetic tree, which further verifies the accuracy of
the phylogenetic tree grouping (Fig. 2a, d). For instance,
the PA, SD, XS, and DL samples were clustered together

to form cluster 1, the HK samples were clustered together
to form cluster 2, and the YH, SQ, and DY samples were
clustered together to form cluster 3.

Population divergence among ancient tea plants
Our phylogenetic analysis revealed that genetically close

relatives may have similar geographic origins (Fig. 2a, b).
Moreover, ancient tea plants from the same place showed
similar agronomic traits. For example, most ancient tea
plants in DY and SQ were shrub-type plants, whereas
those in SD, DL, PA, XS, HK, and YH were tree-type
plants. Most ancient tea plants in SQ had dark green
leaves, while members of the other groups had light green
leaves, and some ancient tea trees in PA had purple leaves.
Therefore, some traits and their controlling genes
underwent natural screening during the process of geo-
graphic isolation. The pairwise population divergence
(fixation index: FST) across the PA, DL, DY, and SQ
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Fig. 1 Geographic distribution of 120 ancient tea plants and statistical analysis of SNPs and indels in the tea genome. a Plant type of ancient
tea plants. b The geographic distribution of the 120 ancient tea plants, each of which is represented by a dot on the map of China. Xishui (XS), Pu’an
(PA), Yanhe (YH), Shiqian (SQ), Duyun (DY), Sandu (SD), Dali (DL), and Menghai (HK). c Statistical analysis of SNPs in the tea genome. d Statistical
analysis of indels in the tea genome
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subgroups was analyzed (Fig. 3a, c). The mean FST among
the ancient tea plants in DL and DY was 0.745, suggesting
obvious population divergence, which was followed by a
mean FST of 0.217 among the plants in DL and HK.
However, the mean FST among the ancient tea plants in
DY and SQ was 0.08, suggesting little population
divergence.
Tajima’s D was used to evaluate whether the observed

nucleotide diversities showed evidence of deviation from
neutrality. Some regions were significantly different from
zero, indicating natural or artificial selection (Fig. 3b). Of
these, the D values from the SD, DL, PA, DY, XS, HK, YH,
and SQ genomes were mostly positive, indicating a pre-
dominance of intermediate-frequency SNPs in these sub-
genomes. The genome-wide nucleotide diversity (ϴπ)
across all ancient tea plants was 6.1 × 10−3. This value was
higher than that of other perennial crops, such as peach
(1.5 × 10−3), cassava (2.6 × 10−3), and pear (5.5 × 10−3), but
lower than that reported for date palm (9.2 × 10−3)26–28.
The genetic diversity decreased from 6.1 × 10−3 in ancient

tea plants to 5.15 × 10−5 in improved tea cultivars29, sug-
gesting the loss of significant genetic diversity during
domestication.

Genome-wide association studies
Linkage disequilibrium (LD indicated by r2) analysis

indicated that the ancient tea plant genome has a rela-
tively short r2 distance and rapid r2 decay (Fig. 4b). The r2

decreased to half its maximum value, at 19.3 kb, which is
higher than the r2 in cultivated tea plants (5 kb) but lower
than that in ancient tea plants (~40 kb) reported by Xia9.
Moreover, the ancient tea plants from DL showed the
highest r2 value (r2= 40.0 kb), and those from DY showed
the lowest r2 value (r2= 11.6 kb) (Fig. S2). The LD decay
distance for the ancient tea plants was much longer than
that for pear (211 bp) and apple (161 bp) but much
shorter than that for soybean (150 kb) and rice (123 kb).
Plant domestication conducted over several millennia

has resulted in the modification of specific plant traits,
including leaf size, shape, texture, width, color, the

