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Background. Microbiome sequencing has brought increasing attention to the polymicrobial context of chronic infec-
tions. However, clinical microbiology continues to focus on canonical human pathogens, which may overlook informative, but 
nonpathogenic, biomarkers. We address this disconnect in lung infections in people with cystic fibrosis (CF).

Methods. We collected health information (lung function, age, and body mass index [BMI]) and sputum samples from a cohort 
of 77 children and adults with CF. Samples were collected during a period of clinical stability and 16S rDNA sequenced for airway 
microbiome compositions. We use ElasticNet regularization to train linear models predicting lung function and extract the most 
informative features.

Results. Models trained on whole-microbiome quantitation outperformed models trained on pathogen quantitation alone, with 
or without the inclusion of patient metadata. Our most accurate models retained key pathogens as negative predictors (Pseudomonas, 
Achromobacter) along with established correlates of CF disease state (age, BMI, CF-related diabetes). In addition, our models selected 
nonpathogen taxa (Fusobacterium, Rothia) as positive predictors of lung health.

Conclusions. These results support a reconsideration of clinical microbiology pipelines to ensure the provision of informative 
data to guide clinical practice.
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Bacterial infections often resolve rapidly given effective 
immune responses, independent of antibiotic treatment. 
However, in chronic (long-lasting) cases, infections fail to 
clear even with appropriate drug treatment. Chronic infec-
tions impose an elevated morbidity and mortality risk to the 
individual [1] and an increasing burden on global health care 
systems as at-risk populations grow [2]. Chronic infections 
typically arise due to deficits in host barrier defenses and/or 
immune function, and commonly feature changes in path-
ogen growth mode (eg, biofilm formation [3]) and additional 
microbial species acquisition, forming complex multispecies 
communities [4].

Microbiome sequencing has increasingly underscored the 
polymicrobial context of chronic infection. However, clinical 
microbiology analysis continues to focus only on the “usual sus-
pects” of established human pathogens—a relatively short list of 
organisms with well-established patient health risks. This dis-
connect between diverse “infection microbiomes” and limited 

clinical microbiology profiling may overlook clinically impor-
tant risk markers. To address this, we focus on chronic lung in-
fections in people with cystic fibrosis (CF).

CF is an autosomal recessive disease characterized by de-
creased lung mucociliary clearance and mucus accumulation 
[5–7]. The resulting environment provides both nutrients for 
bacterial growth and protection from host immune responses 
[8–11], facilitating chronic microbial infections [12–15]. 
Accessible 16S rDNA microbiome profiling has shifted CF 
airway microbiology research away from a historically single-
pathogen focus, as sequencing expectorated sputum has 
revealed diverse communities of tens to hundreds of taxa, in-
cluding numerous nonpathogenic bacteria [13, 16, 17].

Numerous lung microbiome studies have linked community 
composition to disease progression and overall patient health 
[18–20]. Cross-sectional studies have shown severe disease is 
associated with pathogen dominance and loss of taxonomic 
diversity [18, 19, 21]. Longitudinal studies have associated 
decreasing microbiome diversity with declining lung function 
[22]. Additionally, abundance of nonpathogenic fermenta-
tive anaerobes (Veillonella, Prevotella, and Fusobacterium) is 
associated with higher lung function [23, 24]. While these 
associations are observed across multiple studies, their causal 
interpretation is the subject of some controversy. These re-
sults may reflect community ecological processes within the 
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lung, where species interactions govern community structure 
and subsequent harm to the host [12, 25, 26]. Conversely, 
these patterns could result from oral anaerobe contamination 
during sample collection [27, 28]. Under this contamination 
model, increasing pathogen load compared to a constant 
background of oral microbiome contamination generates a 
spurious link between oral microbes, microbiome diversity, 
and patient health [27]. While recent paired sputum-saliva 
sampling analysis indicates that oral sample contamination 
is not a substantial contributor to sputum microbiome pro-
files in people with established CF lung disease [29], these 
conflicting hypotheses highlight the uncertainty in the role 
specific taxa present in sputum.

In the current study, we side-step this causal inference 
problem and instead assess how informative expectorated 
sputum microbiome data (including potential oral contamin-
ants) is of patient lung health using a machine-learning frame-
work. We hypothesize that the addition of nonpathogen data 
improves the prediction of patient lung function compared 
to established pathogen data alone. To address this hypoth-
esis we train predictive models on both lung microbiome and 
electronic medical record data for a cohort of CF patients. We 

find that compared to the benchmark of pathogen data alone, 
model performance was consistently improved by the addition 
of nonpathogen taxa.

