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Sondheimer oscillations as a probe of non-ohmic
flow in WP2 crystals
Maarten R. van Delft 1✉, Yaxian Wang2, Carsten Putzke 1, Jacopo Oswald3, Georgios Varnavides2,

Christina A. C. Garcia 2, Chunyu Guo 1, Heinz Schmid 3, Vicky Süss4, Horst Borrmann 4, Jonas Diaz1,

Yan Sun 4, Claudia Felser4, Bernd Gotsmann 3, Prineha Narang 2✉ & Philip J. W. Moll 1✉

As conductors in electronic applications shrink, microscopic conduction processes lead to

strong deviations from Ohm’s law. Depending on the length scales of momentum conserving

(lMC) and relaxing (lMR) electron scattering, and the device size (d), current flows may shift

from ohmic to ballistic to hydrodynamic regimes. So far, an in situ methodology to obtain

these parameters within a micro/nanodevice is critically lacking. In this context, we exploit

Sondheimer oscillations, semi-classical magnetoresistance oscillations due to helical elec-

tronic motion, as a method to obtain lMR even when lMR≫ d. We extract lMR from the

Sondheimer amplitude in WP2, at temperatures up to T ~ 40 K, a range most relevant for

hydrodynamic transport phenomena. Our data on μm-sized devices are in excellent agree-

ment with experimental reports of the bulk lMR and confirm that WP2 can be microfabricated

without degradation. These results conclusively establish Sondheimer oscillations as a

quantitative probe of lMR in micro-devices.
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In macroscopic metallic wires, the flow of electric current is
well described by Ohm’s law, which assigns a metal a spatially
uniform ‘bulk’ conductivity. The underlying assumption is

that the complex and frequent scattering events of charge carriers
occur on the microscopic length scale of a mean free path, which
is much smaller than the size of the conductor, d, leading to
diffusive behavior. In addition to the scattering processes of bulk
systems, the resistance of microscopic conductors is mostly
dominated by boundary scattering, thereby masking the internal
scattering processes of the bulk in resistance measurements. Here,
we present a method to uncover these bulk processes in micro-
scale metals, which are of technological importance for fabrica-
tion of quantum electronic devices, and simultaneously critical to
a fundamental understanding of microscopic current flow pat-
terns. It is instructive to classify the bulk scattering processes into
two categories: those that relax the electron momentum, such as
electron–phonon, Umklapp or inelastic scattering, occurring at
length-scale lMR; and those that conserve the electron momen-
tum, such as direct or phonon-mediated electron–electron scat-
tering, associated with a length-scale lMC.

Within a kinetic theory framework, these three length scales,
namely d, lMR, and lMC, can be used to describe the current flow
in micro-scale conductors. When momentum-conserving inter-
actions are negligible, ohmic flow at the macro-scale (lMC≫ d≫
lMR) gives way to ballistic transport in clean metals where lMR,
lMC≫ d. Conversely, when momentum-conserving interactions
occur over similar or smaller length scales to momentum-relaxing
interactions, a third regime of ‘hydrodynamic’ transport (lMR≫
d≫ lMC) is observable1,2. In this regime, the static transport
properties of electron fluids can be described by an effective
viscosity that captures the momentum diffusion of the system2,3.
These electron fluids exhibit classical fluid phenomena such as
Poiseuille flow, whereby the current flow density is greatly
decreased at the conductor boundary. Recently, advances in both
experimental probes and theoretical descriptions have enabled
direct observation of these effects using spatially resolved current
density imaging, and have hinted towards the rich landscape of
electron hydrodynamics in micro-scale crystals3–5.

While such local-probe experiments provide means of quan-
tifying electron–electron interactions, and thus extracting lMC,
direct measurement of the intrinsic momentum-relaxing pro-
cesses (lMR) within micron-scale conductors remains elusive, yet
is greatly needed. From a practical perspective, lMR describes the
overall scattering from impurities and the lattice vibrations within
the metallic microstructure, which at low temperature is an
important feedback parameter of quality control in fabrication.
Furthermore, given both the reduction of sample size and the
improved crystal quality, seemingly exotic transport scenarios
where lMR≫ d≫ lMC is satisfied are expected to become more
prevalent in technology. An accurate description of these length
scales is necessary to predict the overall resistance and thus vol-
tage drops and heat dissipation in the nanoelectronic devices. For
example, the resistive processes in a hydrodynamic conductor
occur at the boundaries rather than homogeneously distributed in
the bulk, which alters the spatial distribution of Joule heating and
thereby has significant impacts on thermal design.