Fig. 2 Population genetic structure of 120 ancient tea plant samples. a NJ tree of 120 ancient tea plants inferred from SNPs at fourfold
degenerate sites. A phylogenetic tree was constructed using MEGA software with default parameters. b Model-based Bayesian clustering of 120
ancient tea plants performed using ADMIXTURE Version 1.3.0 with the number of ancestry kinships (K) set to 2–7. Each accession is denoted by a
vertical bar composed of different colors corresponding to its proportion of genetic ancestry from each of these populations. c Principal component
analysis of the 120 ancient tea plants. d The geographic origin of each accession in the seven clades
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number of leaf veins, and the density and depth of leaf
serration19,30. To further screen the candidate genes
associated with eleven leaf traits, compression multilocus
random mixed linear model analysis was conducted for
GWAS using GAPIT software (Fig. 4a). To obtain high-
quality SNPs, imputation was performed for the ancient
tea plant SNP set, retaining 8,082,370 SNPs with a MAF
of 5%. In total, 1176 SNPs were associated with 11 target
leaf traits, and 292 loci were involved in regulating plant
type. Most of the loci that were associated with ancient
leaf traits and plant type are shown here for the first time
(Figs. S3−S7 and Table S6).

Candidate genes involved in the regulation of leaf traits
In tea plants, the leaves are rich in characteristic com-

pounds, such as polyphenols, caffeine, theanine, vitamins,
polysaccharides, volatile oils, and minerals. Leaf inclusions
are often related to many leaf traits, including leaf size,
color, and the number of leaf veins. GWAS signals asso-
ciated with leaf traits were detected in the present study
(Fig. 4c, d and Table 1). Three nsSNPs were identified to
have associations with leaf color: two nsSNPs in
TEA012477 and one nsSNP in TEA028016 (−log10P ≥
8.2). Functional annotation inferred that these two genes
encode calmodulin-binding transcription activator 2 and

the Cop1/SPA ubiquitin ligase complex, respectively. The
latter is involved in the repression of anthocyanin accu-
mulation under low- and high-light conditions in Arabi-
dopsis (Table 1). An nsSNP was identified to be
significantly (−log10P ≥ 8.2) related to the density of leaf
serration and caused a change from A to C at base 428 in
the CDS of TEA025567, resulting in a change from Glu to
Ala at residue 143. Moreover, an nsSNP was found to be
significantly (−log10P ≥ 8.2) related to the depth of leaf
serration and caused a change from C to T at base 320 in
the CDS of TEA017338, resulting in a change from Ser to
Phe at residue 107. In addition, the ancient tea plants were
classified into shrub and arbor plants. Two nsSNPs were
also identified to be significantly associated with plant
type and caused a change from A to T at base 322 and
from G to A at base 532 in the CDS of TEA029928,
resulting in changes from Thr to Ser at residue 108 and
from Gly to Ser at residue 178, respectively. Moreover, an
nsSNP (G/A) was found at base 476 in the CDS of
TEA01294, resulting in a change from Gly to Glu at
residue 159. Annotation and functional analysis of
homologous genes in Arabidopsis showed that these two
genes encode an F-box protein and an acyl carrier protein.
In Arabidopsis, F-box proteins repress ethylene action and
promote growth by directing EIN3 degradation (ethylene
restricts Arabidopsis growth via the epidermis), and acyl
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carrier proteins control plant architecture by regulating
the cytokinin signaling pathway.
To further verify the differences among the different

populations, we selected two genes (TEA012477 and
TEA029928) related to leaf color and plant type to detect
the distribution of nsSNPs in representative plants of
eight different populations. As shown in Fig. S8, we iso-
lated and aligned the homologous sequences of the
TEA029928 and TEA012477 genes from eight repre-
sentative individuals from eight populations. One nsSNP
was identified to be significantly (−log10P ≥ 8.2) related to
plant type, causing a change from a C in arbor-type plants
(DL, HK, XS, PA, SD, and YH) to an A in shrub-type
plants (SQ, DY, and YH) at base 532 in the CDS of
TEA029928, resulting in a change from Glu to Ser at
residue 178. Moreover, three nsSNPs were significantly
(−log10P ≥ 8.2) related to leaf color, causing changes from
G, G, and C in light green plants (DL, HK, XS, PA, SD,
YH, and DY) to A, T, and T in dark green plants (SQ) at
bases 1826, 3406, and 4184 in the CDS of TEA012477,
resulting in a change from Arg, Ala, and Thr to His, Ser
and Ile at residues 609, 1136, and 1394.
To further explore the functional differences among

