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Malignant neoplasms are characterized by poor therapeutic efficacy, high recurrence rate, and extensive metastasis, leading to
short survival. Previous methods for grouping prognostic risks are based on anatomic, clinical, and pathological features that
exhibit lower distinguishing capability compared with genetic signatures. /e update of sequencing techniques and machine
learning promotes the genetic panels-based prognostic model development, especially the RNA-panel models. Gliomas harbor the
most malignant features and the poorest survival among all tumors. Currently, numerous glioma prognostic models have been
reported. We systematically reviewed all 138 machine-learning-based genetic models and proposed novel criteria in assessing
their quality. Besides, the biological and clinical significance of some highly overlapped glioma markers in these models were
discussed. /is study screened out markers with strong prognostic potential and 27 models presenting high quality. Conclusively,
we comprehensively reviewed 138 prognostic models combined with glioma genetic panels and presented novel criteria for the
development and assessment of clinically important prognostic models. /is will guide the genetic models in cancers from
laboratory-based research studies to clinical applications and improve glioma patient prognostic management.

1. Introduction

Malignant tumors are characterized by therapeutic resis-
tance, frequent recurrence, and distant metastasis, which
cause difficulties in treating by either surgical resection or
adjunctive therapies, leading to poor prognosis. For better
clinical management, many prognostic models were pro-
posed to analyze survival [1]. Previous models with un-
formulated predictors stratified patients into relative risk
groups. However, they did not provide quantitative results
or absolute risk stratification. Machine learning algorithms
can identify critical patterns through big and complex data
with high accuracy [2]. Common algorithms applied in
cancer prediction include weighted gene coexpression
network analysis (WGCNA), L1-penalized least absolute
shrinkage selection operator (LASSO), Cox proportional
hazards (PH) model [3], Neural Network [2], and Elastic

regression [4]. Based on these machine learning algorithms,
risk scores and further pictorial nomograms are constructed
for addressing this issue [5, 6]. Risk score models are cal-
culated with a spectrum of parameters in predicting clinical
outcome risks. Samples are from local patient cases or online
data. Establishing a model requires two main steps: devel-
opment and validation [5]. First, predictors are selected and
risks are calculated; thereafter, performance estimations are
performed to assess the predictive quality. Second, themodel
is validated internally and externally (independent data set).
Performance estimation is also performed [7].

Gliomas are common intracranial tumors causing the
highest mortality rates in all cancer types [8]. Routine
treatments for gliomas include surgical excision, radio-
therapy, and chemotherapy. /e world health organization
(WHO) grouped gliomas into four grades based on their
histological features: WHO grades I, II, III, and IV [9]. Low-
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grade gliomas (LGGs) comprise WHO grades I and II,
showing a relatively good prognosis. High-grade gliomas
(HGGs) consist of WHO grades III and IV, manifesting
worse survival outcomes [9]. Histological classification
provides an understanding of glioma behavior. However,
molecular groups differentiate prognostic groups more ac-
curately [10] (Figure 1). /e 2016 Central Nervous System
WHO classification, therefore, provided molecular features
including IDH-mutant/wildtype astrocytoma and glioblas-
toma, IDH-mutant/wildtype, and 1p/19q-codeleted/nonco-
deleted oligodendroglioma, H3K27M-mutant/wildtype dif-
fuse midline glioma, and RELA fusion-positive/negative
ependymoma to precisely classify gliomas [11]. /ese and
other markers such as CDKN2A and EGFR were combined
to develop prognostic models for glioma patients [12].

/e poor prognosis of gliomas triggered the develop-
ment of a clinically useful and effective model to assess
survival risks for subsequent therapeutic strategies. /is
review systematically summarized and compared all 138 risk
score models for gliomas with multivariable markers (Fig-
ure 2). It also presented the clinical significance of some
frequently reported predictors, thus guiding the advanced
prediction models for glioma. /is will be conducive to
translation from laboratory-based models to clinical avail-
able tools and clinical prognosis management improvement.

2. Rules for Evaluating Model Quality and
Exclusion Criteria

/e TRIPOD statement standardized reports on the pre-
diction models. It proposes a checklist of 22 items required
in the development and validation process [13]. However, it
does not judge model quality./us, we screened through the
138 models and proposed novel criteria that classified them
into different quality groups (Figure 3); the criteria are listed
in Table 1. After quality division, the high- and medium-
quality models were discussed, and the low-quality group
models were not presented (Table S1).