Real devices will operate at some intermediate state in the d,
lMR, and lMC parameter space, departing from the well-
understood limiting cases of ohmic, ballistic, and hydrodynamic
flow. Rich landscapes of distinct hydrodynamic transport regimes
are predicted depending on the relative sizes of the relevant
length scales6. Effective understanding, modeling and prediction
of transport requires an experimental method to estimate these
parameters reliably in every regime. In large, ohmic conductors,
the bulk mean free path lMR can be simply estimated from the
device resistance using a Drude model. Yet when lMC, lMR≳ d,

boundary scattering dominates the resistance, and hence esti-
mates of the bulk scattering parameters are highly unreliable. This
leaves the worrying possibility of misinterpreting the transport
situation in a conductor, in that the microfabrication itself may
introduce defects or changes in the bulk properties that remain
undetected by macroscopic observables such as the resistance, but
have profound impact on the microscopic current distribution.
These effects are already noticeable in state-of-the-art transistors,
owing to the low carrier density of semi-conductors7, but have
similarly been reported in metallic conductors5. With the
increased technological interest in quantum and classical elec-
tronics operating at cryogenic temperatures, such questions about
unconventional transport regimes are also of practical relevance
in next generation electronics8.

In this context, we propose to exploit a magneto-oscillatory
phenomenon, Sondheimer oscillations (SO), as a self-consistent
method to obtain the transport scattering length lMR in-situ, even
in constricted channels when lMR≫ d. In general, a magnetic field
(B) applied perpendicular to a thin metal forces the carriers on
the Fermi surface (FS) to undergo cyclotron motion. Those on
extremal orbits of the FS are localized in space due to the absence
of a net velocity component parallel to the magnetic field. These
localized trajectories can become quantum-coherent, and their
interference causes the well-known Shubnikov-de Haas (SdH)
oscillations. The states away from extremal orbits also undergo
cyclotron motion, yet they move with a net velocity along the
magnetic field, analogous to the helical trajectories of free elec-
trons in a magnetic field (Fig. 1). These states are responsible for
the Sondheimer size effect which manifests itself as a periodic-in-
B oscillation of the transport coefficients, as discovered in the
middle of the past century for clean elemental metals9.

For any given state, the magnitude of B sets the helical radius
and thus determines how many revolutions the electron com-
pletes while traveling from one surface to the other in a micro-
device. If an integer number of revolutions occurs, the charge
carrier will have performed no net motion along the channel, and
hence is semi-classically localized (Fig. 1a). However, if the
number of revolutions is non-integer, a net motion along or
perpendicular to the channel exists, delocalizing the carriers,
resulting in oscillatory longitudinal and transverse magneto-
transport behavior. Large-angle bulk scattering events dephase
the trajectory, hence the strong sensitivity of SO to the bulk lMR

even in nanostructures. These SO are an inherent property of
mesoscale confined conductors in three dimensions and have no
counterpart in 2D metals like graphene.

The period of the SO is derived by considering a classical
charged particle on a helical trajectory between two surfaces
perpendicular to the magnetic field10. One compares the time it
takes to travel the distance d between the surfaces, td= d/v∥, to
the time to complete a single cyclotron revolution, τc= 2π/ωc=
2πm*/eB (m*: effective mass, e: electron charge, ωc= eB/m*:
cyclotron frequency). Their ratio describes the number of revo-
lutions of the trajectory. For certain fields the helix is commen-
surate with the finite structure and the number of revolutions is
integer, n, such that td= nτc. This occurs periodically in field,
with the period given by:

ΔB ¼ 2πm�vk
ed

¼ _

ed
∂A
∂kk

 !
: ð1Þ

The useful identity vk ¼ _
2πm�

∂A
∂kk

� �
, derived by Harrison11,

directly relates the SO period to the FS geometry, where v∥ and k∥
denote the velocity and momentum component parallel to the
magnetic field and A is the FS cross-sectional area encircled by
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the orbit in k-space. Note the contrast to conventional QO which
appear around extremal orbits, where ∂A

∂kk
¼ 0.

All conduction electrons undergo cyclotron motion, yet
depending on ∂A

∂kk
, they experience different commensurability

fields with a structure of given size d. Hence oscillatory con-
tributions to the total conductivity are washed out, unless a

macroscopic number of states share the same vk / ∂A
∂kk

� �
Ef

10. In

earlier days of Fermiology12, geometric approximations for FSs,
such as elliptical endpoints, were introduced to identify those
generalized geometric features that lead to extended regions of
constant ∂A

∂kk
. The computational methods available nowadays

allow a more modern approach to the problem. FSs calculated by
ab-initio methods can be numerically sliced in order to calculate
their cross-section A(k∥). We propose to extend this routine
procedure, used to find extremal orbits relevant for QO
∂A
∂kk

¼ 0
� �

, to identify SO-active regions ∂2A
∂k2k

� 0
� �

, based on the

Fermi-surface slicing code SKEAF13 (see Methods for details on
implementation).