METHODS

Subjects

All procedures performed in studies involving human partici-
pants were in accordance with the ethical standards of the insti-
tutional and national research committees. Authorization was 
obtained from each patient enrolled according to the protocol 
approved by the Emory University Institutional Review Board 
(IRB00042577).

Sample Collection and 16S Analysis

Expectorated sputum samples were obtained from CF patients 
attending the Children’s Healthcare of Atlanta and Emory 
University CF Care Center from January 2015 to August 2016. 
Deidentified patient information including age, sex, height, 
body mass index (BMI), cystic fibrosis transmembrane con-
ductance regulator (CFTR) genotype, degree of glucose control 
(HbA1c), and percent predicted forced expiratory volume in 
1 second (ppFEV1) were obtained (Table 1). Among these CF 

Table 1. Summary of Patient Clinical Data, Stratified by Lung Function 

Characteristic Severe Moderate Mild Normal P

n 14 25 15 23  

ppFEV1, median (range) 32.9  
(19.7–39.2)

46.5  
(40.8–59.6)

74.9  
(61.6–79.8)

101.2  
(80.4–119.5)

 

Age, y, median (range) 31.5  
(21–61)

32  
(10–63)

24  
(17–51)

20  
(9–66)

.007

Male, No. 6 11 7 11  

CFTR genotype, No.

 Homo-dF508 5 12 7 13  

 Hetero-dF508 9 10 8 10  

 Other/other 0 0 3 0  

BMI, median (range) 19.43  
(16.27–25.69)

20.73  
(16.70–29.81) 

22.23  
(19.38–26.07)

21.51  
(16.65–33.91)

.094

CF-related diabetes, No. (%) 11  
(78.6)

14  
(56.0)

8  
(53.3)

6  
(26.1)

.015

HbA1c, median (range) 6.25  
(5.3–11.9)

5.9a  
(4.9–8.4)

5.7  
(5.0–7.6)

5.5  
(5.1–7.1)

.009

Clinical microbiology

 PA, No. (%) 10 (71.4) 20 (80.0) 10 (66.7) 5 (21.7) <1.1e-4

 SA, No. (%) 8 (57.1) 12 (48.0) 10 (66.7) 16 (69.6) .454

 MRSA, No. (%) 4 (28.6) 6 (24.0) 6 (40.0) 4 (17.4) .486

 Burkholderia, No. (%) 0 (0.0) 1 (4.0) 1 (6.7) 0 (0.0) .553

 Achromobacter, No. (%) 3 (21.4) 1 (4.0) 0 (0.0) 2 (8.7) .147

 Stenotrophomonas, No. (%) 0 (0.0) 1 (4.0) 3 (20.0) 2 (8.7) .191

16S metadata

 % Pathogen 0.857 0.589 0.532 0.195 9.05e-5

 % Nonpathogen 0.135 0.404 0.597 0.783 3.01e-5

Lung function classes are defined as: normal, ppFEV1 > 80; mild, 60 < ppFEV1 ≤ 80; moderate, 40 < ppFEV1 ≤ 60; and severe, ppFEV1 < 40. 

Significant differences between lung function categories tested by ANOVA, P -values shown.

Abbreviations: BMI, body mass index; CF, cystic fibrosis; CFTR, cystic fibrosis transmembrane conductance regulator; HbA1c, hemoglobin A1c; MRSA, methicillin-resistant Staphylococcus 
aureus. PA, Pseudomonas aeruginosa; SA, Staphylococcus aureus
aTwo patients did not have reported HbA1c values. 
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patients, 39 were diagnosed with CF-related diabetes (CFRD) 
by a CF endocrinologist. HbA1c value was missing for 1 CFRD 
subject.

All patients were clinically stable, defined as having no 
increase in respiratory symptoms compared to baseline, and no 
acute illness or new medication for 3 weeks prior to sputum 
collection. Upon collection, sputum samples were diluted 1:3 
(mass:volume) with phosphate-buffered saline supplemented 
with 50 mM EDTA. Diluted samples were then homogenized by 
being repeatedly drawn through a syringe and 18-gauge needle. 
The resulting sputum homogenates were aliquot and stored at 
−80°C until all 77 samples were collected. Microbiology culture 
results were obtained for sputum samples sent to the Clinical 
Microbiology Laboratory on the same day as samples for 
sequencing were collected.