Performance estimation, validation, and EPV are vital
factors to assess the model quality. Performance includes
discrimination and calibration. Discrimination refers to the
capability that differentiates patients from events that
happen or not, which functions as the most essential quality
results [14]. Calibration compares estimated event rates with
observed rates [15]. Less efficacy arises when discrimination
is confused with performance. Secondly, most studies lack
calibration results [16]. For discrimination, we defined area
under the curve (AUC), or c-index≥ 0.80 as high accuracy,
AUC≥ 0.70 as acceptable, and AUC< 0.7 as low accuracies.
/e repeatability and transportability of the model should be
verified through internal and external validation before
clinical application [15]. Proper EPV requires 10 minimally
determined by rule of thumb, but when many low-preva-
lence predictors are included, EPV should be up to 20 [17];
otherwise, it is considered an overfitting model.

Other aspects including variable number, missing value,
outcome definition, reference genome, and annotation
update also contribute to the model assessment. Excessive
variables increase detective costs and decrease practicability.

For most models contain less than 10 predictors and no
certain conclusion have been presented, we defined less than
10 appropriate predictors. Missing data can lead to bias
when not handled properly. Outcome definition is clearer
and more informative with specific follow-up time than
overall survival (OS). Reference genome and annotation
updates can cause reversed individual risk prediction due to
multiple gene expression diversity [18]. /e inconsistent
cutoff values between training and validation sets, screening
method, and the threshold for predictors are complex
questions and remain unresolved; they were not reviewed.

We excluded studies if (1) a single genetic predictor was
employed with or without other types of predictors, (2) the
model predicts glioma diagnosis at the time of screening,
and (3) the model is inadequately presented without a re-
gression equation or risk score.

3. RNA Models

3.1. mRNAs. Message RNA (mRNA) plays a critical role in
central dogma that controls protein synthesis and decides
cellular biology and behavior [19]. Many biological processes
of mRNA in cancers, such as mRNA splicing, methylation,
and interfering, can modulate the mRNA level and alter the
cancer property; thereby, mRNA modulation has been a
therapeutic target since early times. /e levels of mRNAs in
cancers, including gliomas, represent the expression of genes
that are connected to the prognosis [11]. For glioma
prognostic models, the largest proportion of models (78
models) are constructed based on mRNA sequencing data
(Figure 2), of which 18 models are in the high-quality group.

3.1.1. LGGs. Low-grade gliomas (LGGs) refer to WHO I, II
gliomas [9]. Twenty-one mRNAmodels for LGGs have been
reported. Among them, ten are in the high-quality group
and nine are in the medium-quality group.

In the high-quality group, nine [20–28] and one [29]
confer high and acceptable accuracy, respectively. Common
advantages and additional luminous points in the high-quality
group are shown. /e corresponding AUC for multiple out-
come events of 1, 3, and 5 years’ survival in the 4 models
[22–25] functionsmore powerful thanmany other models that
predict merely OS. Two models were validated and assessed
highly accurately both internally and externally [21, 22]. Su’s
model [25] is highly accurate, except when it predicted a 5-year
survival training set (AUC was 0.711). For Zeng’s model [24],
despite its lower AUC for the external validation set, the
nomogram performed better via c-index and calibration curve.

For the medium-quality group, five models exhibit high
accuracy [30–34], three are acceptable [35–37], and one is
lowly accurate [38]. Song et al. constructed a 21- [33] and a 20-
gene model [34] both internally and externally, and the
former was validated via four independent datasets. But the
many numbers of predictors should be further streamlined.
Hsu et al. [31] and Cheng et al. [30] values for AUC are
extremely high (above 0.98 and 0.93, respectively). For de-
ficiencies in this group, the seven models [30–32, 35–38] lack
performance estimation in external or internal validation sets,
and Ni et al. did not validate their 25-gene model [37].

2 Journal of Oncology



3.1.2. HGGs. High-grade gliomas (HGGs) comprise WHO
III and Glioblastoma (GBM). A total of 44 HGGs models
have been constructed but show a few satisfactory studies.
/e high-quality and medium-quality groups contain 7 and
11 models, respectively.

/e high-quality models were designed for GBM
[39–45]. 4-gene [44] and 3-gene [43] models associated with
autophagy were both validated via two independent datasets.
/e two risk scores’ predictive discrimination varies among
survival rates in different years and datasets, while their
nomograms stabilized the accuracy above 0.72, which in-
tegrated risk scores with other common factors. Nomo-
grams’ superior predictive accuracy to risk scores can also be
observed in a study by Wang, the nomogram is highly
accurate (from 0.77 to 0.85) compared with the AUC of risk
score (from 0.67 to 0.79). Of note, nomogram performance
decreased when estimated by c-index [39]. However, in a
study by Zhu, the risk score outperformed the nomogram.