SO are caused by the real-space motion of charge carriers and
hence also pose some conditions on the shape of the conductor.
First, surface scattering needs to be mostly diffusive. If an electron
undergoes specular scattering N times before scattering diffu-
sively, it contributes towards the SO as if the sample had an
effective thickness Nd14, leading to overtones. Naturally, SO
vanish in the (unrealistic) limit of perfectly specular boundary
conditions, as such ideal kinetic mirrors remove any interaction
of the electron system with the finite size of the conductor. Sec-
ondly, the conductor must feature two parallel, plane surfaces
perpendicular to the magnetic field to select only one spiral tra-
jectory over the entire structure. The parallelicity requirement is
simply given by a fraction of the pitch of the spiral at a certain
field (maximal thickness variation Δd < vkτc ¼ d ΔB

B )
10. These

requirements are naturally fulfilled in planar electronic devices.

It is instructive to briefly compare SO to the more widely
known QO of resistance, the SdH effect. Both are probes of the FS
geometry based on cyclotron orbits, yet the microscopics are
strikingly different. While QO frequencies are exclusively deter-
mined by FS properties via the Onsager relation and are thus
independent of the sample shape, SO are finite-size effects. SO
emerge from extended regions on the FS, unlike SdH oscillations
to which only states in close vicinity of extremal orbits contribute.
While SdH oscillations are quantum interference phenomena, SO
are semi-classical, which is key to their use as a robust probe of
exotic transport regimes. If both can be observed, powerful
statements on the scattering microscopics can be made, as SdH is
sensitive to all dephasing collision events and SO separates out
the large-angle ones15. However, the much more stringent con-
ditions of phase coherence in SdH severely limit their observa-
tions at higher temperatures. SO are observable up to relatively
high temperatures at which the rapidly shrinking lMR(T) leads to
a transition into an ohmic state, when lMR(T) < d. As such, they
are ideally suited to explore the exotic transport regimes in which,
for example, hydrodynamic effects occur.

We apply these theoretical considerations to experimentally
investigate the scattering mechanisms in micron-sized crystalline
bars of the type-II Weyl semimetal WP216 exploiting the Sond-
heimer effect. Bulk single crystals of WP2 are known for their
long lMR, in the range of 100–500 μm17–19, comparable to the
elemental metals in which SO were initially discovered20–23.
These are an ideal test case for non-ohmic electron flow,
as hydrodynamic transport signatures and nontrivial
electron–phonon dynamics have been observed in various topo-
logical semimetals17,18,24–26. These ulta-pure crystals are then
reduced in size by nanofabrication techniques into constricted
channels, to study hydrodynamic or ballistic corrections to the
current flow.

Here we employ Focused Ion Beam (FIB) micromachining27,
which allows precise control over the channel geometry in 3D. In

a)

b) c)

B=nΔB B≠nΔB 

B I
w

d

20 μm  

Fig. 1 Introduction to Sondheimer oscillations. a Illustration of the Sondheimer effect. Left: the applied magnetic field is B= 3ΔB and the electron (red)
makes an integer number of rotations, with no contribution to transport. Right: B≠ nΔB. The electron hits the top surface at a different position than its
origin on the bottom surface, leading to a contribution to the conductivity. b Resistivity as function of temperature for a WP2 microdevice. Inset: false-color
SEM image of a typical device used in this study. c Sondheimer oscillations seen in the Hall resistivity of a WP2 microdevice, for different temperatures. The
oscillation period of ΔB= 1.6 T is highlighted.
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this technique, we accelerate Xe ions at 30 kV to locally sputter
the target crystal grown by chemical vapor transport (CVT)19,28

until a slab of desired dimensions in the μm-range remains. This
technique leads to an amorphized surface of around 10 nm
thickness, yet has been shown to leave bulk crystal structures
pristine29. Naturally, reducing the size of a conductor even
without altering its bulk mean free path significantly changes the
device resistance at low temperatures due to finite size
corrections30. Hence, measurements of the constricted device
resistance alone cannot exclude the possibility of bulk degrada-
tion due to the fabrication. Thus far, one could only argue based
on size-dependent resistance studies that the values smoothly
extrapolate to the bulk resistivity value in the limit of infinite
device size18,31. Measuring SO directly in the microfabricated
devices themselves, however, quantitatively supports that the
ultra-high purity of the parent crystal remains unchanged by our
fabrication. We note that the fundamental question of the bulk
parameters is universal in mesoscopic conducting structures
irrespective of the fabrication technique, and these considerations
are thus equally applicable to structures obtained by mechanically
or chemically thinned samples as well as epitaxially grown crys-
talline films. SO should provide general insights into the material
quality in the strongly confined regime, allowing to contrast
different fabrication techniques.

