Table 3.
TF interaction connectance comparison between networks before and after using our approach.
Genie3_1,500 | Genie3_2,000 | Genie3_5,000 | Reference network | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Better | Worse | Equal | Better | Worse | Equal | Better | Worse | Equal | #edges | #nodes | ||
Curated PPI | 0.373 | 0.333 | 0.294 | 0.346 | 0.222 | 0.433 | 0.381 | 0.255 | 0.364 | 796 | 271 | |
ARCHS4 | corr_0.25 | 0.620 | 0.093 | 0.286 | 0.511 | 0.065 | 0.424 | 0.546 | 0.099 | 0.355 | 30,915 | 344 |
corr_0.45 | 0.603 | 0.111 | 0.287 | 0.492 | 0.084 | 0.425 | 0.520 | 0.125 | 0.355 | 16,584 | 326 | |
corr_0.65 | 0.569 | 0.143 | 0.287 | 0.462 | 0.112 | 0.425 | 0.482 | 0.161 | 0.356 | 6,912 | 256 | |
corr_0.85 | 0.492 | 0.187 | 0.321 | 0.412 | 0.145 | 0.443 | 0.430 | 0.194 | 0.377 | 353 | 95 | |
STRING | combined_0.5 | 0.352 | 0.355 | 0.293 | 0.306 | 0.264 | 0.43 | 0.341 | 0.298 | 0.361 | 1065 | 260 |
combined_0.8 | 0.297 | 0.392 | 0.311 | 0.336 | 0.225 | 0.439 | 0.362 | 0.265 | 0.373 | 241 | 150 | |
textmining_0.4 | 0.344 | 0.366 | 0.29 | 0.285 | 0.287 | 0.428 | 0.317 | 0.323 | 0.36 | 1351 | 265 | |
textmining_0.6 | 0.299 | 0.392 | 0.309 | 0.291 | 0.274 | 0.435 | 0.332 | 0.302 | 0.366 | 502 | 196 | |
textmining_08 | 0.191 | 0.461 | 0.348 | 0.275 | 0.273 | 0.452 | 0.315 | 0.305 | 0.38 | 223 | 139 | |
experimental_05 | 0.184 | 0.468 | 0.348 | 0.3 | 0.241 | 0.459 | 0.333 | 0.278 | 0.388 | 120 | 117 | |
experimental_07 | 0.1 | 0.48 | 0.419 | 0.233 | 0.27 | 0.498 | 0.255 | 0.315 | 0.43 | 49 | 65 | |
experimental_09 | 0.047 | 0.428 | 0.525 | 0.148 | 0.281 | 0.571 | 0.165 | 0.336 | 0.499 | 15 | 26 | |
database_04 | 0.228 | 0.434 | 0.337 | 0.334 | 0.208 | 0.459 | 0.358 | 0.249 | 0.392 | 69 | 53 |
This table shows the percentage of genes with greater connectance in the interaction network for all its TFs in all interaction networks employed to test how using GENIE3 to filter the networks improved the three GRN based on distance TF assignment (1.5, 2, and 5 kb at maximum between the TFBS and its target gene).