AUC of risk score is 0.781 and 0.771 for 2 and 3 years of
survival in the discovery cohort [41], while the c-indices of
nomogram are also less than 0.70 [41]. Nomograms benefit
from combining risk scores with other predictors, but
whether their accuracy increases depends on the factors’
quality. Moreover, the calibration curves were plotted and
verified the reliability in the four studies [39, 41, 43, 44].
Additionally, 2329 samples from multiple cohorts in Zhu’s
study are the largest sample size in the currently existing
models, improving its repeatability and transportability [41].

/e medium-quality group is better since eight models
are of high accuracy [46–53]. /e AUC values in models
developed by Zhang et al. [47], Hou et al. [52], and Chai et al.
[48] are 0.93, 0.95, and 0.93, respectively. Two models
achieved acceptable accuracy [54, 55], whereby Cheng’s final
model attained 0.81 when absorbing clinical features and 1p/
19q status [55]. One model is lowly accurate [56]./is group
is limited by a lack of performance estimation for the
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Figure 1: Glioma markers and genetic prediction models can stratify patient risks precisely and improve prognostic management. Glioma
patient prognosis can be stratified and precisely predicted via prognostic markers and markers-based prediction models and, therefore,
improved by adopting corresponding treatment strategies. Markers with prognostic values include IDH, MGMTp, 1p19q, TP53, TERTp,
and many other molecules. Prediction models are based on RNA, protein, methylation, and other types of signatures. IDH, isocitrate
dehydrogenase; MGMTp, O-6-methylguanine-DNA methyltransferase promoter; TP53, tumor protein p53; TERTp, telomerase reverse
transcriptase promoter.
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validation set except for Hou’s model, but the weakness of
Hou’s model is the many predictors (14 genes) [52].

3.1.3. Other Classified Gliomas Clusters. /ree models and
ten models are grouped into the high-quality and medium-
quality groups from the total 28 models reviewed, respec-
tively. /e three high-quality models are highly accurate
[57–59]. Particularly, Wang’s model for diffuse glioma ex-
hibits excellent discrimination with AUC from 0.874 to
0.950 [58]. But it was only internally validated.

Nine medium-quality models show high accuracy
[60–68], whereby three models for diffuse glioma estimated
accuracy level in training and validation sets despite the large
size of predictors [64, 66, 67]. Notably, Sun’s model has high
accuracy when compared with all the signatures randomly
derived from the screen method and outperformed the other
three signatures in predicting drug sensitivity [66]. Addi-
tionally, it achieved higher accuracy when combined with

age, grade, and another signature in the validation set for 3
and 5 years’ survival [66]. Other 3 studies (two for all diffuse
glioma [60, 65], and one for 1p/19q codeletion diffuse gli-
oma) [62] together with a low-accuracy model for all glioma
[69] in the medium-quality group are characterized by
missing accuracy estimation in the validation set and ex-
cessive predictors.

Conclusively, most studies were designed for diffuse
gliomas, and our criteria characterized 3 high-quality
models. Besides, many models show high predictive accu-
racy when subjected to training. However, the absence of
accuracy of validation sets failed to affirm the obtained
discrimination results.

3.2. LncRNAs. Long noncoding RNAs (lncRNAs) are
transcripts more than 200 nt in length. LncRNAs lack sig-
nificant protein-coding capacity, but their regulatory
functions are widely engaged from gene expression to
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Figure 2: Proportion of published models based on signatures of different molecular types. /e largest proportion of 94 mRNA models
achieved 68% of all the 138 genetic prognostic models, followed by 17 lncRNA and 14 miRNA models, accounting for 12% and 10%,
respectively. mRNA, message RNA; lncRNA, long noncoding RNA; miRNA, microRNA.
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protein translation. In gliomas, the lncRNAs function in
stemness, drug resistance, blood–tumor barrier permeabil-
ity, angiogenesis, and motility cancer phenotypes [70].
lncRNA is the second major hotspot in model research, after
mRNA (Figure 2).

Seventeen lncRNA-signature models on different glio-
mas and one model on diffuse intrinsic pontine glioma have
been reported. /ree are high-quality models, and five are
medium-quality models.

All three high-quality models exhibit high accuracy
[71–73]. Except for the slightly decreased AUC values
(0.722) when submitted to external validation based on
Chen’s study [73], the other two models show similar high
accuracy in training, internal validation, and the entire set
with AUC from 0.84 to 0.91 [71, 72].