Results
We measure our μm-confined devices using standard lock-in
techniques with applied currents between 50 and 100 μA, low
enough to limit self-heating, and magnetic fields up to 18 T. At
high temperatures, the measured resistivity agrees well with
previous reports on high quality bulk crystals, as expected given
the momentum-relaxing limited mean free path of charge carriers
in this regime (Fig. 1b). Yet in the low temperature limit, the
device resistance exceeds that of bulk crystals by more than an
order of magnitude17,19,32. Conversely, the residual resistance
ratios in our devices (RRR ≈ 160–300) are also considerably lower
than in bulk crystals32. The main question we address by SO is
whether this excess resistance points to fabrication-induced
damage, finite size corrections, or a mixture thereof. At low
temperatures around 3 K, a drop in resistance signals a super-
conducting transition. As WP2 in bulk form is not super-
conducting, this likely arises from an amorphous W-rich surface
layer due to the FIB fabrication similar to observations made in
NbAs33 and TaP34. In Fig. 1c, we show the Hall resistivity, ρxy, of
one of our devices as a function of the magnetic field, for different
temperatures. The Hall signal comprises oscillations with a period
of ΔB= 1.6 T, resolved above approximately B= 2 T.

The staircase device. A hallmark signature of SO is their linear
frequency dependence on the device thickness perpendicular to
the field. For this reason, we fabricated crystalline devices with
multiple sections of different thickness to study the dependence
on the channel thickness, d, in a consistent manner. This ‘stair-
case’ device allows the simultaneous measurement of transport on
5 steps, as illustrated in Fig. 2. SO appear in all transport coef-
ficients, magnetoresistance (MR) and Hall effect alike, yet here we
focus on the Hall effect for two practical reasons. First, the step
edges induce non-uniform current flows, and hence the device
would need to be considerably longer to avoid spurious voltage
contributions from currents flowing perpendicular to the device
in a longitudinal resistance measurement. Second, WP2 exhibits a
very large MR yet a small Hall coefficient, as typical for com-
pensated semi-metals. Therefore, the SO are more clearly dis-
tinguishable against the background in a Hall measurement, but
they are also present in the longitudinal channel.

The fabrication process of our WP2 devices follows largely the
same procedure as described in ref. 27. However, for the staircase
device, a few key changes were made. In the first fabrication step,
the FIB is used to cut a lamella from a bulk WP2 crystal. One side
is polished flat, and the other side polished into five sections, each
to a different thickness (Fig. 2b). It is then transferred, flat side
down, into a drop of araldite epoxy on a sapphire substrate and
electrically contacted by Au sputtering (Fig. 2b). In a second FIB
step, the staircase slab is patterned laterally into its final structure
(Fig. 2a). We use Xe ions for the entire FIB fabrication process in
order to avoid potential issues with Ga ion implantation leading
to changes in the carrier density. Indeed, experimentally, we see
no indication of any charge carrier modulation.

All segments of the staircase devices show pronounced B-
periodic oscillations in the Hall channel, from which the linear
background is removed by taking second derivatives. (Fig. 3). At
the lowest fields, a weak, aperiodic structure is observed. In this
regime, the cyclotron diameter does not fit into the bar,
preventing the formation of the Sondheimer spirals. Note that
in all devices of different thickness, this onset field of the SO is the
same. This is a natural consequence of the fact that the lateral
size, perpendicular to the magnetic field, by design, is the same
for all steps of the staircase. Each step, however, differs in
thickness d parallel to the magnetic field, and the period varies
accordingly between steps (Fig. 3b). At even higher fields, the
onset of regular SdH oscillations hallmarks a transition into a
different quantized regime. The SO frequency F= 1/ΔB varies
linearly with d as expected (Fig. 3c, Eq. (1)).

Sondheimer oscillations. Next we identify the Sondheimer-active
region on the FS from the ab-initio band structure, which was
calculated by density functional theory (DFT) with the projected
augmented wave method as implemented in the code of the
Vienna ab-initio Simulation Package35. The FS of WP2 consists of
two types of spin-split pockets: dogbone-shaped electron pockets
and extended cylindrical hole pockets (see Fig. 4 and Supple-
mentary Fig. 2 for a complete picture of the FS).

Only one area quantitatively agrees with the observed SO
periodicity: the four equivalent endpoints of the dogbone (colored
orange in Fig. 3f). Slicing all Fermi-surfaces using SKEAF13, their
cross-sections A(k∥) are obtained. While in QO analysis this
information is discarded once the extremal orbits are identified, it
forms the basis of the SO analysis. As the dogbone is sliced from
the endpoints, the area continuously grows until the two endpoint
orbits merge and the area abruptly doubles. Slicing further, the
area grows until the maximum orbit along the diagonal is
reached. The mirror symmetry of the FS enforces then a
symmetric spectrum when slicing further beyond the maximum.
The quasi-linear growth at the endpoints signals an extended area
of Sondheimer-active orbits. Averaging the near-constant deri-
vative in this region, ∂A

∂kk
, provides via Eq. (1) a tuning-parameter-

free prediction of the thickness dependence of the SO frequency.
This ab-initio prediction (red line in Fig. 3c) is in excellent
agreement with the observed thickness dependence.

