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Abstract

Objective.—The rapid acceleration of tools for recording neuronal populations and targeted 

optogenetic manipulation has enabled real-time, feedback control of neuronal circuits in the 

brain. Continuously-graded control of measured neuronal activity poses a wide range of technical 

challenges, which we address through a combination of optogenetic stimulation and a state-space 

optimal control framework implemented in the thalamocortical circuit of the awake mouse.

Approach.—Closed-loop optogenetic control of neurons was performed in real-time via 

stimulation of channelrhodopsin-2 expressed in the somatosensory thalamus of the head-fixed 

mouse. A state-space linear dynamical system model structure was used to approximate the 

light-to-spiking input-output relationship in both single-neuron as well as multi-neuron scenarios 

when recording from multielectrode arrays. These models were utilized to design state feedback 

controller gains by way of linear quadratic optimal control and were also used online for 

estimation of state feedback, where a parameter-adaptive Kalman filter provided robustness to 

model-mismatch.

Main results.—This model-based control scheme proved effective for feedback control of 

single-neuron firing rate in the thalamus of awake animals. Notably, the graded optical actuation 

utilized here did not synchronize simultaneously recorded neurons, but heterogeneity across the 

neuronal population resulted in a varied response to stimulation. Simulated multi-output feedback 

control provided better control of a heterogeneous population and demonstrated how the approach 

generalizes beyond single-neuron applications.

Significance.—To our knowledge, this work represents the first experimental application of 

state space model-based feedback control for optogenetic stimulation. In combination with linear 

quadratic optimal control, the approaches here should generalize to future problems involving 

the control of highly complex neural circuits. More generally, feedback control of neuronal 

circuits opens the door to adaptively interacting with the dynamics underlying sensory, motor, and 

cognitive signaling, enabling a deeper understanding of circuit function and ultimately the control 

of function in injury or disease.
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1. Introduction

Over the last two decades, there has been a rapid expansion of tools and technologies 

for recording the large-scale activity within and across brain structures at single neuron 

resolution ([1, 2]). In parallel, the development of optogenetics provided the ability to 

optically excite or inhibit neural activity in a cell-type specific manner ([3]). Together, these 

advances in the ability to ‘read’ or ‘write’ the neural code have led to a wide range of 

discoveries of the circuit mechanisms underlying sensory, motor, and cognitive processes 

([4]). The integration of recording and optogenetic stimulation techniques, however, has 

received comparatively little attention until recently ([5–13]; for review [14]), and in 

most cases these closed-loop systems utilize event-triggered or on-off control rather than 

continuous feedback. While feedback control is the engineering cornerstone for the function 

of a wide range of complex technologies ranging from communication to flight, applying 

this perspective in the nervous system remains more theoretical ([15–19]) than experimental. 

In this study, we establish a general framework for continuously-modulated closed-loop 

optogenetic control of neuronal circuits, where optical actuation is determined in real-time 

by comparing measured neuronal spiking to target activity. This work opens up possibilities 

for investigation of poorly understood mechanisms of the underlying circuitry and for 

adaptively interacting with the circuit dynamics within and across brain regions that 

constantly change in response to the internal and external environments.

Electrical stimulation has been the gold standard for manipulating the activity of neurons at 

fast time-scales, and remains the basis for clinical interventions like deep brain stimulation 

([20]). However, this approach suffers from lack of specificity while also typically 

precluding simultaneous measurement of the activity of the neurons being stimulated. 

While not yet clinically viable, optogenetics offers an alternative approach that enables cell­

type specificity, bi-directional actuation, the ability to simultaneously stimulate and obtain 

electrophysiological recordings, and a potentially lesser degree of unnatural synchronization 

of the local population ([21]). This presents an attractive toolbox for the development of 

continuous, feedback control strategies where stimulation is continuously modulated based 

on real-time measurements of the local neuronal activity. There has been a range of studies 

where previously-determined stimulation is triggered based on recorded activity in a reactive 

closed-loop fashion ([8–11]). In addition to event-triggered control, a recent study has also 

used on-off closed-loop control to gate photostimulation when recorded neuronal activity 

was below target levels ([13]). Although these approaches to stimulation have proven 

effective for their uses, they are fundamentally different from the continuously-graded 

feedback control we describe here, where stimulation is updated on a moment-by-moment 

basis as a function of the current and past measured neural activity. In previous studies, we 

have developed and demonstrated strategies for closed-loop optogenetic control of spiking 

activity of neurons in a cultured network and single neurons in vivo in the anesthetized 

brain ([5, 7]). While laying the conceptual groundwork, these approaches do not scale well 
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to neuronal populations and do not take advantage of more modern approaches in control 

theory. Additionally, these previous studies had not yet applied optogenetic control in the 

context of wakefulness.

In this study we bridge the gap between optogenetics and established paradigms of more 

modern control theory by utilizing state-space models to capture single- and multi-neuron 

responses to optogenetic stimulation and employing optimal control to design the control 

loop for driving desired neuronal activity. Specifically, precise manipulation of neurons 

was carried out via optical activation of the excitatory opsin channelrhodopsin-2 (ChR2) 

expressed in the somatosensory thalamus of the awake, head-fixed mouse. A feedback 

controller updated light intensity in real-time based on simultaneous electrophysiological 

measurements of the thalamic neurons being manipulated. A linear dynamical system model 

structure was used to approximate the light-to-spiking input-output relationship in both 

single-neuron as well as multi-neuron scenarios in cases where multiple neurons were 

measured simultaneously using multielectrode arrays. These linear state-space models were 

used in combination with linear quadratic optimal control to design feedback controller 

gains for the purpose of regulating thalamic firing around a desired target rate. The models 

were also used online for estimation of state feedback, using a parameter-adaptive Kalman 

filter for robustness to model-mismatch. The resulting controller-estimator feedback loop 

was deployed experimentally by way of a custom-written program running in real-time. 

This control scheme provided effective optogenetic control of firing rate in the awake brain, 

owing to the robustness to model accuracy granted by a parameter-adaptive Kalman filter 

that estimated a stochastically-varying process disturbance. Feedback control using this 

estimator resulted in very good firing rate tracking experimentally for the single neurons 

whose activity was used for feedback. By comparison, control was not as effective for other 

simultaneously-measured neurons not used for feedback. To investigate the generalizability 

and efficacy of these methods for future multi-output control scenarios, we demonstrate their 

application to multi-neuron feedback control of a population in simulation.

2. Methods

2.1. Animal preparation

All procedures were approved by the Institutional Animal Care and Use Committee at the 

Georgia Institute of Technology and were in agreement with guidelines established by the 

NIH. Experiments were carried out using either C57BL/6J mice that were virally transfected 

to express channelrhodopsin-2 (ChR2) or by single-generation crosses of an Ai32 mouse 

(Jax) with an NR133 cre-recombinase driver line (Jax) which grants better specificity of 

ChR2 expression in ventral posteromedial/posterolateral thalamus ([22]). In the case of 

viral transfection, ChR2 expression was targeted to excitatory neurons in the thalamus via 

stereotactic injection relative to bregma (approximately 2 × 2 × 3.25 mm caudal × lateral × 

depth) using 0.5 μL of virus (rAAV5/CamKIIa-hChR2(H134R)-mCherry-WPRE-pA; UNC 

Vector Core, Chapel Hill, NC) at a rate of 1 nL/s.

At least three weeks prior to recordings, a custom-made metal plate was affixed to the 

skull for head fixation and a recording chamber was made using dental cement while the 

animals were maintained under 1–2% isoflurane anesthesia ([23]). After allowing a week 
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for recovery, mice were gradually habituated to head fixation over the course of at least five 

days before proceeding to electrophysiological recordings and optical stimulation. On the 

day of the first recording attempt, animals were again anesthetized under 1–2% isoflurane 

and a small craniotomy (1–2 mm in diameter) was centered at approximately 2 × 2 mm 

caudal and lateral of bregma. The animals were allowed to recover for a minimum of three 

hours before awake recording. At the time of recording, animals were head-fixed and either 

a single electrode or an electrode array coupled to an optic fiber (Section 2.2) was advanced 

through this craniotomy to a depth between 3–4 mm for thalamic recording and stimulation. 

Between repeated recording attempts, this craniotomy was covered using a biocompatible 

silicone sealant (Kwik-Cast, WPI). Following termination of recordings, animals were 

deeply anesthetized (4–5% isoflurane) and sacrificed using a euthanasia cocktail.

2.2. Experimental setup

All optical stimuli were presented deep in the brain via a 200 or 100 μm diameter 

optic fiber attached to a single tungsten electrode (FHC) or to a 32-channel NeuroNexus 

optoelectric probe in a 25 μm-spaced ‘poly3’ configuration (A1×32-Poly3-5mm-25s-177­

OA32LP, NeuroNexus Technologies, Inc.), respectively. Command voltages were generated 

by a data acquisition device (National Instruments Corporation) in a dedicated computer 

running a custom-written RealTime eXperimental Interface (RTXI, [24]) program at 1 ms 

resolution. Command voltages were sent to a Thorlabs LED driver, which drove a Thorlabs 

M470F3 LED (470 nm wavelength blue light) connected to the 100–200 μm optical fiber. 

A commercially available data acquisition device and processor (Tucker Davis Technologies 

RZ2) measured extracellular electrophysiology. This system was used for single-channel 

PCA spike sorting, binning, and sending these binned spike counts at 2 ms resolution to the 

computer running RTXI over ethernet via UDP. The computer running RTXI for realtime 

control listened for datagrams over ethernet and linearly interpolated from 2 ms to the 

operating resolution of 1 ms. All told, the closed-loop processing loop was approximately 10 

ms.

As mentioned above, the control and estimation algorithms were carried out in real-time at 1 

ms resolution using a custom-written program. The program consisted of an RTXI ‘plugin’ 

linked against a C++ dynamic library that was responsible for online estimation of state 

feedback (Section 2.5) and the generation of control signals (Section 2.6). This functionality 

was provided as part of a state-space controller C++ class. The RTXI plugin forwarded 

the reference, or target, firing rate, model parameters, and feedback controller gains to a 

state-space controller object, and the controller returned an updated control signal each time 

it was queried by RTXI. This control signal was then routed by RTXI to the LED driver via a 

DAC (see above). All linear algebra was carried out using the C++ library Armadillo ([25]).