/e highest AUC value in the medium-quality group was
obtained inWang’s model (0.942) for anaplastic glioma [74].
/is is followed by Kiran’s UVA8 model (8-lncRNA sig-
nature) [75] acceptably test for 5-year survival. /e AUC
values for the other two models were 0.68 and 0.70, re-
spectively [76, 77]. In the five medium-quality models, they
were externally validated, but three lacked internal valida-
tion [74, 77, 78]. Moreover, Kiran’s study reported the
UVA8 model and compared it with other predictors and

models [75]. /e UVA8 accuracy [75] is higher than other
clinical features or IDH status. It outperformed the 5
published signatures in the training dataset by c-indices [75].
While the 6 models were designed for a diverse class of
gliomas and different prognostic events and to validate
various datasets, this positive result in Kiran’s study was
inevitably questionable due to incomparability.

Internal validation is absent in the 9 low-quality models
(Table S1), which is vital to address the stability in selecting
predictors and the quality of predictions before clinical
application [79]. Cross-validation or bootstrapping methods
should be employed to achieve complete internal validation.

3.3. miRNAs. MicroRNAs (miRNAs) are a class of non-
coding RNA that binds to complementary target mRNAs.
/is results in mRNA translational inhibition or degrada-
tion. In gliomas, miRNAs are involved in various tumor-
associated activities, including immune response, hypoxia,
tumor plasticity, and resistance to therapy through multi-
gene targets [80], indicating miRNA-based models as a
promising strategy for glioma prognosis.

Fourteen studies on miRNA signatures, one on LGG
[81], and others on HGG were reported. /ree models were

Table 1: Criteria for model quality estimation.

Group Items

High-quality group EPV ≥10 AND
Variable in final model <10 AND AUC/c-index estimated for both training and external or internal validation sets

Medium-quality
group

EPV ≥10 AND
Presence of external or internal validation set but only training set is estimated by receiver operating characteristic

curve/c-index

Low-quality group No performance estimation OR
No internal and external validation set OR EPV <10

EPV, event per variable.

Search in pubmed.gov and webofknowledge.com using following key terms:
glioma, risk score, nomogram, genetic, prognosis.

138 models were included finally
and divided into three groups

(1)
(2)
(3)

Characterized in the low-quality group if there is
No performance estimation OR
No internal and external validation set OR
EPV < 10

Classified into the medium-quality group if
performance of validation set is absent

27 models were divided into the
high-quality group eventually

Exclude model if it
(1)
(2)
(3)

Employed only a single predictor
Predicts glioma diagnosis at the time of screening
Is presented without a regression equation or risk score

Figure 3: Procedure to screen and classify the genetic prediction models of glioma. /e exclusion criteria and grouping rules are proposed
firstly in this review, and details are described in Section 2. EPV, events per variable.
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characterized in the high-quality group [81–83], whereas the
other models were classified in the low-quality group.

/e three high-quality models have respective advan-
tages. /e 5-miRNA model by Cheng et al. [83] adopted
complete internal and external validations, and the AUC
values increased from 0.649 and 0.756 to 0.847 and 0.909
after integrating age and chemotherapy, respectively, al-
though only 19 samples were submitted to external vali-
dation. Chen’s model [82] was internally and externally
validated and achieved similar AUC for disease-free survival
and OS in three datasets. Besides, Qian’s study [81] estab-
lished a nomogram that predicted a 1-, 2-, 3-, and 5-year
survival rate, which is informative for prognostic manage-
ment. However, its drawbacks include the absence of in-
ternal validation and low accuracy in the training set (c-
index� 0.68).

4. Methylation Models

Cytosine-phosphate-guanine (CpG) islands are a cluster of
CpG sites located at or near the transcription start regions of
genes and gene promoters. CpG island methylation is the
most common epigenetic type of cancer. /e CpG island
methylator phenotype that comprises several CpG islands is
an interesting topic in cancer epigenetics [84]. /e glioma
CpG island methylator phenotype is associated with gliomas
tumorigenesis and is an independent biomarker stratifying
gliomas into epigenetic subtypes [85]. Currently, 8 models
have been reported and none of them is a high-quality
model; 3 of the models are classified into the medium-
quality group [86–88].

/e two medium-quality models have acceptable dis-
criminations from 0.71 to 0.77 but were not internally
validated [86, 87]. Yin’s 6-CpG risk score [86] achieved a
higher AUC value (0.734) for patients receiving all treatment
integrated with the CpG island methylator phenotype.
Moreover, higher AUC (0.771) was achieved with the
MGMT status combination for those receiving radiation
therapy/ temozolomide. Besides, the prediction accuracy
rate of the 6-CpG signature (87%) was validated via the
support vector machines model.