DNA was purified from sputum homogenate with the MoBio 
Power Soil kit (MoBio). The 16S V4 region was amplified and 
sequenced using Illumina MiSeq, yielding an average of 137 708 
sequences per sample. Sequences were quality filtered and 
amplicon sequence variants were obtained using the QIIME2 
deblur plugin. Taxonomic assignments were classified against 
both SILVA and Greengenes 16S reference databases and as-
signed based on highest taxonomic resolution. To mitigate 
compositional effects, 16S data were center-log transformed 
prior to all analyses. Nucleotides are uploaded to BioProject ac-
cession no. PRJNA666192.

Statistical and Quantitative Analysis

Patient samples were binned by ppFEV1 (normal, >80%; 
mild, 80%–60%; moderate, 60%–40%; and severe, <40%). 
Variance across lung function categories in patient meta-
data and 16S metadata was tested using ANOVA. Variation 
between microbiome composition and ppFEV1 was tested 
using Mantel tests on Bray-Curtis distances at 9999 permu-
tations. Within-sample and among-sample diversity was cal-
culated using the Shannon diversity index and Bray-Curtis 
based PCoA on 16S quantitation agglomerated to the genus 
level [30]. Associations between continuous variables were 
tested using Spearman correlations. A full pairwise correla-
tion matrix was calculated, with rows and columns ordered 
by hierarchical clustering [31].

Machine Learning

We used ElasticNet to fit regularized linear models predicting 
lung function (ppFEV1) from patient metadata, microbiome 
composition, and clinical microbiology results [32]. ElasticNet 
solves a penalized linear regression model using a weighted av-
erage of L1 (LASSO) and L2 (ridge regression) penalties. This 
limits over-fitting by penalizing nonzero coefficients. We split 
our samples using a simple 70:30 train-test holdout, where 
models were trained on 53 samples and used to predict on the 
remaining 24. All input features were standardized (mean = 0; 

SD = 1) prior to model training to allow between-feature inter-
pretability. From our full dataset, we created 4 additional data 
subsets: CF Pathogens, All 16S Data, Metadata, and Metadata + 
Pathogens. We included within-feature shuffling on the full set 
as a noninformative negative control.

We employed 2 methods to assess model robustness and 
compared model performance using mean squared error 
(MSE). We generated 1000 bootstrap resampled sets from the 
training set and fit an ensemble of regularized linear models to 
obtain distributions for each model coefficient. We identified 
key metadata and taxa robustly selected (nonzero coefficients) 
across the ensemble of models. We assessed model generaliza-
bility using leave-one-out cross-validation on the training set 
and compared resulting MSE ranges.

RESULTS

Clinical and Microbiome Data Summary

In total, we obtained sputum expectorates from 77 CF children 
and adults. Pulmonary function, measured by ppFEV1, was 
stratified into 4 categories from severe to normal. A  sum-
mary of patient information is presented in Table  1. As ex-
pected, increasing age correlated with worsening lung function 
(ANOVA; P  <  .01). Culture-based detection of Pseudomonas 
aeruginosa correlated with decreasing lung function (ANOVA; 
P < .001), as did (log-scaled) bacterial load (P < .05).

The majority (>90%) of reads from our sequencing anal-
ysis mapped to 1 of 13 genera (Figure  1A), consisting of 
both recognized CF pathogens and orally derived bacteria. 
Pseudomonas sequences accounted for 30.4% of all reads and 
were detected in every patient sample. Other established CF 
pathogens (Staphylococcus, Achromobacter, Haemophilus, 
and Burkholderia) collectively represented 19.3%, while oral 
taxa account for over 45% (Figure  1). Total pathogenic and 
nonpathogenic taxa abundance were both found to vary signif-
icantly (P << .001) with lung function (Table 1).