2.3. Offline spike sorting

For online control applications, single-channel PCA-based spike sorting was carried out 

in real-time using a commercially available electrophysiology system (Tucker Davis 

Technologies RZ2). Beyond tetrode recordings, spike sorting from high-density electrode 

arrays requires a multi-step process that is not feasible within the timescale of experiments 

with head-fixed awake animals. Kilosort2 ([26]) was used for all offline spike sorting, 
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including single-channel recordings, in which case spatial whitening and common mode 

referencing steps were disabled. Initial sorting by Kilosort2 was then manually curated 

(additional merging/splitting of clusters) using the phy viewer. After manual curation, any 

clusters that met the following criteria were considered single units and used in this study: 

sub 1 ms ISI violations of <0.5%, sub 2 ms ISI violations of <2%, and mean waveform 

amplitude-to-standard-deviation ratio >4.

2.4. Mathematical modeling

Linear and Gaussian state space models were used in designing feedback controller 

gains before experiments as well as during the experiment as part of the state feedback 

estimator. These models were fit offline to neuronal data before experimental application 

of optogenetic control and were fit at 1 ms time resolution, which was also the 

operating resolution of the RTXI software used for real-time control and estimation 

during experiments. In addition to the single-unit quality selection criteria in Section 2.3, 

models were only fit to putative single units (called ‘neurons’ hereafter) whose activity 

was significantly modulated by optical stimulation. Following Sahani and Linden ([27]), a 

neuron’s response was considered significantly modulated if the amount of ‘signal power’ in 

the response was greater than one standard error above zero. Note that Sahani and Linden 

([27]) define ‘power’ as the variance in time. We will refer to ‘signal power’ as ‘signal 

variance’ in this study.

The underlying dynamics of neural activity were approximated as a linear dynamical system 

(LDS) in which a number of latent ‘state’ variables, represented as the vector x ∈ ℝn, evolve 

linearly in time:

xt = Axt − 1 + But − 1 + μt − 1 + wt − 1, (1)

where ut ∈ ℝ1 is the optical stimulus at time t, μt ∈ ℝn is a process disturbance, wt N(0, Q)

is Gaussian noise of covariance Q, A ∈ ℝn × n is the state transition matrix, and B ∈ ℝn × 1

is the input vector (generally a matrix). Note that the disturbance, μ, was assumed to be 

zero during model fitting. However, for robustness in control applications, μ was allowed to 

be non-zero and to vary stochastically over time for the purpose of online state estimation 

(Section 2.5.2).

2.4.1. Gaussian linear dynamical system—Linear and Gaussian models were used 

for control system design and implementation because of the relative simplicity and ubiquity 

of linear control approaches. In this case, the output of an LDS y ∈ ℝp is modeled as a linear 

transformation of a latent state x and is assumed to be corrupted by additive Gaussian noise 

before measurement in the form of binned spiking, z ∈ ℝp:

yt = Cxt + d, (2)

zt = yt + vt, (3)
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where C ∈ ℝp × n is the output matrix, d ∈ ℝp is an output bias term that describes the 

baseline firing rates of the p outputs (here, neurons), and vt N(0, R) is zero-mean Gaussian 

measurement noise of covariance R ∈ ℝp × p. As a system whose dynamics evolve linearly 

and whose observation statistics are assumed to be additive/Gaussian, this is termed a 

Gaussian LDS, or GLDS ([28]). The bias term d was estimated as the average firing rate 

of each channel during spontaneous periods without optical stimulation, and GLDS models 

were fit relating ut and (zt–d) using subspace identification (N4SID algorithm, [29]).

2.4.2. Poisson linear dynamical system—While GLDS models were used for 

control and estimation, we evaluated their performance in capturing light-driven firing rate 

relative to a spiking model. As it is a more accurate statistical observation model for spike 

count data, we fit linear dynamical systems with Poisson observations, so-called Poisson 

LDS, or PLDS ([28, 30]). In this case, the underlying latent state(s) of the LDS is mapped to 

an output firing rate by a rectifying exponential nonlinearity and the measured spike counts 

are assumed to be drawn from a Poisson process driven at the given rate:

yti = exp γixt + di , (4)

zti ∣ yti Poisson yti , (5)

where yti is the firing rate and zti the measured spike counts of the ith output at time t. For the 

purposes of this study, PLDS models were fit by first estimating a GLDS model. The row 

vectors γi that describe the log-linear contributions of each state to output firing rates were 

assumed to be scaled versions of the GLDS output matrix rows: i.e., for the ith output,

γi = gici, (6)

where ci is the corresponding row of the GLDS output matrix C.

Note that at each time point the outputs are statistically independent conditioned on the state, 

allowing the output function parameters to be estimated in an output-by-output fashion. 

The resulting 2p-parameters of the PLDS output function were fit by maximizing the 

log-likelihood of the model one output at a time, given the predicted state sequence:

θi* = gi di * = argmax
θi

ℒi θi ,
(7)

θi* = argmax
θi

∑
t = 1

T
zti logyti xt θi − yti xt θi , (8)

where θi* are the parameters and ℒi the log-likelihood of the model for the ith output, (·)* 

denotes the result of the optimization, and

yti ∣ xt θi = exp gicixt + di . (9)
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This optimization was carried out iteratively until parameter convergence for each output 

by analytically solving for di and numerically solving for gi using Newton’s method in a 

manner analogous to Smith et al ([30]).

2.4.3. Finite impulse response model—While state-space models were used in this 

study, finite impulse response (FIR) models were also fit in order to provide empirical 

estimates of the light-to-spiking responses that did not depend on choices such as number 

of latent states. Moreover, FIR models, often termed (‘whitened’) spike-triggered average 

(STA) models, are widely used to characterize neuronal responses to stimuli ([31]), so they 

are are a more familiar model type for much of the neuroscience community and provide 

a useful point of comparison for state-space models which are less frequently used in this 

context. Contrary to state-space models whose outputs share a set of dynamical states, in 

FIR models the optical stimulus (u) is related to the output firing rates (y) of p neurons in the 

following manner:

yt = FUt + d, (10)

where Ut is a q-dimensional column vector of stimulus history up to time step t inclusive,

Ut =

ut
ut − 1

⋮
ut − q − 1

, (11)

and fi is the impulse response of the ith output, comprising the rows of F, and d is the output 

bias as before in the case of the GLDS model. Note that this is effectively a convolution of 

a set of p FIR filters with the stimulus. The output y is assumed to be corrupted by additive 

Gaussian noise before being observed/measured in the form of binned spiking, z:

zt = yt + vt, (12)

where vt is the measurement noise as described in the case of the GLDS model previously. 

This FIR model was fit by ordinary least squares linear regression between (zt − d) and 

corresponding 100 ms stimulus histories, i.e., Ut ∈ ℝ100 at Δ = 1 ms sample period.

2.4.4. Optical stimulus for model fitting—While the approaches in this study can 

generalize to multi-input systems (e.g., multiple light sources spread spatially or multiple 

wavelengths), only single-input systems are considered and tested here. As in Bolus et al 
([7]), a repeated 5-second instantiation of 1 ms resolution uniform optical noise was used 

to stimulate spiking activity for model fitting. While the amplitude of this stimulus varied 

across experiments based on perceived neuronal sensitivity to light, the average range of this 

uniform-distributed noise was from 0 to 14.4 mW/mm2, and the same pattern of noise was 

always presented. State-space models were fit using data from the first 2.5 seconds of each 

stimulus trial, while the remaining 2.5 seconds of stimulation were held out and used to 

assess model performance.
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2.5. Estimator

GLDS models were used both offline for designing the control law and online for estimating 

state feedback. For online estimation, two variants of GLDS model-based state estimation 

are considered. The first is a standard implementation of the Kalman filter (Section 2.5.1, 

[32,33]). Another variant of this approach that was used to achieve greater robustness to 

plant-model mismatch was to apply Kalman filtering to estimate a parameter-augmented 

state vector (Section 2.5.2), which we will refer to here as a parameter-adaptive Kalman 

filter but has elsewhere been described as a proportional-integral (PI) Kalman filter 

([34,35]).

2.5.1. Kalman filtering—The Kalman filter proceeds by alternating between a one-step 

prediction of the state and updating this estimate when the corresponding measurement is 

available ([33]). The filter has two design parameters which are reflected in the GLDS 

model structure (Equations 1 & 3): the covariances of the process and measurement noise, or 

Q and R, respectively. The value for R was taken from fits of the GLDS models to training 

data. In analyzing the performance of the Kalman filter on previously-collected spiking 

data, the fit matrix for Q was rescaled to minimize the mean squared error (MSE) between 

the Kalman-filter-estimated firing rate and an output of a model-free estimation method: 

smoothing the spikes with a 25 ms Gaussian window.

At each time point, a one-step prediction of the estimated state mean (x), state covariance 

(P), and output (y) were calculated:

xt ∣ t − 1 = Axt − 1 ∣ t − 1 + But − 1, (13)

Pt ∣ t − 1 = APt − 1 ∣ t − 1A⊤ + Q, (14)

yt ∣ t − 1 = Cxt ∣ t − 1 + d, (15)

where ( ⋅ ) denotes estimates, (·)t|t−1 denotes the prediction at time t, given data up to time 

t−1, and (·)t|t denotes filtered estimates. Recall that all model parameters were fit to optical 

noise-driven spiking activity, and note that μ was assumed to be zero unless adaptively 

re-estimated (Section 2.5.2). The one-step prediction was updated taking into account the 

latest measurement as

Kt
est = Pt ∣ t − 1C⊤ R + CPt ∣ t − 1C⊤ −1, (16)

xt ∣ t = xt ∣ t − 1 + Kt
est zt − yt ∣ t − 1 , (17)

Pt ∣ t = I − Kt
estC Pt ∣ t − 1, (18)
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yt ∣ t = Cxt ∣ t + d, (19)

where Kt
est is the Kalman filter gain and I denotes an identity matrix.