Next the temperature-dependence of the SO amplitude is used to
gain direct information about the microscopic scattering processes
acting on this region of the FS. In Fig. 4a, b, we plot this
temperature dependence and highlight two regimes: that of
quantum coherence and that of purely SO. In the first regime,
quantum coherence leads to SdH oscillations; however, for typical
effective masses m* ≈me, as in WP2, they are only observable at
very low temperatures (T < 5 K). Importantly, their quick demise
upon increasing temperature is not driven by the temperature
dependence of the scattering time, but rather by the broadening of
the Fermi-Dirac distribution. This is apparent as their temperature
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dependence is well described by the Lifshitz–Kosevich formalism
based on a temperature-independent quantum lifetime, τq.

This strong temperature-suppression of QO severely limits
their use to probe scattering mechanisms at elevated tempera-
tures. SO, on the other hand, do not rely on quantum coherence
and are readily observed to much higher temperatures, up to 40 K
in WP2, while their temperature decay allows a direct
determination of the transport lifetime, τMR= lMR/vF. Hence SO
make an excellent tool to study materials in the temperature
range pertinent to exotic transport regimes like ballistic or
hydrodynamic. They self-evidence non-diffusive transport as they
only vanish when lMR ~ d, and hence are only absent in situations
of conventional transport within a given device.

Discussion
Key to observable SO is that electrons do not undergo large-angle
scattering events on their path between the surfaces. We therefore
have the condition that lMR > d36,37. As lMR(T) decreases with
increasing temperature and the boundary scattering is assumed to
be temperature-independent, the SO amplitude is suppressed as
e�d=lMRðTÞ which allows us to estimate the bulk transport mean
free path within a finite-size sample, even when d≪ lMR. It is
extracted as36:

1
lMRðTÞ

¼ � 1
d
ln

AðTÞ
Að0Þ ; ð2Þ

where A(T) is the SO amplitude at temperature T. A(T= 0) is
estimated by extrapolation, which is a robust procedure as the SO
amplitude saturates at low but finite temperatures. This is ana-
logous to the saturation of the resistivity of bulk metals at low
temperatures, once bosonic scattering channels are frozen out
and temperature-independent elastic defect scattering becomes
dominant.

In the following discussion, we focus on the scattering time τMR

to facilitate comparison of our results with literature and theory,
using the average Fermi velocity on the dogbone FS determined
from our band structure calculations self-consistently, vF= 3.6 ×
105 m/s. The τMR(T) obtained from all devices quantitatively
agrees, despite their strong difference in thickness (between 1.3
and 4.6 μm) and hence SO frequency, further supporting the
validity of this simple analysis (see Fig. 4c and Supplementary
Fig. 5). The lifetimes on the SO devices furthermore agree with
measurements on bulk crystals18, evidencing that the increased

resistivity compared to bulk can be wholly attributed to finite size
corrections rather than to any fabrication-induced damage, and
that FIB fabrication does not introduce significant changes to the
bulk properties of WP2 that might cause misinterpretations of the
scattering regime.

For our WP2 devices, a standard Dingle analysis15 of the QO
yields a quantum scattering time τq ~ 10−13− 10−12 s (Fig. 4c), in
agreement with published values for bulk crystals WP219. As τq is
sensitive to all dephasing scattering events, but τMR only to large-
angle momentum-relaxing scattering, the microscopics of the
scattering processes in WP2 are brought to light. The four orders
of magnitude difference between τMR and τq reflects a common
observation in topological semi-metals such as Cd3As238, PtBi239,
or TaAs40.

Long τMR, together with a high quality, clean sample, enables
the realization of the hydrodynamic regime where the
momentum-conserving scattering dominates. These quantitative
measurements of τq and τMR(T) can now be directly compared to
theoretical models of scattering. We consider an initial electronic
state with energy εnk (where n and k are the band index and
wavevector respectively) scattering against a phonon with energy
ωqν (where ν and q are the phonon polarization and wavevector
respectively), into a final electronic state with energy εmk+q. The
electron–phonon scattering time τe−ph describing such an inter-
action can be obtained from the electron self energy using Fermi’s
golden rule:

τ�1
e�phðnkÞ ¼

2π
_
∑
mν

Z
BZ

dq
ΩBZ

jgmn;νðk; qÞj2

´ nqν þ
1
2
� 1

2

� �
δ εnk � ωqν � εmkþq

� �
;