Microbiome Composition Varies With Lung Function

We analyzed microbiome compositions across broad lung func-
tion categories to examine the relationship between sputum 
taxonomic profile and patient health. Figure 2A highlights the 
relative compositions of 6 canonical CF pathogens. As expected, 
Pseudomonas was more prevalent in lungs with reduced func-
tion, whereas in normal lungs Haemophilus and nonpathogen 
taxa (gray) were more prevalent. The nonpathogenic composi-
tion was consistently dominated by Veillonella and Streptococcus 
regardless of lung health or pathogen status (Figure  2B). 
Shannon diversity calculated with all taxa present was signifi-
cantly greater for normal lung function (P < .01; Supplementary 
Figure 1A), in line with multiple other studies [33, 34]. While 
principle coordinate analysis did not qualitatively separate 
compositions by lung function category, we found ppFEV1 was 
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significantly associated with microbiome composition (Mantel 
test, r = 0.195; P < .001; Supplementary Figure 1B).

Integrating Microbiome and Patient Metadata

To examine multiple confounding variables such as patient age, 
BMI, or CFRD, we calculated spearman correlations across 14 
microbiome, 11 patient metadata, and 6 clinical microbiology 
features (Figure  3). Hierarchical clustering reveals a complex 
autocorrelation structure but with many expected consistencies. 
Overall, there are 2 main clusters of correlated variables. One 
correlated with ppFEV1, and included Shannon diversity index 

as well as 16S quantitation of Fusobacterium, Haemophilus, and 
Neisseria. The other anticorrelated with ppFEV1, and included 
ppFEV1 decline, pathogen abundance, CFRD, and 16S quan-
titation of Pseudomonas and Achromobacter. Unsurprisingly, 
FEV1 and ppFEV1 cluster together and inversely correlated with 
ppFEV1 decline rate (an average per year loss in ppFEV1 since 
birth). Additionally, 16S quantitation results for Pseudomonas, 
Staphylococcus, Burkholderia, and Achromobacter cluster with 
their respective culture-based clinical microbiology results. 
This does not hold for Stenotrophomonas, potentially due to its 
infrequent detection.
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Figure 1. Cystic fibrosis (CF) lung microbiomes are dominated by oral anaerobes and opportunistic pathogens We analyzed CF sputum expectorate (n = 77) using 16S 
sequencing and an in-house QIIME 2-based bioinformatics pipeline to resolve strain-level Operational Taxonomic Units (OTUs). Samples were rarefied to 17 000 reads. We 
identified 217 OTUs across 59 genera and at least 81 species. Overall, we found that CF sputum samples were dominated by oral anaerobes and opportunistic pathogens. A, 
Sequences mapped to 14 genera comprised 90% (lower line) of the total reads obtained; 95% (upper line) of all reads mapped to 21 genera. Total cumulative read fraction is 
represented in shaded region. Recognized CF pathogens are as follows: Pseudomonas, Haemophilus, Staphylococcus, Achromobacter, Burkholderia, and Stenotrophomonas. 
Pseudomonas was the most prevalent genus, followed by Streptococcus and Veillonella. B, Binning reads by sample shows variation in relative abundance. Pseudomonas 
comprised >10% of reads in the majority of our samples. While over 6% of the total reads mapped to Achromobacter, only 4 samples comprised >10% Achromobacter.
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Dimensionality Reduction

The hairball correlation matrix in Figure 3 highlights the sta-
tistical challenges in identifying meaningful lung function 
predictors. Such challenges include high between-feature cor-
relations and relatively few independent patient observations 
(n = 77) compared to the initial number of available predictors 
(86 total, including 59 bacterial taxa). To mitigate this dimen-
sionality problem, we first restricted our microbiome analysis 
to only the top 23 genera in our dataset. These top 23 encom-
passed 97% of the total sequenced reads (Figure  1). We also 
calculated 3 additional summary statistics: % pathogen, % oral 
taxa, and Shannon diversity. As our clustering analysis showed 
reasonable agreement between clinical microbiology detection 
and rDNA sequencing, we excluded the binary detection re-
sults in favor of 16S quantitation. To address compositionality 
of 16S data, we incorporated total bacterial load (universal 
16S primer quantitative polymerase chain reaction [qPCR]) 
as a predictor. In addition, we used a centered log-ratio trans-
form on our genus-level relative abundance data before stand-
ardizing to mean zero, unit variance inputs. We refer to this 
final combination of metadata and 16S data as our All Features 
dataset.