2.5.2. Parameter-adaptive Kalman filtering—For robustness of state estimation to 

plant-model mismatch, the state and a model parameter were jointly re-estimated by the 

Kalman filter. Specifically, the mean of the process disturbance, μ, was assumed to vary 

stochastically over time as a random walk:

μt = μt − 1 + wt − 1
μ , (20)

where wt
μ N 0, Qμ  is noise disturbing the stochastic evolution of μ. The covariance of this 

process Qμ effectively sets the timescale of adaptive re-estimation of μ. To jointly estimate 

this disturbance, the state and model parameters were augmented as follows:

xt
aug =

xt
μt

, (21)

Aaug = A I
0 I , (22)

Qaug =
Q 0
0 Qμ

, (23)

Baug = B
0 , (24)

Caug = C 0 . (25)

In general, such joint parameter-state estimation would require the use of the extended 

Kalman filter (e.g., [36]). However, in this case, the augmented dynamics and output 

equations remain linear with respect to the augmented state. Therefore, Kalman filtering 

was carried out on this augmented form of the state and GLDS model as detailed before in 

Section 2.5.1. For the purposes of this study, Qaug was assumed to be a diagonal matrix. In 

analyzing the performance of this adaptive Kalman filter on spiking data, the elements of 

Qaug were scaled to minimize the mean squared error between the Kalman-filter-estimated 

firing rate and the Gaussian smoothed estimate as before (Section 2.5.1).

2.6. Controller

While the state-space modeling and control framework can be readily used for trajectory 

tracking, the control objective in this study was holding the output neuronal firing to a fixed 
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target, or reference, rate (r), corresponding to a nonzero-setpoint regulation problem ([37]), 

also described here as ‘clamping’.

2.6.1. Control setpoint—In order to use state feedback for the case where the target is 

an output, we first calculated the state and optical input that would be required to achieve 

the target firing rate, r. Since this was a regulation problem, we calculated the state and 

input for achieving the target at steady-state. This steady-state setpoint y * ⊤ x * ⊤ ⊤ was 

calculated using models fit to previously collected optical noise driven data. This problem 

was solved by linearly-constrained least-squares [38], where the objective was to minimize 

the 2-norm ∥y* − r∥2, subject to the system being at steady-state x* = Ax* + Bu*. The 

control signal required to achieve the target at steady state, u*, was served as a nominal 

control signal, about which feedback controller gains modulated light intensity. For single­

input/single-output (SISO) applications, there was a solution that resulted in zero-offset 

tracking (i.e., y* = r). However, for multi-output control where the responses to control are 

heterogeneous, the steady-state solutions do not result in zero-offset tracking, but rather the 

least-squares compromise across neurons.

2.6.2. Linear quadratic regulator design—Linear quadratic optimal control was 

used to design controller gains Kctrl for non-zero-set-point regulation ([37]):

ut = u* − Kctrl
xt − x*

∑i = 1
t yi − y* Δ

, (26)

where both instantaneous state error (top row) as well as integrated output error (bottom 

row) were used for feedback to ensure robustness of control. Δ is the sample period (1 ms). 

The controller gains were chosen to minimize a quadratic cost (J) placed on these tracking 

errors and on deviations in the control ([37,39]):

J Kctrl = ∑
t = 1

∞ 1
2

xt − x*

∑i = 1
t yi − y* Δ

⊤

Qctrl
xt − x*

∑i = 1
t yi − y* Δ

+ 1
2 ut − u* ⊤rctrl ut − u* ,

(27)

where Qctrl is the weight placed on minimizing squared instantaneous state error and 

integrated output error,

Qctrl = C⊤C 0
0 qintI

, (28)

and rctrl is the weight placed on control deviations. Minimization of this quadratic cost 

function is linearly constrained by the error system dynamics

xt − x*

∑i = 1
t yi − y* Δ

= A 0
CΔ I

xt − 1 − x*

∑i = 1
t − 1 yi − y* Δ

+ B
0 ut − 1 − u* . (29)
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This optimization was carried out numerically by backward recursion of the discrete-time 

matrix Riccati equation until convergence ([37]) or calculated using the MATLAB function 

dlqr() (MathWorks). Generally, a stabilizing solution was not possible for multi-output 

control scenarios with integral action because of nonzero output error; however, the 

numerical solution for feedback controller gains still converged in practice.

2.6.3. Experimental SISO control—First-order GLDS models fit to previously 

collected spiking responses to optical noise were used offline for designing feedback 

controller gains, Kctrl, (Section 2.6.2) and online for the parameter-adaptive Kalman filtering 

(Section 2.5.2). The diagonal elements of the assumed process noise covariance, Qaug, used 

in the parameter-adaptive Kalman filter ranged from 1 × 10−9 to 5 × 10−8. For controller 

design, the quadratic weight chosen for integral error (qint) was 1×102, while the weight 

placed on control deviation, rctrl, ranged from 1 × 10−4 to 1 × 10−3. The online-sorted 

spiking data fed back to the controller was used to assess performance of the control 

scheme; however, in cases where a 32-channel electrode array was used for recording, 

offline-sorted population activity was inspected to understand the local effects of closing the 

loop around a given putative single neuron.

2.6.4. Simulated SIMO vs. SISO control—In addition to experimental validation in 

the SISO case, the state-space modeling, estimation, and control methods were also applied 

to a simulated multi-output control problem in which the objective was to push the outputs 

toward a common target firing rate. In this case, 5th-order models were used. When fitting 

GLDS models to SIMO datasets, we found that there was often great heterogeneity in 

input-output gain across outputs. Therefore, a two-output PLDS model was the simulated 

system being controlled, whose second output (‘neuron 2’) was a gain-modulated version 

of the first (‘neuron 1’), before exponentiation and spike generation. The dynamics and the 

first output channel of this PLDS came from a fit to an example SISO dataset. The log-linear 

gain of neuron 2 was swept between 0.1 and 3 times that of neuron 1. A multi-output 

controller and estimator were designed using a 2-output GLDS model fit to simulated PLDS 

data, where optical noise stimulated the PLDS in the case where the both neurons had 

the same gain. The neuron-averaged mean squared error performance of the SIMO control 

loop was compared to the SISO scenario when only neuron 1 data was fed back. For both 

SIMO and SISO control loops, the diagonal elements of the process noise covariance for the 

parameter-adaptive Kalman filter (Qaug) were all taken as 1 × 10−6, while the weights placed 

on quadratic cost of integrated tracking error (qint) versus control deviation (rctrl) were 1 × 

102 and 1 × 10−3, respectively.

2.7. Performance measures

Various measures of performance are used throughout this study to quantify goodness of fit 

for state-space models and the effectiveness of the estimators as well as the controller.

2.7.1. Model performance—The performance of GLDS and PLDS models were 

assessed using variance of the raw 1 ms binned PSTH explained in the held-out second half 

of each 5 second trial of optical noise stimulation. The variance explained was either taken 

as a proportion of the variance in the PSTH (pVE), or relative to the amount of ‘signal’ or 
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explainable variance in the PSTH (pSVE, [27]). These two metrics were computed for each 

SISO and SIMO dataset for 5th order PLDS models and 1st and 5th order GLDS models.

2.7.2. Estimator performance—Because the control objective in this study was to 

track a constant reference firing rate, it was important that the estimator achieve low bias; 

otherwise, the integral action of the controller cannot serve its ideal purpose to eliminate 

steady state tracking errors. Therefore, the performance metric considered here for the 

online estimator was the squared bias of the single-trial-estimated firing rate compared to the 

corresponding spiking responses to 5-second step inputs of light.

2.7.3. Control performance—To assess controller performance, the mean squared 

error (MSE) as well as squared bias between the achieved single-trial firing rate and the 

reference firing rate were calculated. Single-trial firing rate was taken as the online-sorted 

spike train fed back to the controller, smoothed offline with a 25 ms standard deviation 

Gaussian window. While MSE takes into account variance, we separately considered 

across-trial variability using the Fano factor ([40]) of spike counts in a 500 ms sliding 

window, a mean-normalized measure of spike count variability. Finally, in cases where a 

32-channel multielectrode array was used for recording local population activity, the degree 

of synchrony between simultaneously recorded neurons was quantified in a manner similar 

to Wang et al ([41]). Briefly, a cross-correlogram was constructed by binning the relative 

spike times of simultaneously recorded neuron pairs. To quantify degree of synchrony, the 

number of correlated events in a ±7.5 ms window (Ncc) was normalized by the total number 

of spikes in a ±50 ms window (Ntot):

synchrony = Ncc
Ntot

. (30)

Allowing 1-second for non-steady state performance, all four of these performance metrics 

were calculated in a 4-second period of time during closed-loop control. As a point of 

comparison, the same metrics were also calculated using 4-second periods of spontaneous 

data recorded between trials of closed-loop stimulation.

3. Results

In this study, we applied a model-based optimal control framework to the experimental 

control of neural activity in vivo using optogenetic stimulation. Specifically, we utilized 

the ventral posteromedial (VPm) region of the sensory thalamus in the vibrissa/whisker 

pathway of the awake mouse as an experimental model system, where single-unit 

electrophysiological recordings were obtained while optically stimulating light sensitive 

channels with an inserted optical fiber. The optimal control framework relies on a state­

space representation of the optically-driven dynamics of neural activity. This model is used 

both for the offline design of the optimal controller and for the online estimation of state 

feedback. Although experimental results are presented from this specific pathway and brain 

region, the approach is directly applicable to others. Furthermore, while the methods used 

here should generalize to future multi-input and multi-output (MIMO) applications, we first 

focus on the single-input and single-output (SISO) case where the measured outputs were 
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single-unit spiking activity and the control objective was to track step commands (i.e., clamp 

neural activity at a fixed target firing rate). In the context of these experiments, we were able 

to use a linear and Gaussian model to approximate light-driven spiking responses for the 

purposes of controlling firing rate; moreover, we found that a low order approximation of the 

neural dynamics was sufficient at least for the slow timescale control/estimation objectives 

studied here. In experiments where multi-electrode arrays were employed to record thalamic 

activity, we found that simultaneously-recorded neurons responded to optical stimulation 

with a high degree of diversity, motivating investigation of applicability of this control 

framework to multi-output scenarios. We applied this framework in a simulated single-input/

multi-output (SIMO) scenario, where the “output” consisted of the activity of multiple 

simultaneously-recorded neurons, and the control objective was to force the population 

activity as close as possible to a common target firing rate. Feeding back multi-output 

population activity to the controller enhanced the robustness of the control scheme’s ability 

to drive the collective population activity to a desired target in the face of heterogeneity in 

sensitivity to light.