ð3Þ

where ΩBZ is the Brillouin zone volume, fnk and nqν are the
Fermi–Dirac and Bose–Einstein distribution functions, respec-
tively, and the electron–phonon matrix element for a scattering
vertex is given by

gmn;νðk; qÞ ¼
_

2m0ωqν

 !1=2

hψmkþqj∂qνVjψnki: ð4Þ

Here hψmkþqj and jψnki are Bloch eigenstates and ∂qνV is the
perturbation of the self-consistent potential with respect to ion
displacement associated with a phonon branch with frequency

Fig. 2 The staircase device. a False color SEM image of a staircase device, used to measure Sondheimer oscillations for different thicknesses. The crystal is
colored in purple, and gold contacts in yellow. b Main: Schematic of the staircase device, illustrating all possible measurement configurations as well as the
thickness of each section. Top left: SEM image of the lamella that will become the device shown in a, prior to extracting it from its parent crystal. Bottom
right: SEM image of the same lamella, glued down onto a sapphire substrate, ready to define the device geometry. The lamella and glue are covered in gold
(not colored) throughout the full field of view. The magnetic field is applied perpendicular to the structure, aligned along the crystallographic [011]
direction.
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ωqν. Plotting these state-resolved electron–phonon lifetimes at
~10 K on the FS reveals the distribution of scattering in the SO-
active regions (Fig. 4d). Equation (3), however, accounts, to first
order, for all electron–phonon interactions, irrespective of the
momentum transfer or equivalently the scattering angle. To
remedy this, we augment the scattering rate with an ‘efficiency’
factor41 given by the relative change of the initial and final state
momentum (1� vnk �vnk

jvnk jjvnk j ¼ 1� cos θ), where vnk is the group
velocity and θ is the scattering angle:

τmr
e�phðnkÞ

� ��1
¼ 2π

_
∑
mν

Z
BZ

dq
ΩBZ

gmn;νðk; qÞ
��� ���2

´ nqν þ
1
2
� 1

2

� �
δ εnk � ωqν � εmkþq

� �

´ 1� vnk � vnk
jvnkjjvnkj

� �
:

ð5Þ

At low temperatures, the thermally activated phonon modes have
a tiny q, therefore the initial and final electronic states only differ
from a small angle. It is thus important to take this momentum-
relaxation efficiency factor into account in addition to τe−ph, in
order to estimate τMR which determines the electron mean free
path in the SO-active regions. In the SO measurements, the
electron orbits are located on the endpoints of the dogbone-
shaped electron pockets (Fig. 3f), therefore we highlight the
scattering efficiency distribution on the electron FS in Fig. 4e.
Indeed, when the orbit is aligned along the diagonal direction, the
FS cross section features very low scattering efficiency with an
averaged 1� cos θ < 0:1. This supports our observation of fre-
quently scattering electrons with long transport lifetimes in the
SO measurement.

These results demonstrate the power of the Sondheimer size
effect for the extraction of the momentum-relaxing mean free path
in mesoscopic devices when d≪ lMR via their temperature

Fig. 3 Analysis of Sondheimer oscillations in WP2. a Second derivative of the Hall resistivity shown in Fig. 1c at T= 4 K. Inset: Fast Fourier Spectrum (FFT)
corresponding to this data. b Second derivatives of the Hall resistivity at three different thicknesses, d= 4.3, 2.7 and 2.0 μm, T= 4 K. c FFTs corresponding
to the data in b. d Dependence of the Sondheimer frequency on d. The error bars in the frequency, F, are derived from the width of the relevant peaks in the
FFT spectra and those in d from the standard deviation of thickness measurements made with SEM. The red dashed line is calculated from the Fermi
surface as determined from DFT. e Cross-sectional area, A, of the dogbone Fermi surface pocket of WP2 as a function of k parallel to the field direction of
our experiments (top), and its derivative (bottom). f Location of observed Sondheimer orbits drawn in orange on the dogbone-shaped Fermi surface
pocket. The magnetic field is applied along the [011]-direction, perpendicular to the current, as indicated by the red line.
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dependence. Combined with first-principles theoretical calcula-
tions, we were able to locate the states contributing to the helical
motion to the elliptical endpoints of a particular FS of WP2. We
note, however, that such analysis as well as the thickness depen-
dence are only relevant for the academic purpose of robustly
identifying these oscillations as SO. Once this is established, the
relevant lifetimes may straightforwardly be obtained from the
resistance oscillations at a single thickness. Hence, SO promise to
be a powerful probe to obtain the bulk mean free path in devices
with μm-scale dimensions without relying on any microscopic
model assumptions. This analysis is a clear pathway to identify
scattering processes in clean conductors within operating devices.
It thereby provides important feedback of the materials quality

after a micro-/nano-fabrication procedure and disentangles the
roles of bulk and surface scattering that are inseparably inter-
twined in averaged transport quantities of strongly confined
conductors, such as the resistance. As their origin is entirely semi-
classical, they are not restricted by stringent criteria such as
quantum coherence and thus span materials parameters of
increased scattering rate. In particular, they survive up to sig-
nificantly higher temperatures and thereby allow microscopic
spectroscopy in new regimes of matter dominated by strong
quasiparticle interactions, such as hydrodynamic electron trans-
port. With this quantitative probe, it will be exciting to test recent
proposals of exotic transport regimes and create devices that
leverage such unconventional transport in quantum materials.