Training Machine Learning Models

To assess if nonpathogenic taxa contain informative bio-
markers, we split our samples into 53 training and 24 testing 
samples. ElasticNet was used to train predict lung function 
while performing feature selection (see Methods; Figure 4). We 

expect that the addition of patient metadata (age, BMI, etc.) 
will improve our ability to predict lung function given the pro-
gressive nature of CF. Our null hypothesis, following the work 
of Jorth et al and others [27, 28] is that the taxa targeted by clin-
ical microbiology provide adequate explanatory basis for lung 
function outcomes, and that the addition of nonpathogen 16S 
data will not improve model predictions.

We tested this hypothesis by generating 4 additional feature 
subsets (CF Pathogens, All 16S Data, Metadata, and Metadata + 
Pathogens) and comparing the performance of models trained 
on each datasets. Initial-pass, nonbootstrapped model training 
results are shown in Supplementary Figure 2 and Supplementary 
Figure 3.

Model Generalizability

We assessed overfitting using leave-one-out cross-validation 
and compared the prediction error across folds against the 
test set error. For model robustness, we used 1000-fold boot-
strap resampling to fit both a baseline and ensemble of models. 
Robust features selected by the baseline model will also be 
selected by a large portion of the bootstrapped ensemble. We 
additionally standardized All Features (mean  =  0, SD  =  1) to 
allow for cross-feature comparability. As an additional point 
of comparison, we generated a noninformative control dataset 
from the All Features set using within-feature shuffling, scram-
bling between-feature correlations while preserving the mean 
zero, unit variance within-feature structure. Figure 5 shows the 
results of our baseline (black points) and ensemble (boxplots) 
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approaches. All models using patient metadata or microbiome 
data outperformed the negative control.

Addition of Nonpathogen Data Improves Model Performance

To address the key question of relative model performance, 
we found that the addition of nonpathogen taxa significantly 
improved performance (significantly reduced bootstrapped 
MSE; Figure 5A), with or without the addition of patient met-
adata. Models trained on all 16S quantitation significantly 
outperformed models trained only on pathogen quantita-
tion. Interestingly, while microbiome-only and metadata-only 
models achieved comparable performance, the combined 
model achieved greater model performance. Looking broadly 
across models, we found reasonable consistency in positive and 
negative predictor selection between our baseline and boot-
strapped models (Supplementary Figure 4).

We found multiple features selected across all training sets. 
Pseudomonas, Achromobacter, age, and diabetic status were 
consistently selected as negative predictors, while Haemophilus, 
Fusobacterium, Rothia, oral taxa abundance, and BMI were con-
sistently positive predictors. All informative features selected in 

the independent models (Supplementary Figure 4C) were also 
selected in the All Features model (Supplementary Figure 4G). 
A small subset (<50%) of the bootstrapped models also selected 
a handful of oral taxa, bacterial load, and CFTR mutation type as 
positive predictors of lung function (Figure 5C, gray boxplots). 
However, a majority of bootstrapped models and the train/test 
model did not select these as informative features.

As an additional check against overfitting, we obtained 
ranges of model errors (measured by mean squared error of 
predicted ppFEV1 values) using leave-one-out cross-validation 
(Figure  5B). We did not find significant differences between 
cross-validated model errors across our training sets, sug-
gesting that despite the difference in number of available pre-
dictors, our models were not overfitting.

DISCUSSION

People with CF face the challenge of managing long-term 
chronic infections. Current respiratory management practice 
is driven by clinical microbiology identification of specific 
pathogens in throat cultures or expectorated sputum samples, 
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alongside measures of respiratory status (changes in symptoms, 
signs, and/or lung function). In the current study, we used 16S 
sequencing to assess sputum microbiome content more broadly, 
and ask whether the addition of nonpathogen taxa improves 
our ability to predict patient lung health, with or without the 
inclusion of patient health data. To address this question we ap-
plied machine learning tools to an integrated 77 patient lung 
microbiome and electronic medical record dataset. Our analysis 
revealed that the addition of nonpathogen data improves predic-
tion of patient health, with the most accurate models selecting 
patient metadata, pathogen quantitation, and nonpathogen in-
formation. Our inclusive all-data models additionally point to a 
predictive role for specific nonpathogen taxa, in particular the 
oral anaerobe genera Rothia and Fusobacterium.