Figure 1(a) illustrates the control scheme that was implemented experimentally in the awake, 

head-fixed mouse, where an ‘optrode’ consisting of an electrode attached to an optical fiber 

was inserted into the VPm. Given binned single-unit spiking activity, control and estimation 

was carried in realtime at 1 ms resolution using custom-written software (Section 2.2). We 

designed an estimator that generated an online estimate of the state of neural activity, and a 

feedback controller that maintained a target firing rate in the face of potential disturbances, 

such as reafferent sensory input (i.e., whisker motion) and changing brain states.

To develop a generalizable control methodology, we applied a state-space model-based 

control and estimation scheme where the model is used not only in the design phase but as 

an online estimator for the control scheme (Figure 1(b)). The model structure utilized here 

was a linear dynamical system (LDS), where optical input(s) modulate the activity of latent 

state variables. More specifically, for the purposes of this study we employed a Gaussian 

linear dynamical system (GLDS), in which a linear combination of the states is observed 

after being corrupted by additive Gaussian noise (Figure 1(c)). Here, the output of the model 

was either single or multi-neuron firing rate, although in principle these same techniques 

could be applied to other neural signals of interest such as local field potential or voltage/

calcium signals. Figure 1(d) illustrates the workflow for the closed-loop experiments. 

Neuronal responses to optical noise recorded in previous experiments were used to fit state­

space models and the control system, utilized in subsequent closed-loop control experiments 

to be presented in detail in later sections, highlighting the generalizability of the approach 

across animals.

3.1. GLDS captures optical noise-driven responses

The control framework used here depends on a model of the underlying dynamics for both 

the design of the controller and online state estimation to execute the control strategy. 

As we have previously described in a simpler, classical control framework ([7]), feedback 

control is robust to a degree of model inaccuracy. Therefore, there is an application-specific 

balance to be struck between model complexity/fidelity and simplicity. Here, we first asked 

Bolus et al. Page 13

J Neural Eng. Author manuscript; available in PMC 2021 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to what extent a GLDS model could predict the experimentally observed SISO firing 

rate modulation with optogenetic stimulation, as this would provide a relatively simple 

modeling framework that is attractive in terms of its widespread applicability and ease of 

implementation. Since the measurements were spike counts in 1 ms bins at relatively low 

firing rates, a Gaussian observation model is an obvious violation of these statistics. For 

comparison, we also fit an LDS model whose observation model is Poisson (PLDS), which 

has been utilized in a range of studies for describing the dynamics of spiking neurons 

(Figure 2(a)).

In fitting a state-space model, the order of the model (the dimensionality of the latent state 

vector) must be specified. To ascertain the appropriate order of these models, we pooled 

together noise-driven response data from 37 neurons that were all significantly excited by 

the optical stimulus, and fit GLDS models to this population. For comparison, we separately 

fit a finite impulse response (FIR) model to the same population dataset (see Section 2.4), 

as it is widely used in the neuroscience literature ([31, 42]). Models were fit from recorded 

responses to white-noise optical inputs (Section 2.4.4). Shown in Figure 2(b) are the impulse 

responses for both the GLDS (red) and FIR (black) models, as a head-to-head comparison. 

This can be interpreted as the model prediction of the instantaneous firing rate in response to 

a light impulse input at time zero. Prominent in both is an initial peak at approximately 3 ms 

reflecting a relatively short latency excitation, followed by a subsequent drop below baseline 

at 7–8 ms reflecting a post-excitatory inhibition. We found that a 4th to 5th order state-space 

model was sufficient for these data, striking a balance between goodness of fit and model 

complexity. Note that the above analysis was restricted to thalamic neurons that were found 

to be excited by the optical input, which excluded other thalamic neurons that exhibited 

more heterogeneous behaviour (i.e. a minority of recorded neurons were indirectly inhibited 

by the optical input, interestingly). To capture the full heterogeneity of the population, 

therefore, we fit 5thorder PLDS and GLDS models to each single-output dataset individually 

(n = 48 neurons, 17 recordings in 9 mice). A representative example SISO dataset is shown 

in Figure 2(c), where the firing rate estimates for the 5thorder PLDS (first row, orange) and 

5thorder GLDS (second row, red) are superimposed onto the corresponding PSTH (black) 

at white-noise onset and offset. Qualitatively, there is little gained in using a PLDS model 

instead of a GLDS for this example, aside from the non-negativity of the PLDS firing rate. 

Across the population of units, there is no significant difference between the performance 

of the Poisson vs. Gaussian models (Figure 2(d), n = 48 neurons, p = 0.234, Wilcoxon 

signed-rank test). Specifically, the left plot of Figure 2(d) shows the proportion of the 

variance in the raw 1 ms PSTH explained by 5thorder PLDS and GLDS fits (pVE). Note 

that a relatively low proportion of the variance in the raw PSTHs was explained, due to 

levels of intrinsic noise in the observed responses at fine timescales. For this reason, we 

assessed the quality of the model using a metric that takes into account the fact that some 

of the observed variability is not explainable across trials ([27]), instead quantifying the 

amount of explainable, or ‘signal’, variance the model captures. The right panel of Figure 

2(d) presents the proportion of the signal variance explained (pSVE), showing that the 

models captured approximately 60% of the explainable variance and that there was not a 

significant difference in the predictive capabilities between the GLDS and the PLDS models 

in this dataset. Therefore, with the exception of multi-output modeling where the same 
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PLDS versus GLDS analysis was conducted for comparison, GLDS models are used for the 

remainder of this study in order to leverage linear controls approaches.

3.2. Parameter-adaptive Kalman filtering provides robust online estimation

These GLDS models are used online as part of the Kalman-filter-based estimator (Figure 

3(a), grey box) which is used to provide state feedback to the controller. While the models 

performed relatively well in the case of uniform white-noise optical stimulation as shown 

in Figure 2, when challenged with step changes in input that are often utilized in control 

scenarios, non-zero-mean model mismatch is clearly revealed (Figure 3(b)). In this example 

the open-loop model predicted firing rate (OL Prediction, red) initially under-estimates the 

experimentally-measured firing rate (PSTH, black) during the first second of stimulation 

and then consistently underestimates the firing rate at steady state. Model-based control and 

estimation schemes are particularly sensitive to such plant-model mismatch, as is apparent 

here when standard Kalman filtering used for online estimation is applied to these datasets 

for step changes in input. In this example in Figure 3(b) there is still an obvious bias in 

the average Kalman-filter estimated firing rate (KF Estimate, purple) when compared to 

the smoothed PSTH (PSTH, black). Moreover, because of the rapid time-course of the fit 

neuronal dynamics (Figure 2(b)) and the spiking nature of the measurements, the single-trial 

KF estimates of firing rate which will be fed back to a controller are full of extreme 

transients each time a new spike is measured (Figure 3(c), purple trace). Online estimation 

of firing rate can be made more robust by assuming there is an unmeasured, non-zero-mean 

disturbance that varies stochastically (e.g., other exogenous inputs), augmenting the state 

with the mean(s) of this disturbance (μ), and jointly re-estimating this along with the state 

using Kalman filtering (Figure 3(d), see methods for details), which we refer to here as 

the parameter-adaptive Kalman filter, but has elsewhere been described as a proportional­

integral Kalman filter ([34, 35]). As can be seen in the example in Figure 3(e), this adaptive 

Kalman filter produces an effectively unbiased estimate of the experimentally-observed 

PSTH in SISO applications (Figure 3(e), purple vs. black), and it is able to do so with 

a single-trial estimate of firing rate that is smoother than that achieved by the standard 

Kalman filter (Figure 3(f), cf. Figure 3(c)). In this example, the parameter-adaptive Kalman 

filter approach accounts for apparent model mismatch by estimating a process disturbance 

μ that on average pushes the firing rate above the model prediction for the first second of 

optical stimulation and then pulls the estimated firing rate below that prediction at steady 

state (Figure 3(g)). The filtering approach works well in this illustrative example and at 

a population level, as it brings the estimation bias to near-zero levels compared to the 

standard Kalman filter (Figure 3(h), p = 1.63 × 10−9, Wilcoxon signed-rank test, n = 48 

neurons, 17 experiments, 9 animals). At least in the context of estimating step responses, 

we see there is little benefit in using a 5thorder versus 1st-order GLDS model for this SISO 

application (Figure 3(h), black, p = 0.0830, Wilcoxon signed-rank test). Importantly, the 

parameter adaptation provides enough robustness that even the population-average GLDS 

model in Figure 2(b) was able to estimate SISO firing nearly as well as models fit to 

each neuron individually (Figure 3(h), gray, p = 0.0142, Wilcoxon signed-rank test). Since 

the control objective in this study is to clamp firing rate at relatively long timescales, 

we therefore used a 1st-order Gaussian approximation for the system. However, for fast 

timescale trajectory tracking problems, a higher-order model would almost certainly be 
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warranted (see Discussion), and higher-order models are important even for long timescale 

control/estimation in multi-output scenarios (see Section 3.6).

3.3. State-space control performs well in SISO clamping applications

The control and estimation framework was tested experimentally in the awake head-fixed 

mouse in a SISO configuration, where spiking activity of a single neuron was fed back 

to a controller with a single channel of optical input. The models used for pre-experiment 

controller design and for the online estimation for state feedback were fit to thalamic 

spiking responses to optical noise from previous experiments in separate mice, as illustrated 

in Figure 1(d). As previously noted, 1st-order GLDS models were sufficient and were 

therefore used for this particular application; however, higher order models would be 

merited or necessary in other scenarios. The robustness of the estimator (Figure 3), the 

use of feedback, and the slow timescale nature of the control objective allowed GLDS 

models fit to previously-collected noise response data to be used for experimental control 

and estimation, rather than fitting a model during an experiment, the timespan of which 

is limited in the context of awake, head-fixed recordings. The feedback controller was 

designed using output-weighted LQR ([37]), where the state of the system was augmented 

with the integrated output in order to find not only proportional feedback gains on the 

state, but integral feedback gains to minimize steady state tracking errors (Section 2.6.2). 