τe-ph [fs] 

Quantum       Sondheimer
b)

d)

c)

e)

a)

Fig. 4 Extraction of scattering times from the Sondheimer amplitude. a FFTs of the SO at different temperatures for thicknesses of 4.3, 2.7, and 2.0 μm.
The data at T= 4 K is the same as that in Fig. 3c. b Temperature dependence of the Sondheimer and SdH oscillation amplitudes, for different sample
thicknesses. The error bars are estimated from the variation in amplitude in the FFT spectra. The dashed lines are fits used to extrapolate to the amplitude
at zero temperature, A(0) (see Methods for details). The dotted line is a Lifshitz–Kosevich fit, giving an effective mass of 1.1me. Two regimes are
highlighted: that of quantum coherence, where SdH oscillations exist alongside SO, and that of Sondheimer, where only SO exist. c Scattering times
extracted for a 4.3 μm thick section of a WP2 device using Eq. (2) and the calculated Fermi velocity, vF= 3.6 × 105 m/s. An approximate quantum lifetime
extracted from the SdH oscillations as well as data from refs. 18,46 are included for comparison. Errors in τMR are propagated from those in the amplitudes
and the error in τq is the standard deviation of several measurement. d Calculated scattering time for all electron–phonon scattering (τe−ph) and e the
scattering efficiency determining the momentum-relaxing scattering lifetimes (τMR) projected onto the Fermi surface at T= 10 K.
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Methods
Crystal growth. High quality crystals of WP2 were grown via the CVT method
using iodine as transport agent, with the following starting materials: red phos-
phorus (Alfa-Aesar, 99.999%) and tungsten trioxide (Alfa-Aesar, 99.998%). The
starting materials were sealed in an evacuated fused silica ampoule. A two-zone-
furnace with a temperature gradient of 1000–900 °C was used for the CVD method.
After several weeks, the ampoule was removed from the furnace and quenched in
water. The crystals were characterized by X-ray diffraction.

Fabrication of the staircase device. In Fig. 2, we have shown the so-called
staircase device which was especially designed for the measurement of SO. Here, we
describe its fabrication in detail, beginning from a bulk crystal. Firstly, the crys-
tallographic orientation of the bulk crystal is determined through XRD measure-
ments, and it is glued in the desired orientation onto an SEM stub. It is then
introduced into a Helios G4 PFIB UXe DualBeam FIB/SEM using Xe ions, hence
avoiding issues associated with surface implantation as in the more common Ga-
based sources. The focused beam of Xe ions is used to cut a rectangular slab we call
a lamella from that crystal in three steps. The first is using a high 2.5 μA current to
cut two gaps into the crystal, separated by an ~15 μm thick and 150 μm long
section of crystal. A smaller current of 0.2 μA is then used to smoothen this crystal
section in order to produce moderately flat sidewalls, after which the wall is cut
near the bottom and on the sides such that we have a lamella attached to the parent
crystal through two beams at its top.

At this stage, a 15 nA current is used to fine-cut both sides of the lamella,
leaving it with parallel sidewalls and a high level of smoothness. The thickness of
the lamella is now that of what will be thickest section of the staircase device. The
lamella is then divided into five sections; the three middle sections are of equal
length, while the sections on either end are longer for further contacts. Starting
from one side, we leave the first section untouched and polish and mill the other
sections to their respective target thickness using cleaning-cross-sections as the
milling strategy. This is the stage shown in the top left insert of Fig. 2b. After this,
we cut through the beam on one side and thin down the other side.

An ex-situ micromanipulator is used to break the thinned beam and pick up the
stepped lamella. On a sapphire substrate with lithographically prepatterned gold
contact pads, we place a small droplet of Araldite epoxy. While the epoxy is still
liquid, we place our lamella, flat side down, onto the droplet. Capillary forces then
create a profile of epoxy around the lamella that extends smoothly up to each of its
top surfaces, without covering any. After curing the epoxy for 1 h at 150 °C, we take
the substrate to a sputtering machine, where it is briefly RF etched and 3 nm of Ti
plus 200 nm of Au are sputtered onto the lamella, glue and prepatterned gold
contacts through a shadow mask. The lamella after this step is shown in the bottom
right of Fig. 2b.