5. Other Multimolecular Models

Two protein-signature models based on reverse phase
protein array were constructed. Stetson’s 13-protein risk
model [89] applied c-index to estimate the model’s accuracy
in both training and validating sets for GBM (0.63 and 0.60,
respectively) and IDH-wildtype LGG (0.82 and 0.70, re-
spectively), but the shortage is the low EPV (less than 10).
Patil and Mahalingam developed another 4-protein model,
but without external validation and performance estimation
[90]. Both two models are of low quality.

/ree mixed models of different classes of molecular
signatures were presented for GBMs prognosis. /e mixed
model for mRNA and lncRNA is of high quality [91], and the
other two are medium-quality models [92, 93]. /e three
models were fully validated both internally and externally.
/ey were estimated using receiver operating characteristic

curve or c-index; however, the validation set lacked esti-
mation, and there was a low c-index value (0.68) in the
training set from Etcheverry’s study [92].

6. Biofunction and Clinical Significance of
Frequently Reported Molecules

Molecular signatures reviewed consist of mutated genes,
noncoding RNAs, and proteins. Currently, the star markers
including IDH,MGMT, 1p/19q,H3K27M, TERT, and ATRX
are known to exhibit significant prognostic value. /e IDH-
mutant with 1p/19q codeletion and MGMT promoter
methylation are favorable prognostic factors. /e H3K27M-
mutant and ATRX alteration are associated with higher risk
whereas TERT has a dichotomous prognostic effect [94].
Besides, other molecular signatures collected from 138
published models were reported to contribute to prognostic
risk estimation. /e prognostic value for most molecular
biomarkers has not been validated. /erefore, we analyzed
138 models to select the most overlapping biomarkers
(Table 2) with known evidence from researches to deter-
mine their biofunctions and potential prognostic values in
gliomas. /e predictors that presented repeatedly more
than twice in 138 model studies are listed in Table 2.
Predictors that overlapped less than three times were not
reviewed.

6.1. IGFBP2. IGFBP2 regulates insulin-like growth factors’
distribution and biofunction by interacting with the insulin-
like growth factor system. High aberrant IGFBP2 expression
was detected in HGG [95]. /is played critical roles in
glioma progression and was correlated with poor prognosis
[95]. Besides, IGFBP2 downregulation was reported spe-
cifically in IDH-mutant gliomas [96]. Besides, EGFR (epi-
dermal growth factor receptor) and integrinβ can integrate
with IGFBP2 to promote tumor progression [95]. /e
IGFBP2 gene, therefore, presents prognostic value and
functions as a potential immunotherapeutic target for GBM
in the future clinical trials [95, 96].

6.2. HDAC Families and CD44. Histone deacetylase
(HDAC) is a vast family of enzymes that mainly exert a
repressive influence on transcription [97]. It blocks gene
transcription by inhibiting histone acetylation and compacts
the DNA/histone complex. In gliomas, HDAC functions to
bridge the xCT-CD44 complex with malignant glioma cells
and various tumor zones [98]. Currently, HDAC inhibitors
exhibit unfavorable therapeutic efficacy in glioma patients.
Researchers have reported a more beneficial strategy that
adopted HDAC inhibitors in combined therapy [99].
Moreover, many clinical trials (Table 3) are ongoing to test
their application prospects in treating diffuse intrinsic
pontine glioma. and HGG. Currently, HDAC inhibitors are
characterized by HDACs risk factors; however, their pre-
dictive ability has not been verified. In-depth explorations
on their therapeutic efficacy and prognostic value are
required.
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CD44 was identified in GBM and from brain metastases
[100]. It is a biomarker of the mesenchymal GBM subtype
with the most aggressive growth patterns [101]. Besides,
GBM progression was inhibited by inhibiting CD44 ex-
pression. /is indicates the roles of CD44 in the tumor
process [102].

6.3. MDK. MDK is a heparin-binding growth factor
encoding gene extensively studied for its multiple functions
in various tissues. MDK contributes to numerous tumor-
related activities in glioma, and its overexpression is asso-
ciated with poor prognosis [103]. However, no clinical trial
has been performed to explain its therapeutic potential.

6.4. GPNMB. GPNMB encodes the type 1 transmembrane
protein expressed mainly on the surface of cancer cells [104].
GPNMB promotes tumor progression through immune-
microenvironment plasticity. It also enhances Wnt/β-catenin
signaling pathway activation and interaction with Na+/K+-
ATPase subunits [105–107]. Also, abnormally high GPNMB
expression has been reported to be associated with unfa-
vorable survival outcomes in GBM [108]. /ese mechanisms
justify that GPNMB is a risk factor for glioma patients.