Additionally, since this particular application is a non-zero setpoint regulation problem, the 

steady-state set-point of the system y * ⊤ x * ⊤ u * ⊤ ⊤ at the desired output firing rate (r) 

was calculated as described in Section 2.6.1.

Figure 4 illustrates the performance of the control framework for a typical single thalamic 

neuron and the summary performance across experiments. Figure 4(a) is an illustration of 

the control implementation, highlighting the feedback controller and the online estimator. 

In the case of the estimator, Parameter-adaptive Kalman filtering is being used to estimate 

not only the state of the system being controlled but also the uncontrolled disturbance 

(Figure 4(a), estimator block). On the other hand, the controller is operating on the error 

between the estimated state of the system and the desired steady-state set point as well as 

the integrated output error (Figure 4(a), controller block). In this example (Figure 4(b)), 

the baseline ongoing activity of the recorded neuron was approximately 5 spikes/s, and the 

controller was activated at time zero with a target firing rate of 20 spikes/s. Upon activating 

the controller, the neuron reached and remained at the target firing rate (green), as reflected 

in the average firing rate (black). Importantly, the controller operated using online estimates 

of state and corresponding output firing rate provided by the estimator (Figure 4(b), purple). 

The firing rate of the online estimator (purple) also quickly reached the target (green) 

and remained there. As shown previously in Figure 3, the online estimate was on average 

unbiased, as it matched the offline estimate of the average firing (black, PSTH smoothed 

with 25 ms s.d. Gaussian). The controller achieved the target with well-below spontaneous 

levels of across-trial variability, quantified using the Fano factor (FF) that captures the spike 

count variance relative to the mean spike count (Figure 4(b), middle). In this particular 

example, the controller’s use of feedback resulted in a gradual increase in light intensity 

that was needed to maintain the target level of spiking over the control epoch. Also note 

that this control signal varied substantially across individual trials (Figure 4(b), bottom, light 
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blue), with significant individual trial variability serving to drive the firing rate tracking and 

quench the variability. While variable across experiments, in general it was approximately 

1.1 seconds before the controller was able to push neuronal firing to within 2% of its steady 

state value (bootstrapped 95% confidence intervals about the median, 0.47 to 1.34 sec, 

n=11 recordings). This settling time metric was calculated by fitting a second order transfer 

function to closed-loop step data and using the MATLAB ‘stepinfo’ function (Mathworks, 

Inc.).

Across experiments (n = 11 neurons, 11 experiments), the control framework performed 

well as quantified by the summary of performance metrics in Figure 4(c). For each of 

these metrics, the measure during closed-loop (CL) control is compared to that from 

the spontaneous period (spont) before the control was activated at time zero. The mean 

squared-error (MSE) between an offline estimate of the single-trial firing rate and the target 

(Figure 4(c) left) decreased significantly with activation of the control law as expected (p 
= 0.00195, Wilcoxon signed-rank test), and the MSE during closed-loop control was even 

below that of a Poisson spike generator driven at the target rate (green bar), consistent 

with the sub-Poisson variability as revealed by the Fano-factor in Figure 4(b). Because the 

MSE captures a combination of the variance and the bias, we separately computed the 

bias in the control (Figure 4(c) middle), substantially reduced with the activation of the 

control (p = 0.000977, Wilcoxon signed-rank test) and at the level expected for a Poisson 

spike generator driven at the target rate (green band). To further quantify the reduction in 

across-trial variability during the control, we computed the average Fano-factor in a 500 ms 

sliding window, exhibiting substantial reduction from supra-Poisson variability (FF >1) in 

the spontaneous activity to sub-Poisson variability (FF <1) during the control (Figure 4(c) 

right).

3.4. Multi-electrode recordings reveal effects of SISO control on simultaneously recorded 
neurons

Up to this point, the state-space control framework has been shown effective for tracking 

step commands in single-neuron scenarios. However, neural recording methodologies 

(electrophysiology and imaging) continue to scale in size (e.g., larger numbers of channels 

for electrophysiology, or pixels for imaging) and one of the main benefits of using 

state-space models for control and estimation is the generalizability to such multi-output 

problems. While the preceding experimental demonstration was presented in the context 

of a single channel of light input and a single channel of neuronal output, in a subset of 

experiments, we simultaneously recorded multiple nearby neurons in the thalamus of the 

awake, head-fixed mouse. This provides a window into the effect of the stimulation on the 

local population while a single neuron is used as an ‘antenna’ around which the controller 

is operating, which we will refer to as the feedback (FB) neuron (Figure 5(a)). For the 

purposes of this analysis, we inspected simultaneously-recorded neurons that were excited 

by 5 ms square pulses of light with sub-10 ms latency. Figure 5(b) provides an example in 

which one neuron is being used for feedback (purple, top), while offline spike sorting reveals 

the activity of six other simultaneously recorded neurons, which we will refer to as non-FB 

neurons (black, trial-averaged firing rates; green shows control target). While nearby on 

this 25 μm spaced electrode array (Figure 5(b), right), these neurons nevertheless responded 
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heterogeneously to the optical stimulation. In this particular example, the FB neuron was 

substantially more sensitive to light compared to the non-FB neurons, as evidenced by 

their modest response following the controller activation at time zero. While all increase 

their firing rates in response to the controller input, none are driven to or above the target 

firing rate of 20 spikes/sec in this example. This was not always the case, as in other 

experiments the non-FB neurons could be either more or less sensitive to the light input as 

compared to the FB neuron. Across experiments (n = 8 feedback neurons, 23 non-feedback 

neurons, 8 experiments), we calculated the average per-trial firing rate during the pre-control 

spontaneous (spont) versus control periods for the FB neuron and the non-FB neurons 

recorded simultaneously. As expected, for the FB neurons, the controller reliably pushed 

the firing rate to the 20 spikes/s target. In contrast, while the average firing rate of non-FB 

neurons was significantly elevated from spontaneous levels and toward the 20 spikes/s target 

(p = 0.00781, Wilcoxon signed-rank test), it did so with high variability as evidenced by 

very wide confidence intervals about the across-experiment average (12.7 to 25.1 spikes/s, 

Figure 5(c), left, grey) and made more plain by the fact that FF did not change from its 

spontaneous levels in the non-FB neuron case (Figure 5(c), right, grey, p = 0.844, Wilcoxon 

signed rank test).

Beyond the firing rate of individual neurons within the population, it is important to 

determine what effect the optical stimulation has on the spike timing and synchronization 

across the population. Although we have previously shown that optical stimulation over 

some ranges results in a somewhat reduced synchronization relative to comparable electrical 

stimulation ([21]), it remains an important issue to quantify the effect in the context of 

the control scheme used here. We find that the use of continuously graded closed-loop 

stimulation did not significantly synchronize the recorded thalamic neurons when compared 

to commonly used pulsatile stimulation (Figure 5(d–e)). Spike cross-correlograms were 

calculated from relative spike times for each of 33 simultaneously-recorded pairs of neurons 

(see Section 2.7.3). The population correlogram shows no peak at or around zero-lag for 

the case of closed-loop control (Figure 5(d), black). In contrast, 5 ms square pulses of light 

delivered in open-loop at 10 Hz to the same neurons caused clearly aligned spiking (Figure 

5(d), red). There was very little synchronization of recorded neurons during closed-loop 

control epochs compared to the results using pulsatile stimulation (Figure 5(e), p = 5.39 

× 10−7, Wilcoxon signed-rank test), where synchrony was quantified as the number of 

temporally-aligned spikes in ±7.5 ms window, relative to the total number of spikes in a 

±50 ms window. Note that these open-loop pulses were in general higher amplitude than 

the continuously modulated closed-loop stimulation, so it is not necessarily the case that 

pulsatile inputs would have such synchronizing effects at all stimulation intensities. Also, it 

is possible that low-amplitude pulsatile stimulation may provide a smaller amount of heating 

as compared to sustained light inputs used by this control strategy. That said, the estimated 

light levels used by the controller tended to be on the order of (or less than) 10 mW/mm2 

which corresponds to less than 1 mW of optical power from the optic fibers used in this 

study. A previous study that measured the neuronal effects of optical stimulation in the 

absence of opsin expression reported no significant change in firing rate for 1 mW light 

intensity shone through a 200 μm fiber ([43]). While it is therefore unlikely the levels of 
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stimulation used here led to heat-induced changes in neuronal activity, this is certainly an 

important consideration moving forward.

3.5. GLDS models generalize to multi-output datasets

In the previous section, we considered the effects of closed-loop optogenetic control on 

nearby neurons when the control was applied in a single FB neuron (i.e., SISO) scenario. 

More generally, the goal of control may be bringing the firing rate of a neuronal population 

toward a common target, rather than a single neuron, in order to provide a more controlled 

and uniform input to downstream neurons. An open question is whether multi-output control 

would serve this goal better than the above single-neuron ‘antenna’ approach. One of the 

strengths of the state-space control and estimation framework is that it is amenable to such 

multi-output applications.

To investigate the multi-output capabilities of this approach, we first demonstrate that these 

GLDS models can be used to capture the SIMO systems in cases where we recorded 

multiple neurons simultaneously. We found that the response of multiple neurons to optical 

noise could be represented by 5thorder GLDS models due to the similarity in dynamics and 

coupling across the channels. Note that in contrast to the single-output scenario considered 

previously, simultaneously recorded neurons are taken to be output channels driven by a 

common LDS. In other words, a common state vector is mapped to individual outputs 

(Figure 6(a)). The same subspace algorithm was used to identify these multi-output models 

as before for the SISO case. Figure 6(b) and (c) provide example results of the GLDS 

state-space modeling for an example set of four thalamic neurons recorded simultaneously. 

Figure 6(b) shows the impulse response of the GLDS model of the dynamics across these 

recorded neurons (red), superimposed on the corresponding FIR estimates (black), showing 

good correspondence as previously exhibited for the single neuron case in Figure 2(b). 