In order to pattern the device, we again make use of the Helios G4 PFIB. The
Ti/Au layer that covers what will be the active part of the device is first removed
with an acceleration voltage of 5 kV and an ion current of 2 nA. The overall shape
of the device with the position of the contacts is then cut out at 0.3 nA and 30 kV
and the central bar of the device is gently polished in order to create smooth
sidewalls. Finally, the Ti/Au layer away from the device is cut through in order to
separate the contact pads and make sure that current can only flow through the
device, which is then ready for measurement.

In order to check that the crystallographic orientation of the final device is as
expected based on the initial XRD measurements, we perform measurements of the
MR. The MR has a characteristic shape with a minimum for B∥c and a maximum
for B∥b19, allowing an identification of these axes. In Supplementary Fig. 1, we
show an angle-dependent measurement of MR for one of our devices, which is
indeed aligned 45∘ away from the b and c axes.

Calculation of A(k) and dA
dk . The calculations of the k-dependent cross-sectional

area of the FS shown in Fig. 3 and Supplementary Fig. 3 were performed with a
slightly modified version of SKEAF13, a commonly used software designed to
numerically extract QO frequencies from calculated band structures. QO take place
at extremal areas of the FS (i.e. when dA

dk ¼ 0) and their frequency relates to the
extremal area as given by the Onsager relation15: F ¼ _

2πe A. This correspondence
allows us to display A(k) in units of kT rather than 1/Å2. As QO are more known
than SO, this choice of unit facilitates their comparison.

The SKEAF algorithm, written in the Fortran 90 language, reads electronic
structures calculated by DFT in the Band-XCrySDen-Structure-File format. It
constructs a cubic super cell much larger than the original reciprocal unit cell and
aligned with the magnetic field direction. This super cell is then divided into slices
perpendicular to the magnetic field, and the software records the cross-sectional
area for each slice. During regular use, SKEAF then matches the orbits over the
different slices and finds the extremal ones. We, however, need the area for each
slice, and hence we have added a short section of code to create a new file
containing the k-values and areas (in both 1/Å2 and kT) for all orbits.

This file contains many copies of each FS sheet. Rather than averaging each
orbit, as is done by SKEAF for the extremal orbits, we simply select one copy and
plot this as in Fig. 3e. This is reasonable, as the differences between the areas of the
copies are consistently less than 0.1%. Finally, we take a numerical derivative of A
(k) and find dA

dk , from which we can identify possible Sondheimer orbits.

Extraction of lMR from the SO amplitude. We follow a step-by-step procedure in
order to extract the lMR as a function of temperature. In the first step, the measured
longitudinal or Hall resistivity is smoothed and differentiated twice. The required level
of smoothing is adjusted for each dataset to the extent that no oscillatory component
of the data is removed, while the noise is suppressed. Importantly, the same procedure
is performed consistently for each temperature. After taking the second derivative, we
perform an FFT of the data using a Hanning window. The relevant amplitude A(T) is
found from the peak in the FFT and plotted against the temperature (see Fig. 4b). In
order to extract A(0), we then need to extrapolate to T= 0 K. In order to do this, we
use a fit of the form AðTÞ ¼ A1= 1þ exp T�c1

c2

� �� �
, which provides an excellent

empirical description of the data and allows us to determine A(0). As the SO
amplitude saturates at low temperatures, the exact extrapolation procedure has little
effect on the value of A(0) and the extrapolation is robust.

Finally, we use Eq. (2) to calculate lMR(T), which we plot in Fig. 4b. In
Supplementary Fig. 5, we show lMR(T) for several different devices, showing
consistency between the values extracted for any thickness, from ρxx or ρxy and
from measurements along different crystallographic axes.

Ab initio calculations. The ab initio calculations were performed with the open
source DFT code JDFTx42. We used fully relativistic Perdew–Burke–Ernzerhof
pseudopotentials43–45 and included the spin-orbit coupling effect in all calcula-
tions. A kinetic energy cutoff of 28 Ha was used along with a 6 × 6 × 8Γ-centered k-
mesh and a Fermi-Dirac smearing of 0.01 Ha for the Brillouin zone integration.
Both the lattice constants and the ion positions were relaxed until the energy
differences were less than 10−9 Ha. To compute the electron–phonon scattering
time, we performed frozen phonon calculations in a 3 × 3 × 2 supercell, and
obtained 44 maximally localized Wannier functions by projecting the plane-wave
bandstructure to W d and P p orbitals, which allowed us to converge the electron
scattering calculation on a much finer 66 × 66 × 88k0 and q grid for T= 10 K.

Data availability
The data generated in this study have been deposited in the Zenodo repository, https://
doi.org/10.5281/zenodo.4675599. Data presented in Fig. 4d, e are available upon request.
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