different groups, RT-qPCR was used to investigate the
expression level of the four representative genes mined
using GWAS among different populations with different
traits. Our results showed that the expression level of the
gene TEA021477 in ancient tea trees with light green
leaves was significantly lower than that in ancient tea trees
with dark green leaves. The expression level of the gene
(TEA029928) related to plant type in shrub-type ancient
tea plants was significantly higher than that in arbor-type
ancient tea plants (Fig. S9). In addition, a previous study
revealed that the density and depth of leaf serration were
quantitative traits controlled by multiple genes. Dynamic
expression changes in the genes related to leaf serration of
different densities and depths were investigated using RT-

qPCR, suggesting that these two traits were controlled by
multiple genes31. The nsSNPs were used as molecular
markers to distinguish the difference between shrub- and
arbor-type ancient tea plants, which were also used to
determine the difference between light green and dark
green leaves (Tables S7, S8 and Fig. S9).

Discussion
Although C. sinensis “Fuding Dabaicha” has been widely

planted in the southwestern region of China due to its high
yield and economic value, there remain many ancient tea
plant resources that have not been exploited8. In the
present study, we generated a dataset encompassing the
considerable genomic variation of ancient tea plants,
which provided an opportunity to explore the divergence,
population structure, and regulatory mechanisms of rela-
ted traits in ancient tea plants. A previous study suggested
that tea plants have diverse origins and that Chinese cul-
tivated tea plants originated from southwestern China and
later spread to western Asia28. The results of our phylo-
genetic analysis show that the 120 ancient tea plants were
mainly clustered into three groups and five single bran-
ches. Three members of YH were clustered together with
the ancient tea plants from XS and distributed in group 1,
indicating that gene exchange occurred between them,
which could be partially attributed to the consistent
introgression among the ancient tea plants during the long
cultivation process9. Our results further reveal that the
ancient tea plants in DL and PA are more ancient than
those in the other six populations, and the ancient tea
plants in DY and SQ are closely related to the cultivated
tea plant based on phylogenetic analysis, which is con-
sistent with the findings of the previous studies28. It has
been demonstrated that ancient tea plants from DY are
closer to modern cultivars32. Based on the phylogenetic
analysis, the ancient tea plants from DY and SQ were a
sister branch to the cultivars, which is consistent with the

Table 1 GWAS results for genes associated with different traits

Trait Gene locus Exon SNP sites Protein −Log10(P) Gene annotation

Leaf color TEA012477 15 CGT (1826)–GAT Arg (609)–His 1.16718 Calmodulin-binding transcription activator 2

18 TCC (3406)–GCC Ser (1136)–Ala 0.93987

20 ATA (4184)–ACA Ile (1394)–Thr 8.43856

TEA028016 2 TAC (175)–GAC Tyr (59)–His 6.21486 Cop1 ubiquitin ligase complex

5 CGA (574)-CTA Arg (192)–Leu 6.21486

Density of leaf serration TEA025567 4 GAA (428)–GCA Glu (143)–Ala 8.90128 Tetratricopeptide repeat (TPR) protein

Depth of leaf serration TEA017338 3 GTC (657)–GTT Ser (107)–Phe 7.32429 AT-rich interactive domain protein