Figure 6(c) shows the model predictions of the responses to uniform white noise optical 

stimulation (red) as compared to average experimentally recorded trial averaged firing 

(black) for this same set of neurons. The neurons clearly responded heterogeneously to light 

in terms of overall gain, and the GLDS model captures this and the temporal characteristics 

of the response to optical noise well. On average (n = 11 experiments, 42 neurons), 5thorder 

GLDS models predict population PSTHs approximately as well as in the previously shown 

SISO case (pSVE 60%, Figure 6(d)). As before (Figure 2), multi-output PLDS models were 

also fit to the same data and we found no significant difference between the performance 

of the Poisson vs. Gaussian LDS models in explaining the PSTHs under these conditions 

(p = 0.923, Wilcoxon signed-rank test). As is clear in the example responses in Figure 

6(c), across recordings we found there was often large (sometimes tenfold) heterogeneity 

in overall sensitivity to light as measured by the static input-output gain, even though 

the dynamics could be qualitatively similar. To explicitly characterize this heterogeneity, 

Figure 6(e) represents the static gain for each recorded neuron, calculated from the steady 

state input-output gain of the GLDS fits (circle represents mean, bars represent range). It 

should be noted that among the inclusion criteria for this study was that neurons must be 

significantly modulated by light (Section 2.3); however, this does not mean that all neurons 

were directly stimulated and so could be indirectly excited or even inhibited (i.e., have 

negative gains) by optical stimulation of ChR2 expressed in other cells in the network.
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3.6. Online estimation methods generalize to multi-output applications

As described previously, the state-space models were used for both offline controller design 

as well as for the online estimation of feedback provided to the controller. Figure 7 details 

the performance of the parameter-adaptive Kalman filter estimator for the single-input, 

multi-output (SIMO) case. While a 1st-order GLDS Kalman filter performed sufficiently 

well as an estimator for the SISO application (Figure 3), a 1st-order approximation leads 

to substantial bias in the estimates in multi-output scenarios, as shown in the example 

3-neuron recording of Figure 7(a) (trial averaged estimate in dark purple vs. PSTH in black). 

In this example, the adaptive Kalman filter overestimates the firing activity of neuron 1, 

while underestimating the firing of neurons 2 and 3. Moreover, the filter fails to capture 

the gradual decline in firing of neuron 3 over the course of the step response. This is to 

be expected, as there is only one state disturbance being estimated in the 1st-order case for 

multiple outputs that may be independently perturbed. For the same multi-output example, 

a higher order adaptive Kalman filter (5th-order, Figure 7(b)) achieves substantially lower 

estimation bias, albeit not unbiased like the SISO scenario (Figure 3). In this example, 

the average activity of neurons 1 and 3 is accurately estimated; however, the firing rate of 

neuron 2 is under-estimated initially. Across the population of multi-output recordings (n = 

11 experiments, 42 neurons), the 5th-order adaptive Kalman filter provides lower estimation 

bias than a standard Kalman filter (Figure 7(c), p = 2.37 × 10−8, Wilcoxon signed-rank test) 

as well as a 1st-order adaptive Kalman filter (p = 2.20 × 10−8, Wilcoxon signed-rank test). It 

is unsurprising that the higher order adaptive filter improved performance in the multi-output 

case because there are more state disturbances being estimated. However, as is evident in 

Figure 7(b), it is important to note that while higher order models perform better, this form 

of parameter-adaptive Kalman filtering does not independently minimize the estimation 

error for each output neuron in general because the estimated process disturbances act on a 

set of common state variables.

3.7. Simulated SIMO control more robust to population heterogeneity than a SISO 
‘antenna’ approach

While we experimentally tested the control framework in the context of single-neuron 

feedback, the optogenetic approaches we and others use results in opsin expression in a 

region of tissue rather than just the feedback neuron. Furthermore, the light source used 

to stimulate activity impacts a volume of tissue. So, optical stimulation naturally affects 

a local population of neurons, each of which is potentially different in terms of intrinsic 

excitability, levels of opsin expression, etc., resulting in a net change in sensitivity to light. 

Because downstream neurons receive inputs from multiple cells, it is important to investigate 

the applicability of this technique for feedback control of a local population, rather than a 

single neuron. To demonstrate the generalizability of this approach to multi-output control 

problems and to explore the robustness of SIMO control to population heterogeneity in 

light sensitivity (Figures 5(b), 6), we simulated a 2-output system whose second output 

(neuron 2) ranged from much less sensitive than neuron 1 to much more sensitive (Figure 

8(a)). To simulate spiking, an example PLDS model previously fit to SISO experimental 

data was chosen to most accurately represent the complexities in the data (e.g., spiking). 

The output matrix of this model was augmented with a second row whose elements were 

gain-modulated versions of the first row (Figure 8(a), bottom inset). This log-linear gain 
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term was swept from 0.1 to 3 times that of neuron 1. After fitting GLDS models to simulated 

SIMO datasets (below), this resulted in linear gain of neuron 2 ranging from 0.027 to 13.3 

times that of neuron 1. In these simulations, the dynamics of the PLDS model neurons were 

held fixed. This resulted in a set of simulated datasets representing a range of similarity 

between the two output neurons.

Using previously described methods, a multi-output GLDS model was fit to simulated 

spiking responses to optical white noise in the case where neurons 1 and 2 had the same 

log-linear gain. A single-output model was fit to the responses of neuron 1. An estimator 

and controller were designed using these SIMO and SISO models and they were applied to 

control of the 2-output PLDS across a range of output gain disparities. In the SISO case, 

only the activity of neuron 1 was used for feedback control, while in the SIMO, spiking 

activity from both neurons was fed back to the estimator and controller. Examples where the 

log-linear gain of neuron 2 is 1.5-times that of neuron 1 are provided in Figure 8(b) and (c), 

showing the SISO and SIMO control results, respectively. Qualitatively, while SISO control 

of neuron 1 successfully clamps activity of that channel at the target 20 spikes/sec, neuron 

2 is well above the target (Figure 8b). Conversely, the multi-output control case strikes a 

balance between the two, allowing neuron 1 to fall below the target and reigning in the 

above-target activity of neuron 2 (Figure 8(c)). As summarized in Figure 8(d), population 

tracking performance was quantified as the total MSE of neuron 1 and neuron 2 single-trial 

firing rates vs. a 20 spikes/s reference firing rate, both for single-output (red) and multi­

output (black) control strategies. Highlighted with the open symbols are the performances 

of the examples given in Figure 8(b) and (c), where the value of the log-linear gain of 

neuron 2 was 1.5 times that of neuron 1. As expected, a multi-output control strategy is 

more robust to population heterogeneity, as the SISO control performance rapidly degrades 

when the ignored neuron 2 is increasingly sensitive. Note that this effect is not symmetric, as 

discrepancies in sensitivity are substantially less problematic when neurons in the population 

are less sensitive to the light input as compared to the feedback neuron (relative gain <1). 

Taken together with previous multi-output modeling and estimation on experimental data, 

these simulations demonstrate that the techniques used first for SISO applications are readily 

applicable to multi-output problems and that such approaches could grant better control of 

population neural activity of interest.

4. Discussion

With the continued development of tools for precisely and selectively manipulating neuronal 

ensembles using multiple inputs ([13, 44]) and corresponding technologies for measuring 

large-scale neuronal activity ([1]), a framework for the integration of these technologies 

enables more intelligent interaction with neuronal circuits within and across brain regions 

(for review, see [14]). The state-space model structure is a natural choice for describing 

systems that involve a number of inputs and outputs (referred to as multi-input, multi­

output or MIMO) ([45]). State-space models for system dynamics in combination with the 

framework of optimal control and estimation allows design and implementation of control 

loops to scale without cumbersome changes in methodology, as is evident in this study 

where the same model structure has been applied successfully in online estimation and 

control of activity in single- as well as multi-neuron systems.
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In more modern control approaches, a model of the underlying dynamics to be controlled is 

used for both design and implementation of the control law. Across different pathways and 

circuits, numerous model types have been used to predict neural activity at fast time scales 

([31, 46, 47]), some of which have been applied to ensembles of neurons ([28, 48–51]). 

For the purpose of control applications, we modeled optically-driven responses of neurons 

in the sensory thalamus using a state-space dynamical systems representation, where any 

higher order dynamics are captured in sets of coupled, first-order difference equations. In 

contrast to more widely used phenomenological models for neuronal responses to stimuli 

such as the linear receptive field ([52, 53]), the linear-nonlinear-Poisson (LNP) model ([42, 

54]), and the generalized linear model (GLM) ([46, 48]), state-space models describe what 

could be large-scale recordings as arising from some potentially small number of latent 

‘states’ that evolve dynamically in time as a function of themselves and covariates such as 

sensory or optical stimuli. We found that linear state-space (i.e., GLDS) models could be 

used in the context of the control objective of maintaining a steady firing rate in the face 

of ongoing activity changes during wakefulness in these early sensory neurons. This was 

not a given, as many applications of state-space models to neuronal spiking data have used 

nonlinear dynamical systems, or at least linear dynamical systems with Poisson observations 

([15, 18, 28, 30, 49, 55–58]). While the GLDS models used here clearly do not respect 

the statistics of the measured spiking data and while they can grossly mis-predict neuronal 

responses to optical stimulation (e.g., Figure 3(a)), they do capture the basic dynamics 

and the robustness of the parameter-adaptive Kalman filter in combination with feedback 

control allowed the use of this relatively simple modeling framework and unlocks a wealth 

of other linear design and analysis methods developed over years of study. Similarly, a 

recent study that used state-space feedback control in the context of hardware-simulated 

manipulation of electrocorticography (ECoG) made a practical concession to use a linear 

model that was more amenable to commonly-used feedback control techniques ([59]). In 

contrast, we previously used a linear-nonlinear-Poisson (LNP) spiking model in to design a 

classical proportional-integral (PI) controller ([7]). While that simple control strategy proved 

quite effective even for tracking patterns of rate modulation, the controller was designed 

numerically around a simulated spiking system, owing to the multiple nonlinearities that 

precluded the use of such design tools as LQR used in the present study. Simply put, there 

is a natural trade-off between the complexity of models and complexity of the control design 

and implementation itself, especially as the dimensionality of problems scale. That said, a 

nonlinear model will likely be needed in some control applications and it is possible the use 

of a PLDS model would have improved control performance even in this application but at 

the expense of complexity. In cases where a Poisson model is necessary and/or beneficial, 

there are previously-developed methods for estimating the underlying state of a PLDS 

(‘point process filter’, [56, 60]). One could leverage these nonlinear filtering techniques and 

design/implement feedback control in the log-linear state space as described here for linear 

systems.