Despite the significant contribution of nonpathogen data, 
our results are still broadly consistent with what might be 
termed the traditional view of CF microbiology. Established CF 
pathogens (P. aeruginosa, Staphylococcus aureus, Haemophilus 
influenzae, and Burkholderia cenocepacia) are the major drivers 
of patient outcomes, as evidenced by substantial improvement 
in predictive outcomes whenever we include pathogen data 
(Figure 5A), and the, by comparison, relatively weak contribu-
tion of the addition of nonpathogen taxa. Note that we specifi-
cally used quantitative 16S measures of pathogen composition 
to provide a level playing field in the comparison of pathogen 
and nonpathogen predictive contribution. Figure  3 highlights 
that quantitative 16S and qualitative (presence/absence) clinical 
microbiology data are in general agreement.

Metadata

Microbiome

X77

A

B C

Test: 24

Reshu�ed: 53 samples

1000x
bootstrap

Train: 53 samples

32
 F

ea
tu

re
s

32
 F

ea
tu

re
s

Machine learning

Predict
ppFEV1

Features selected

103

100

10

110
72

Figure 4. Machine learning overview. Machine learning models were trained on different input data tables using varying data resampling methods. A, Features were 
categorized by information source (microbiome or patient metadata). The 16S data was further split into pathogens and other taxa in agreement with Figure 2. We used 
ElasticNet regularization to select informative features that predict ppFEV1. B, We randomly selected 24 patient samples to withhold as a test set and trained our models on 
the remaining 53 samples. To assess overfitting, we used leave-one-out cross-validation on our training set. C, We additionally implemented 1000-fold bootstrap resampling 
to assess the robustness of our model fits. Abbreviation: ppFEV1, percent predicted forced expiratory volume in 1 second. 
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The traditional role of CF pathogens as the central predictors 
of patient outcomes has been challenged over the past decade 
by the advent of microbiome sequencing. Extensive surveys 
have documented an association between CF lung function 
and microbiome diversity, also evident in the current study 
(Figure 2). At face value, these results suggest a biological role 
for these nonpathogen taxa, potentially competing with [35] or 
facilitating [36] pathogen taxa and therefore indirectly shaping 
disease outcomes. Jorth et  al recently published a forceful re-
jection of this active microbiome view, stressing the potential 
causal role of changing pathogen densities in shaping disease 
outcomes and viewing shifting diversity metrics as a simple sta-
tistical relative composition artifact of shifting pathogen num-
bers against a roughly constant oral contamination background 
[27]. While our analyses provide some support for this view, 
in particular the constancy of the nonpathogen microbiome 
across patients (Figure 2B) and the lack of substantial predictive 
improvement on addition of nonpathogen data (Figure 5B), we 
also see lines of evidence against the contamination hypothesis. 

First, our use of center-log transformations mitigates the risk 
of spurious associations due to compositionality [37] and yet 
nonpathogen taxa are still consistently retained. Second, the 
contamination hypothesis predicts total bacterial burden to 
be an important predictor, and yet burden was not retained 
in our models. Third, our observation of a consistent reten-
tion of specific nonpathogen taxa across multiple models (with 
and without the addition of potentially confounding electronic 
medical records (EMR) features, including age and BMI) points 
to the potential for a distinct causal pathway that is orthologous 
to age or BMI. We note that the interpretation that oral bacteria 
are active players in the lung environment is further buttressed 
by a recent study on people with established CF disease [29] 
that used paired sputum and saliva samples to infer the pres-
ence of substantial populations of oral bacteria in the lung.

Our all-data models highlight Rothia and Fusobacterium as 
positive predictors of lung function across our 77 patients, in 
models that already take into account pathogen data. When 
we included features already known to correlate with lung 
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Figure 5. Bootstrapped ElasticNet-identified predictors of lung function. Machine learning models were trained using varying input datasets. A, 1000-fold bootstrapping 
and (B) leave-one-out cross-validation (LOOCV) were used to generate prediction error (MSE) ranges across feature subsets. Models trained on all of the data showed lower 
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health, such as age, BMI, and CFRD status, our models not 
only selected these features, but additionally retained Rothia 
and Fusobacterium as positive predictors. The retention of 
these specific taxa in both this full model and in partial models 
(Supplementary Figure 4) suggests that these taxa provide po-
tentially valuable predictive information on current patient 
health. Of course, this analysis does not allow inference to 
causal mechanism or even direction of causality. It is entirely 
possible that these taxa are simply biomarkers of dimensions of 
improved health that are largely independent of age, BMI, and 
other established positive predictors that are already accounted 
for in the model. It is also possible that these specific taxa play a 
more active causal role, for instance holding specific pathogens 
at bay via competitive interspecific mechanisms [38].