6.5. EGFR. It has been reported that EGFR signaling
pathways are activated in the majority of GBM cells [109].
EGFR gene aberration contains rearrangement,

Table 2: Highly overlapping genes and miRNAs.

Overlapping
times

Molecule
numbers Genes miRNAs

6 1 IGFBP2 —
5 3 HDAC, STAT1 miR-222
4 6 GPNMB, VEGFA, EFEMBP2, ISG20, FZD7, EGFR, —

3 23
MDK, CHI3L1, LGALS3, IFI44, OSMR,MYC, TOP2A, CD44, LDHA, BMP2,
KI67, BUB1, LAMB1, MAP2K3, KCNB1, KCNJ10, IRF1, ASF1A, SOCS3,

KCNAB1

miR-148a, miR-15b,
miR-145, miR-20a

Table 3: Completed and active trials primarily completed in 5 years of HDAC, VEGF, and EGFR related therapy.

Gene Agent name Glioma type Clinical trials Development phase Status

HDAC Vorinostat

DIPG NCT01189266 Phase I/II Active
DIPG NCT02420613 Phase I Active
HGG NCT01236560 Phase II/III Completed

HGG, recurrent GBM NCT01266031 Phase I/II Completed
Belinostat GBM NCT02137759 Phase II Active

VEGF Bevacizumab

Anaplastic glioma, recurrent GBM NCT01836536 Unknown Completed
Recurrent ependymoma, WHO II, III glioma NCT00381797 Phase II Completed

GBM NCT01091792 Early phase I Completed
HGG, recurrent GBM NCT01266031 Phase I/ II Completed

HGG NCT01236560 Phase II/III Completed
Recurrent GBM NCT01648348 Phase I/II Completed

GBM NCT01498328 Phase II Completed
GBM, oligodendroglioma NCT01609790 Phase II Active

Recurrent GBM NCT02142803 Phase I Active
Recurrent GBM NCT02974621 Phase II Active

EGFR

Erlotinib HGG NCT01257594 Phase I Completed
Lapatinib Recurrent HGG NCT02101905 Phase I Active
Unknown† GBM NCT01454596 Phase I/II Completed
AMG 595 Recurrent GBM, AA NCT01475006 Phase I Completed
Sym004 Recurrent GBM NCT02540161 Phase II Completed

Depatux-M

GBM NCT02343406 Phase II Completed
GBM NCT02573324 Phase II/III Active
GBM NCT03419403 Phase III Terminated
GBM NCT01800695 Phase I Completed

Dacomitinib Recurrent GBM NCT01520870 Phase II Completed
GBM NCT01112527 Phase II Completed

Tesevatinib GBM NCT02844439 Phase II Completed
Afatinib GBM NCT00977431 Phase I Completed

Cetuximab GBM, anaplastic astrocytoma NCT01238237 Phase I Completed

Rindopepimut GBM NCT01498328 Phase II Completed
GBM NCT01480479 Phase III Completed

DIPG, diffuse intrinsic pontine glioma; HGG, high-grade glioma; GBM, glioblastoma; AA, anaplastic astrocytoma. †Epidermal growth factor receptor
(EGFRv) III; chimeric antigen receptor (CAR); transduced peripheral blood lymphocytes (PBL).
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amplification, and mutation. /e EGFR variant III
(EGFRvIII) is a common mutation product in GBM [110].
/e EGFRvIII contributes to many tumor biological features
[111], indicating a poor outcome. Besides, wild-type EGFR
associated with tumor cell invasion and angiogenesis has
been demonstrated in several in vivo and in vitro experi-
ments [112]. /us, EGFR and EGFRvIII have been identified
as popular therapeutic targets for treating malignant glioma
patients. However, current treatments that target EGFR have
failed in clinical trials including the small molecule drugs
and biologic antibodies [112]. While some trials are still
ongoing (Table 3).

6.6. VEGFA. VEGFA, also known as VEGF, is a growth
factor that promotes tumor angiogenesis and vascular
permeability and regulates immune cell and fibroblastoma
and microenvironment formation [113]. In glioma, VEGF
acts as a regulatory growth factor secreted by glioma stem
cells to promote the tumor vasculature [114]. Anti-VEGF-A
antibody has been applied as a novel antiangiogenic therapy
for malignant gliomas, as with bevacizumab [114]. However,
it has not achieved considerable progression in treating
gliomas. A report by Eskilsson et al. [112] indicates that
causes of failure may be attributed to enhanced invasive
properties of tumor cells by different mechanisms, for ex-
ample, RTK signaling. Many trials using bevacizumab with
other strategies, for example, EGFR inhibitors, showed
improved efficacy (Table 3); some trials are underway. Since
several VEGFA studies on gliomas exist, it is expected that it
will work as an accurate and effective predictor for glioma
prognosis. /is is despite its current poor performance in
antiangiogenesis therapy.