Aside from the observed robustness to the linear approximation of nonlinear neuronal 

activity, we also found in the context of SISO control problems that the parameter-adaptive 

Kalman filtering and feedback control granted enough robustness to model-mismatch that 

the GLDS did not have to be fit during the tight time constraints of awake, head-fixed 
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recording sessions. Instead, data from previous experiments were used for the controller 

design and online estimation (Figure 1(d)). Certainly, a large part of this success comes 

down to the fact that the control objective was relatively long-timescale firing rate 

regulation. In the context of trajectory tracking, we previously showed that, while closed­

loop control grants some robustness to model mismatch, even things as simple as DC gain 

mis-estimation can lead to off-target activity when the target trajectory is time-varying ([7]). 

Indeed, in the present study we have observed a wide array of neuron sensitivity to light. It 

is also true that while the adaptive estimator was largely unbiased under SISO conditions, 

the parameter adaptation carried out here did not always eliminate bias in multi-output 

scenarios. Therefore, there are certainly scenarios like trajectory tracking and multi-output 

control in which the control objective would warrant better model fits, or at least adaptively 

re-estimating other parameters such as the input matrix (B) or output matrix (C) rather than 

attempting to capture all model mismatch with a linear disturbance as was implemented 

here. In general, this would call for nonlinear variants of the Kalman filter, such as the 

extended Kalman filter ([36, 60]).

In addition to the fact that the control method proved quite robust to model-mismatch in 

the sense of the statistics of measured data and the aforementioned long timescale biases 

in model predictions, we also found that we were able to effectively carry out the SISO 

control and estimation problems using a first order approximation of systems that appeared 

to be fourth or fifth order (Figure 2(b)). Since the control objective was to track a firing 

rate step command over relatively long timescales, this should be expected. After all, the 

dynamics of these systems tended to have died out after tens of milliseconds (Figure 

2(b)). In applications where the objective is to entrain precisely-timed sequences of spiking 

activity rather than an overall firing rate (e.g., [18, 55, 61, 62]), a higher-order model would 

be merited and more emphasis would need to be placed on stimulus design.

The fact that the present study only tackles the problem of tracking a constant firing rate 

target begs the question of how applicable the approach is to the problem of tracking desired 

trajectories of neuronal activity. The controller was designed by solving an infinite horizon 

optimization problem (specifically, LQR) and was not explicitly designed for tracking target 

patterns of activity. That said, the methods laid out in here would be directly applicable to 

tracking problems where the desired pattern of activity is slow compared to the dynamics 

of the system being controlled. As mentioned above, the average light-to-spiking impulse 

response for thalamic units tended to die out over tens of milliseconds, indicating that the 

methods used here for model-based control may not be completely applicable to control of 

patterns at that time scale or faster. In such cases, a finite horizon optimization of feedback 

controller gains and a nominal control input using a technique like iterative LQR ([63]) may 

prove beneficial or necessary.

To this point, all references to the robustness of this control framework have pertained to 

activity of the putative single neuron which was used to adjust stimulation in real-time. 

Across recordings, the feedback neuron’s activity was maintained at the target firing rate 

with low error on average and, importantly, with low trial-to-trial variability. However, 

we found that the local population of neurons also excited by the optical stimulation did 

not exhibit this same lowered variability. It is worth noting that it is likely the case that 

Bolus et al. Page 23

J Neural Eng. Author manuscript; available in PMC 2021 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pulsatile stimulation rather than the continuously-graded stimulation we used here would 

have had a less variable effect on the population. However, we showed that presenting 

5 ms pulses of light synchronizes the population and would thus likely strongly impact 

downstream targets in a way that is unsuitable for many applications. Therefore, to reap the 

benefits of closed-loop control in neural circuits, feedback of population activity rather than 

a putative single neuron will likely be of great importance moving forward. Importantly, 

most commercially available electrophysiological data acquisition systems do not currently 

perform spike-sorting across dense multielectrode arrays like those used here; instead spike­

sorting is carried out in a channel-by-channel fashion or is restricted to lower channel 

count tetrode configurations in general. Given the difficulty of online identification of 

individual neurons from raw electrophysiological recordings (i.e., spike-sorting) for dense 

multielectrode arrays, the thresholded multi-unit activity often utilized in brain-machine 

interface applications may prove an effective alternative measure of population activity 

([64]). Alternatively, it is conceivable in the case of chronic implants to sort and track single 

units across experiments ([65, 66]).

Aside from providing multi-output feedback to the controller, the addition of multiple 

light sources (e.g., [44]) would afford some degree of population control spatially. The 

current preparation is highly underactuated in that there is a single light source being 

used to manipulate local activity, and there will in practice always be heterogeneities in 

responsiveness to light in space, whether it be due to varying distance from a common 

light source or differences in expression of opsins, etc. In addition to multiple spatially­

distributed light sources, having the ability to simultaneously excite and inhibit neuronal 

activity using light of different wavelengths will also be key for robustness of optogenetic 

control moving forward. Note that in the present study, a single excitatory opsin (ChR2) was 

expressed in excitatory cells, meaning that the control is limited to pushing activity of those 

neurons toward higher firing rates. This effectively limits the control problem to one that 

maintains firing at an above-average desired level: here, 20 spikes/s which naturally occurs 

in this pathway. Conversely, if inhibitory opsins were expressed (or excitatory opsins were 

expressed in inhibitory interneurons), the control objective would be limited to maintaining 

or pulling down spontaneous levels of activity. Therefore, the ability to effectively push as 

well as pull back on neuronal activity would greatly expand the utility of this approach. 

Importantly, while not tested here, the state-space control and estimation methods developed 

in the present study should generalize to the control of more complex neural circuits in the 

future. However, it is likely the differing kinetics of excitatory and inhibitory opsins would 

necessitate higher order models.

Besides the utility in treatment of neurological disorders and diseases ([19, 20, 67, 68]), 

or in augmenting normal brain function, the precise, closed-loop control of neural circuits 

has the potential to significantly enhance our understanding of underlying mechanisms of 

basic brain function. After all, feedback control enabled the seminal work of Hodgkin and 

Huxley in uncovering the nature of the ionic currents that underlie the generation of a 

neuron’s action potential, for which they won the Nobel Prize in 1963 ([69]). The key to 

this experimental work was the use of a feedback controller to ‘clamp’ the trans-membrane 

voltage by injecting current to counter-act naturally occurring changes in ionic currents. 

This functional decoupling of constituent ionic and capacitive currents led to a quantitative 
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description of the nonlinear dynamics of the action potential. Single-cell voltage clamp and 

dynamic clamp experiments ([70]) continue to be a powerful tool for scientific discovery, 

but continuously-graded feedback control of this sort has not been translated to the circuit­

level, where the dynamics are complex and can adaptively change from moment to moment. 

Fundamentally different from lesioning or reversibly silencing brain regions, closed-loop 

optogenetic control has the opportunity to aid investigation of the mechanisms governing 

circuit level dynamics in a similar way voltage clamp did for the single neuron.

5. Conclusions

In this study, a state-space control and estimation framework has been developed and 

demonstrated to work well in the context of wakefulness, where there is spontaneous 

fluctuation in neuronal activity. Compared to Bolus et al ([7]), this updated approach is more 

naturally suited to the MIMO control problems that are important in studying complicated 

neural circuits. Notably, we were able to use a simple, linear approximation to this nonlinear 

system at least for long-timescale control objectives, such as maintaining an overall firing 

rate. The relative simplicity of these approaches achieved at the expense of modeling 

fidelity represents one of the chief strengths of the methodology, as linear control is well 

understood and is widely used. Moreover, while tested in the context of controlling spiking 

activity which is often statistically modeled as a point-process, the methods laid out here 

are immediately applicable to the control of continuous-valued neuronal signals of interest 

such as local field potential and voltage/calcium imaging. This demonstration of state-space 

models being used for single- and multi-output applications of optogenetic control opens the 

door to other established control strategies that use this modeling framework, such as model 

predictive control ([45]). As a whole, this work lays the foundation for future advances in 

manipulation and study of neuronal circuits using the integration of neuronal recordings and 

optogenetic stimulation.

Acknowledgments

This work was supported by the NIH/NINDS Collaborative Research in Computational Neuroscience (CRCNS) / 
BRAIN Grant R01NS115327 (GBS and CJR) and NIH/NINDS BRAIN Grant R01NS104928 (GBS). MFB was 
supported by an NSF Graduate Research Fellowship Grant DGE1650044 and the Norman and Rosalyn Wells 
Fellowship. AAW was supported by the NIH/NIDA GT/Emory Computational Neuroscience Training Grant 
T90DA032466. CJR was additionally supported by NSF Grant CCF-1409422, and James S. McDonnell Foundation 
Grant 220020399.

References

[1]. Jun James J., Steinmetz Nicholas A., Siegle Joshua H., Denman Daniel J., Bauza Marius, Barbarits 
Brian, Lee Albert K., Anastassiou Costas A., Andrei Alexandru, Aydin Çağatay, Barbic Mladen, 
Blanche Timothy J., Bonin Vincent, Couto João, Dutta Barundeb, Gratiy Sergey L., Gutnisky 
Diego A., Michael Häusser, Bill Karsh, Ledochowitsch Peter, Carolina Mora Lopez, Catalin 
Mitelut, Musa Silke, Okun Michael, Pachitariu Marius, Putzeys Jan, Rich P. Dylan, Rossant 
Cyrille, Sun Wei Lung, Svoboda Karel, Carandini Matteo, Harris Kenneth D., Koch Christof, 
O’Keefe John, and Harris Timothy D.. Fully integrated silicon probes for high-density recording 
of neural activity. Nature, 551(7679):232–236, 2017. [PubMed: 29120427] 

[2]. Yang Weijian and Yuste Rafael. In vivo imaging of neural activity. Nature Methods, 14(4):349–
359, 2017. [PubMed: 28362436] 

Bolus et al. Page 25

J Neural Eng. Author manuscript; available in PMC 2021 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[3]. Fenno Lief, Yizhar Ofer, and Deisseroth Karl. The Development and Application of Optogenetics. 
Annual Review of Neuroscience, 34(1):389–412, 2011.