Interestingly, our All Features models also highlighted 
Haemophilus, a canonical CF pathogen, as a positive predictor 
of lung function. Haemophilus influenzae infections are most 
common in younger CF patients [8, 39], hence we would ex-
pect a positive association in a model that is not controlled for 
age (Supplementary Figure 4C and 4D). However, we see that 
the positive weighting on Haemophilus was retained in models 
that also accounted for age as a positive predictor of lung func-
tion. A  second possibility is that the positive weighting of 
Haemophilus is due to pathogen-pathogen competition and the 
relatively less severe nature of Haemophilus infections in adults 
(ie, Haemophilus is “best of a bad job”). Figure 2A illustrates that 
we only appreciably detected 2 and rarely 3 coexisting patho-
gens of the 6 we find across all patients. The relative scarcity 
of multipathogen communities implies that Haemophilus pres-
ence coincides with the absence of other more severe patho-
gens—and indeed we see a dominance of negative correlations 
among pathogens (Figure 3). In this context we cannot preclude 
a protective role of Haemophilus against more severe pathogens 
in older patients.

A caveat of this analysis is the dependency of machine 
learning performance and robustness on particular distri-
butions of data, and the failure of linear algorithms such as 
LASSO and ElasticNet on microbiome-like data [40–42]. 
This is in part due to the compositionality constraint of 
microbiome data, which can be mitigated by using absolute 
quantitation [43]. However, training on absolute abundances 
introduces additional caveats, as order-of-magnitude differ-
ences in qPCR sample quantitation can in turn over-represent 
samples with higher bacterial loads. We address these issues 
by using a centered-log transform on relative abundance data 
and including log-scaled bacterial load as a potential feature 
to select. While some bootstrapped models selected bac-
terial load as a positive predictor (Figure  5C), the majority 
of models did not. This further suggests that the majority of 
microbiome information is encoded in the relative ratios of 
taxa abundance, which is broadly consistent with previous 
findings [27, 28].

Finally, our study is limited to a cross-sectional analysis, lim-
iting us to making predictions on lung function state at the same 
time point as microbiome sample and patient medical record col-
lection. Assessing and refining our predictive machine learning 
algorithms on subsequent lung function data is an important fu-
ture goal. Our primary objective is to predict future disease states 
and preemptively identify patients in need of medical interven-
tion using early warning microbiome markers. To this effect, we 
plan to continue our analysis on a cohort of patients across time 
to evaluate predictive capacity for future health status.

We note that the major predictors identified in our models 
have been identified in various studies, and taken piecemeal 
there is less insight. The value of this work lies in the system-
atic integration of these multiple data sources (from both EMR 
and microbiome data sources). Our model comparisons (with/
without EMR predictors) allow an assessment of the impact 
of oral bacteria, with and without key potential confounds. 
Ignoring these confounds could lead to spurious retention of 
microbiome taxa that correlate strongly with, for example, age 
or BMI. In addition, our analyses allow assessment of disparate 
factors on a common predictive scale—indicating for example 
that the impact of 1 standard deviation shift in Fusobacterium 
abundance is comparable to a 1 standard deviation shift in BMI. 
Our model comparison approach lends more confidence to the 
conclusion that the retained oral taxa are associated with patient 
outcomes via causal pathways that are largely independent of age 
or BMI, being robust to their presence or absence in the pre-
dictive models. The research agenda of pursuing the nature of 
the causal pathways linking oral bacteria in the lung with patient 
outcomes is now on a firmer footing as a result of our study.

In summary, our study finds that inclusion of nonpathogenic 
taxa significantly improves model prediction accuracy of patient 
health status. We identify 2 oral-derived taxa (Fusobacterium, 
Rothia) that are independently informative of lung function, 
which may be either biomarkers or potential probiotics. Our 
results call attention to the potential predictive utility of oral 
microbes (regardless of their functional roles) in the clinical as-
sessment of CF patient health.

Supplementary Data

Supplementary materials are available at The Journal of Infectious 
Diseases online. Consisting of data provided by the authors to 
benefit the reader, the posted materials are not copyedited and 
are the sole responsibility of the authors, so questions or com-
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