6.7. miR-221/miR-222. miR-221/miR-222 are two closely
related miRNAs located in the genome region of the X
chromosome. /ey have a similar sequence, structure, and
biofunction and upregulate expression in various human
cancers including glioma. Knocking down miR-221/miR-
222 expression blocks cell cycle transition, suppresses tumor
cell growth, and increases sensitivity to radiotherapy [115].
Also, miR-221/miR-222 is associated with tumor cell apo-
ptosis by targeting the apoptosis-related gene [116]. Recent
studies revealed its connection with glioma histology and
patient prognosis [117]. /is showed that either miR-221 or
miR-222 expression was associated with a higher WHO
grade thereby indicating a poor prognosis.

6.8. Other Significant Predictors. Apart from the above-
discussed vital parameters, other factors play significant
roles in glioma malignant properties and prognosis as-
sessment. /ese predictors include MYC, KCNJ10, CHI3L1,
STAT1, and FZD7. MYC amplification has been identified in
many classes of cancers. It acted as a qualified prognostic
prediction biomarker [118]. KCNJ10 encodes inwardly
rectifying potassium channel Kir4.1 protein that is expressed
exclusively in central nervous system glial cells. /is es-
tablishes a hyperpolarized resting membrane potential and

prevents glioma cell proliferation [119]. CHI3L1 over-
expression is associated with poor survival [120] causing
tumor invasion, migration, angiogenesis, and resistance to
temozolomide therapy [121]. /e aberrant STAT1 activation
may cause oncogenesis [122]. Limited information on FZD7
activity in gliomas exists; however, the other four predictors
have attracted extensive research.

7. Discussion

For model variables, previous studies focused on patho-
logical, anatomic, and clinical predictors, but recently ge-
netic data were widely recommended for enhancing
predictive ability [123, 124]. Formulated genetic predictors
harbor an advantage in calculating absolute risks based on
marker expression levels via sequencing analysis and coef-
ficients, thus providing stronger information compared with
relative risk tools. However, they are still not recommended
for clinical application, due to limitations, such as the lack of
goldmarkers, difficulties of data collection, the complexity of
analysis, and low adherence to complete and transparent
reporting [125]. Our review confirmed a similar problem in
gliomas. We found that only 27 models (20%) are classified
into the high-quality group (Table 4), 31 models (22%) are in
the medium-quality group, and 83 models (58%) are clas-
sified in the low-quality groups; none can be clinically ap-
plied according to our criteria, which was urgently required
to address the issue that no method for assessing the model
quality exists currently [125].

Problems in models consist of methodological defi-
ciencies and clinical confirmation absence. /e former was
mainly attributed to the low adherence to guidelines like the
TRIPOD statement [13], leading to series of deficiencies like
the lack of performance assessment, validation that was also
observed in other cancers [123, 126, 127]. A good example
of a prostate cancer model was constructed in transparent
and clear details [128], and its constructing details were
listed in a table, facilitating the check of model reliability for
users and avoiding methodological negligence during the
establishment process. And for validating, age-related risk
score [129] was analyzed through 2953 cases from 10
datasets; the large sample size and high AUCs verified its
robustness. For improving the model methodology, com-
plete and transparent reporting should be strictly ensured.
Besides, Zhang et al. highlighted that reference genome and
annotation updates cause inconsistent gene expression
levels, leading to discordant individual risk grouping. Using
up-to-date reference genome, stable gene in each annota-
tion release (with consistent length and overlap), and gene
pairs is helpful [18]. For clinical application, while decision
curve analysis [130] compares the net benefit of the models
with traditional approaches, the best methods for testing
clinical significance are prospect clinical trials
[123, 125, 126]. Health economic impact evaluations should
also be considered [131], but we found that no study has
reported the cost of predictor detection. Economic cost and
effectiveness of models were critical for the medical deci-
sion-maker, like cost-effectiveness ratio; they also con-
tributed to the optimization of risk thresholds. However,
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since few studies have conducted these methods, we em-
phasized increasing awareness of clinical considerations
when a high-quality model was established.