Plant type TEA029928 1 GGC (532)–AGT Gly (178)–Ser 8.08721 F-box protein

TEA012294 1 CTG (475)–TGT Gly (159)–Glu 8.46766 Acyl carrier protein 2
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results of a previous study. The ancient tea plants of XS
clustered outside of the clade containing the SD, DL, and
PA groups, suggesting that the members of XS are more
ancient than the members of the SD, DL, and PA groups.
Moreover, some members of YH clustered outside the
clade containing the HK, DY, and SQ groups, suggesting
that some members of YH are more ancient than the
members of the HK, DY, and SQ groups.
The results of LD analysis demonstrated that natural

selection pressures acted during the evolution and
domestication of ancient tea plants. The ancient tea plants
in DL showed the highest LD (r2= 467 kb), indicating that
these plants experienced the greatest selection pressure.
The results of kinship (K) analysis further revealed that
the 120 ancient tea plants were clustered into seven
subgroups with monophyletic clades from the same or
nearby places, indicating a common geographic origin.
Artificial breeding of cultivated tea plants dramatically

reduces genetic diversity9. As a precious natural resource,
ancient tea plants have higher genetic diversity, which is
of great value for studying the evolutionary mechanism
and diversification of tea plants. This phenomenon is
consistent with results in crops such as rice33. As expec-
ted, a number of outlier regions were identified, and 19
candidate genes were found to contain 107 SNPs asso-
ciated with plant type and leaf traits, including leaf length,
width, size, shape, texture, color, the number of leaf veins,
and the density and depth of leaf serration. Among these
genes, six genes with eight SNPs were significantly asso-
ciated with four traits based on KEGG annotation and
functional analysis of orthologous genes in Arabidopsis,
suggesting that these candidate genes screened by GWAS
may be involved in regulating the development of leaf-
related traits and plant type (Table 1). In Arabidopsis, the
Cop1/SPA ubiquitin ligase complex is involved in
repressing anthocyanin accumulation under low- and
high-light conditions and the F-Box protein (corre-
sponding to the functional gene of TEA029928) regulates
leaf size34,35. Moreover, the soybean stearoyl-acyl carrier
protein (corresponding to the functional gene of
TEA023604) regulates the different morphological phe-
notypes of the leaves36,37. Furthermore, NADH dehy-
drogenase (ubiquinone) 1 alpha (corresponding to the
functional gene of TEA012294) regulates the different
morphologies of the plant (Table 1)38,39.
Our study provides a valuable resource for under-

standing the phylogenetic relationships, population
structure, and genetic diversity of ancient tea plants in
southwestern China. In addition, candidate genes sig-
nificantly associated with four important agronomic traits
were identified. The significant SNPs associated with
favorable variants, selection signals, and candidate genes
are a valuable resource for the further improvement of
leaf traits and plant type in ancient tea plants.

Materials and methods
Plant material and agronomic evaluation
A total of 120 ancient tea plants were selected to

represent a broad distribution of geography, morphology,
and genetic diversity. These plant materials included 90
individual ancient tea plants from Guizhou, China, and 30
individual ancient tea plants from Yunnan, China, which
were classified and standardized according to the book of
Chinese tea plants19. The different values represent the
different qualitative and quantitative traits based on the
classification and standardization of tea plants.

Sequencing, mapping, and SNP calling
Total DNA was extracted using the modified cetyl-

trimethylammonium bromide (CTAB) method40. At least
6 μg of genomic DNA from each individual was used to
construct a sequencing library following the manu-
facturer’s instructions (Illumina Inc.). Paired-end
sequencing libraries with an insert size of ~400 bp were
sequenced on an Illumina HiSeq 2000 sequencer at BGI
company. The draft genome sequence of the tea plant (C.
sinensis var. sinensis cv. shuchazao), downloaded from the
TPIA database (http://tpia.teaplant.org/), was used as a
reference genome9,41. Paired-end reads were mapped to
the tea reference genome with BWA (v 0.6.1) software
using the default parameters42. SAMtools software was
used to convert mapping results into the BAM format and
to filter the unmapped and nonunique reads43. The Picard
package was used to filter the duplicated reads42. The
CoverageBed program in BEDtools v2.17.0 was used to
calculate the coverage of sequence alignments44. After
alignment, SNP calling was conducted per individual
using SAMtools45. The genotype likelihoods were eval-
uated from the reads of each individual at each genomic
location. A Bayesian approach was used to determine the
allele frequencies. SNPs were identified by the samtools
mpileup command. To remove false positives, only
8,082,370 high-quality filtered SNPs (coverage depth ≥ 10,
MAF < 0.05, and miss rate ≤ 0.1) were used in the sub-
sequent analysis.