Conclusively, we comprehensively reviewed all 138
machine learning genetic models in gliomas and proposed
novel criteria that will foster the development or assessment
of clinically important models for not only neurosurgeons
but also researchers in other cancers. Given the current
situation, a lot of effort should be put to standardize the
model quality through adherence to complete and trans-
parent reporting and promote model generalization by
conducting prospective clinical trials, and economic effec-
tiveness should be the following issue. Despite the various

difficulties, future genetic models will lead the prognostic
management, and novel gene-pair-based models deserve
development.

Abbreviations

AUC: Area under the curve
EGFR: Epidermal growth factor receptor
EPV: Events per variable
GBM: Glioblastoma multiforme
HGG: High-grade glioma
LGG: Low-grade glioma
lncRNA: Long noncoding RNA

Table 4: Characteristics of 27 high-quality models.

Authors Glioma type Parameters Sample sizea Validationb Performance
estimationc Accuracyd Reference

Liu et al. LGG 2 mRNAs 115/-/41 E T, E Low (0.735) [29]
Xiao et al. LGG 3 mRNAs 456/-/159 I, E T, E High (0.908, 0.878, 0.827)e [23]
Chen et al. LGG 3 mRNAs 164/-/599 E T, E High (0.869) [28]
Zeng et al. LGG 4 mRNAs 172/-/451 E T, E High (0.845, 0.890, 0.912)e [24]
Zhang
et al. LGG 4 mRNAs 534/-/325 E T, E High (0.858, 0.853, 0.837)e [27]

Liu et al. LGG 5 mRNAs 524/-/169 I, E T, E High (0.887) [26]
Li et al. LGG 4 mRNAs + 6mRNAs 516/-/426 E T, E High (0.84) [20]
Zhang
et al. LGG 6 mRNAs 304/128/353 I, E T, I, E High (0.914) [21]

Zhang
et al. LGG 7 mRNAs 297/124/353 I, E T, I, E High and acceptable (0.899,

0.875, 0.778)e [22]

Su et al. LGG 8 mRNAs 511/-/172 E T, E High and acceptable (0.882,
0.831, 0.711)e [25]

Qian et al. LGG 4 miRNAs 100/-/420 E T, E Low (0.680) [81]
Wang
et al. GBM 3 mRNAs 155/-/216 E T, E High (0.832)f [43]

Wang
et al. GBM 4 mRNAs 241/160/- I T, I High and acceptable (0.756,

0.821, 0.885)ef [44]

Wang
et al. GBM 5 mRNAs 364/155/- I T, I Acceptable (0.729)f [39]

Zhao et al. GBM 6 mRNAs 152/-/138 E T, E High (0.908) [40]

Zhu et al. GBM 5 mRNAs 306/325/
1957 I, E T, I, E Acceptable (0.704)f [41]

Zuo et al. GBM 6 mRNAs 137/-/158 E T, E Acceptable (1-year 0.699,2-year
0.779) [42]

Gong et al. GBM 8 mRNAs 151/-/138 E T, E High (0.977) [45]
Zhou et al. GBM 6 lncRNAs 200/219/- I T, I High (0.902) [72]
Chen et al. GBM 4 lncRNAs 240/-/80 E T, E High (0.843) [73]
Chen et al. GBM 7 miRNAs 89/102/109 I, E T, I, E Low (0.690) [82]
Cheng
et al. GBM 5 miRNAs 75/75/19 E T, E High (0.847)f [83]

Gao et al. GBM 6 mRNAs + 5
lncRNAs 76/77/80 I, E T, E Acceptable (0.780) [91]

Peng et al. Diffuse
glioma 5 mRNAs 641/-/319 E T, E High (3-year 0.895, 5-year

0.864) [59]

Wu et al. Glioma 9 mRNAs 550/-/309 E T, E High (0.860) [57]
Wang
et al. Glioma 5 mRNAs 420/178/- I T, I High (0.917, 0.950, 0.881)e [58]

Hu et al. Glioma 5 lncRNAs 70/70/- I T, I High (0.910) [71]
aSample size of training set/internal validation set/external validation set. bI and E represent the presence of internal and external validation, respectively. cT, I,
and E represent the presence of performance estimation in training, internal validation, and external validation sets, respectively. dModels were classified into
high, acceptable, and low accuracy according to AUC or c-index as we present in rules for judging model quality and excision criteria part, and accuracy in
only the training set is shown. e/ree AUC values for prediction of 1-, 3-, and 5-year survival, respectively. fIf higher accuracy was achieved by nomogram or
integrated model, the highest accuracy result was exhibited instead of the result of the original risk score.
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