Functional annotation of genetic variants

SNP annotation was conducted based on the draft
genome of C. sinensis var. sinensis using the ANNOVAR
package9,46,47. According to the annotation information,
SNPs were distributed in exonic regions, splicing sites, 5′
UTRs, 3′ UTRs, intronic regions, upstream and down-
stream regions (which were distributed in 1 kb regions
away from the transcription start site), and intergenic
regions. Moreover, SNPs in exonic regions were further
divided into synonymous SNPs (sSNPs) or nsSNPs. Indels
in the coding regions were identified based on frame-shift
mutations (3 bp insertion or deletion).
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Phylogenetic tree and population genetics analysis
To explore the phylogenetic relationship of ancient tea

plants at the genome-wide level, an NJ tree was con-
structed using the p-distance in MEGA v7.0 software with
bootstrap values determined from 1000 replicates48.
Admixture software was used to analyze the population

structure of 120 ancient tea plants with K values ranging
from 2 to 1328. PCA was also used to evaluate the genetic
structure of the ancient tea populations using GCTA
software49.

Linkage disequilibrium analysis
To compare the patterns of LD among the different

ancient tea populations, the squared correlation coeffi-
cient (r2) between pairwise SNPs was computed using
PopLDDecay 3.26 software with default parameters50. The
average r2 value was calculated for pairwise markers in a
100-kb window and averaged across the whole genome.

Genome-wide association study
The R package GENESIS v.2.14.157 was employed to

perform GWAS between genotypes and phenotypes for
all quantitative and qualitative data51. The genetic rela-
tionship matrix (GRM) can be used as a generalized linear
mixed model of random effects to explain population
stratification. In the present study, it was used to test the
abovementioned association. GCTA v.1.92.158 was
applied to calculate the GRM52. The count data adopted a
Poisson distribution, and the remaining quantitative data
adopted a Gaussian distribution. If necessary, a Box−Cox
power transformation was used, and normality was ver-
ified using a Shapiro–Wilk test. For qualitative traits, a
binomial distribution was assumed, while for multiple
qualitative traits, each category level was treated as a
virtual binary variable. Quantile–quantile plots were used
to evaluate the GWAS model (Figs. S4−S8 a, b). The GEC
(Genetic Type 1 Error Calculator) v. 0.259 was used to
estimate the significance level of correlation53. Compres-
sion multilocus random mixed linear model analysis was
conducted for GWAS using GAPIT software54. The
GWAS correction threshold was 8.2 (−log10 (0.05/
8082370)) (Manhattan plot, red dotted line).
Population fixation statistics (FST) and reduction of

diversity (ROD) were calculated for nonoverlapping
genomic intervals in 1-kb windows using VCFtools55. All
the output results of ROD and FST were standardized and
transformed into z-scores using a 100-kb sliding window
with a 10-kb step size. The outlier windows of ROD and
FST with high values were used to identify candidate
genes based on z-tests with a significance level of α= 0.05
corresponding to a z-score of 1.645. The population
genetics statistic Tajima’s D was calculated directly from
short-read alignments using ANGSD with nonoverlap-
ping 10-kb intervals (version 0.609)56.

Extraction of RNA and RT-qPCR analysis
The total RNA of ancient tea plants was isolated using a

Huayueyang Plant RNA Extraction Kit (Quick RNA iso-
lation Kit; Haidian District, Beijing). The expression pat-
terns of four genes identified by GWAS were measured
using RT-qPCR. RT-qPCR was performed using SYBR
Premix Ex Tag (TaKaRa) using cDNA as the template.
The results were analyzed using the −ΔΔCT method with
GAPDH gene expression as an internal reference. Three
biological and three technical replicates were used57.
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