[4]. Stanley Garrett B. Reading and writing the neural code. Nature Neuroscience, 16(3):259–263, 
2013. [PubMed: 23434978] 

[5]. Newman Jonathan P, Fong Ming-fai, Millard Daniel C, Whitmire Clarissa J, Stanley Garrett B, 
and Potter Steve M. Optogenetic feedback control of neural activity. eLife, 4(December):e07192, 
2015. [PubMed: 26140329] 

[6]. Fong Ming Fai, Newman Jonathan P., Potter Steve M., and Wenner Peter. Upward synaptic scaling 
is dependent on neurotransmission rather than spiking. Nature Communications, 6:1–11, 2015.

[7]. Bolus MF, Willats AA, Whitmire CJ, Rozell CJ, and Stanley GB. Design strategies for dynamic 
closed-loop optogenetic neurocontrol in vivo. Journal of Neural Engineering, 15(2), 2018.

[8]. O’Connor Daniel H, Hires S Andrew, Guo Zengcai V, Li Nuo, Yu Jianing, Sun Qian-Quan, Huber 
Daniel, and Svoboda Karel. Neural coding during active somatosensation revealed using illusory 
touch. Nature Neuroscience, 16(7):958–65, 72013. [PubMed: 23727820] 

[9]. Paz Jeanne T, Davidson Thomas J, Frechette Eric S, Delord Bruno, Parada Isabel, Peng Kathy, 
Deisseroth Karl, and Huguenard John R. Closed-loop optogenetic control of thalamus as a 
tool for interrupting seizures after cortical injury. Nature Neuroscience, 16(1):64–70, 12013. 
[PubMed: 23143518] 

[10]. Krook-Magnuson Esther, Armstrong Caren, Oijala Mikko, and Soltesz Ivan. On-demand 
optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nature Communications, 
4:1376, 2013.

[11]. Latchoumane Charles Francois V., Ngo Hong Viet V., Born Jan, and Shin Hee Sup. Thalamic 
Spindles Promote Memory Formation during Sleep through Triple Phase-Locking of Cortical, 
Thalamic, and Hippocampal Rhythms. Neuron, 95(2):424–435.e6, 2017. [PubMed: 28689981] 

[12]. Srinivasan Shriya S., Maimon Benjamin E., Diaz Maurizio, Song Hyungeun, and Herr Hugh M.. 
Closed-loop functional optogenetic stimulation. Nature Communications, 9(1):1–10, 2018.

[13]. Zhang Zihui, Russell Lloyd E., Packer Adam M., Gauld Oliver M., and Häusser Michael. 
Closed-loop all-optical interrogation of neural circuits in vivo. Nature Methods, 15(12):1037–
1040, 2018. [PubMed: 30420686] 

[14]. Grosenick Logan, Marshel James H, and Deisseroth Karl. Closed-Loop and Activity-Guided 
Optogenetic Control. Neuron, 86(1):106–139, 2015. [PubMed: 25856490] 

[15]. Ullah Ghanim and Schiff Steven J.. Tracking and control of neuronal Hodgkin-Huxley dynamics. 
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 79(4):1–4, 2009.

[16]. Schiff Steven J.. Towards model-based control of parkinson’s disease. Philosophical Transactions 
of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1918):2269–
2308, 2010.

[17]. Liu Jianbo, Khalil Hassan K., and Oweiss Karim G.. Model-based analysis and control of a 
network of basal ganglia spiking neurons in the normal and Parkinsonian states. Journal of 
Neural Engineering, 8(4), 2011.

[18]. Iolov Alexandre, Ditlevsen Susanne, and Longtin André. Stochastic optimal control of single 
neuron spike trains. Journal of Neural Engineering, 11(4), 2014.

[19]. Ehrens Daniel, Sritharan Duluxan, and Sarma Sridevi V.. Closed-loop control of a fragile 
network: Application to seizure-like dynamics of an epilepsy model. Frontiers in Neuroscience, 
9(MAR):1–9, 2015. [PubMed: 25653585] 

[20]. Hell Franz, Palleis Carla, Mehrkens Jan H., Koeglsperger Thomas, and Bötzel Kai. Deep brain 
stimulation programming 2.0: Future perspectives for target identification and adaptive closed 
loop stimulation. Frontiers in Neurology, 10:1–11, 2019. [PubMed: 30761061] 

[21]. Millard DC, Whitmire CJ, Gollnick CA, Rozell CJ, and Stanley GB. Electrical and Optical 
Activation of Mesoscale Neural Circuits with Implications for Coding. Journal of Neuroscience, 
35(47):15702–15715, 2015. [PubMed: 26609162] 

[22]. Gerfen Charles R., Paletzki Ronald, and Heintz Nathaniel. GENSAT BAC cre-recombinase driver 
lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron, 
80(6):1368–1383, 2013. [PubMed: 24360541] 

Bolus et al. Page 26

J Neural Eng. Author manuscript; available in PMC 2021 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[23]. Sederberg Audrey J., Pala Aurélie, Zheng He J.V., He Biyu J., and Stanley Garrett B.. State­
aware detection of sensory stimuli in the cortex of the awake mouse. PLoS Computational 
Biology, 15(5):e1006716, 2019. [PubMed: 31150385] 

[24]. Patel Yogi A., George Ansel, Dorval Alan D., White John A., Christini David J., and Butera 
Robert J.. Hard real-time closed-loop electrophysiology with the Real-Time eXperiment Interface 
(RTXI). PLoS Computational Biology, 13(5):1–22, 2017.

[25]. Sanderson Conrad and Curtin Ryan. Armadillo: a template-based C++ library for linear algebra. 
The Journal of Open Source Software, 1(2):26, 2016.

[26]. Pachitariu Marius, Steinmetz Nick, Kadir Shabnam, Carandini Matteo, and Harris Kenneth. Fast 
and accurate spike sorting of high-channel count probes with KiloSort. In Advances in Neural 
Information Processing Systems30, pages 4455–4463, 2016.

[27]. Sahani Maneesh and Linden Jennifer F.. How linear are auditory cortical responses? In Advances 
in Neural Information Processing Systems 15, pages 109–116, 2003.

[28]. Macke Jakob H., Lars Büsing, Cunningham John P., Yu Byron M., Shenoy Krishna V., and 
Sahani Maneesh. Empirical models of spiking in neural populations. In Advances in Neural 
Information Processing Systems24, pages 1350–1358, 2011.

[29]. Van Overschee Peter and Bart De Moor. Subspace Identification for Linear Systems. Kluwer 
Academic Publishers, Boston/London/Dordrecht, 1996.

[30]. Smith Anne C and Brown Emery N. Estimating a State-Space Model from Point Process 
Observations. Neural Computation, 15:965–991, 2003. [PubMed: 12803953] 

[31]. Schwartz Odelia, Pillow Jonathan W, Rust Nicole C, and Simoncelli Eero P. Spike-triggered 
neural characterization. Journal of Vision, 6(4):484–507, 12006. [PubMed: 16889482] 

[32]. Kalman RE. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic 
Engineering, 82(1):35–45, 31960.

[33]. Ghahramani Zoubin and Hinton Geoffrey E.. Parameter Estimation for Linear Dynamical 
Systems. Technical Report CRG-TR-96–2, 1996.

[34]. Shafai B, Beale S, Niemann HH, and Stoustrup J. Proportional-Integral Observers for Discrete 
Time Systems. In Proceedings of the European Control Conference, pages 520–525, 1995.

[35]. Linder Stephen Paul and Shafai Bahram. Rejecting disturbances to flexible structures using PI 
Kalman filters. In Proceedings of the 1997 IEEE Conference on Control Applications, 1997.

[36]. Bavdekar Vinay A., Gopaluni R. Bhushan, and Shah Sirish L.. Evaluation of adaptive extended 
Kalman filter algorithms for state estimation in presence of model-plant mismatch, volume 10. 
IFAC, 2013.

[37]. Stengel Robert F. Optimal Control and Estimation. Courier Corporation, 1994.

[38]. Boyd Stephen and Vandenberghe Lieven. Introduction to Applied Linear Algebra. Cambridge 
University Press, Cambridge, 2018.

[39]. Åström Karl J. and Murray Richard M.. Feedback systems: An introduction for scientists and 
engineers. Princeton University Press, Princeton, 2008.

[40]. Nawrot Martin P., Boucsein Clemens, Molina Victor Rodriguez, Riehle Alexa, Aertsen Ad, 
and Rotter Stefan. Measurement of variability dynamics in cortical spike trains. Journal of 
Neuroscience Methods, 169(2):374–390, 2008. [PubMed: 18155774] 

[41]. Wang Qi, Webber Roxanna M, and Stanley Garrett B. Thalamic synchrony and the adaptive 
gating of information flow to cortex. Nature Neuroscience, 13(12):1534–1541, 122010. 
[PubMed: 21102447] 

[42]. Chichilnisky EJ. A simple white noise analysis of neuronal light responses. Network: 
Computation in Neural Systems, 12:199–213, 2001.

[43]. Stujenske Joseph M., Spellman Timothy, and Gordon Joshua A.. Modeling the Spatiotemporal 
Dynamics of Light and Heat Propagation for InVivo Optogenetics. Cell Reports, 12(3):525–534, 
2015. [PubMed: 26166563] 

[44]. Wu Fan, Stark Eran, Ku Pei Cheng, Wise Kensall D., Buzsáki György, and Yoon Euisik. 
Monolithically Integrated μLEDs on Silicon Neural Probes for High-Resolution Optogenetic 
Studies in Behaving Animals. Neuron, 88(6):1136–1148, 2015. [PubMed: 26627311] 

Bolus et al. Page 27

J Neural Eng. Author manuscript; available in PMC 2021 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[45]. Rawlings James B.. Tutorial Overview of Model Predictive Control. IEEE Control Systems, 
2000.

[46]. Paninski Liam, Pillow Jonathan, and Lewi Jeremy. Statistical models for neural encoding, 
decoding, and optimal stimulus design. Progress in Brain Research, 165:493–507, 2007. 
[PubMed: 17925266] 

[47]. McFarland James M., Cui Yuwei, and Butts Daniel A.. Inferring Nonlinear Neuronal 
Computation Based on Physiologically Plausible Inputs. PLoS Computational Biology, 9(7), 
2013.

[48]. Pillow Jonathan W, Jonathon Shlens, Paninski Liam, Sher Alexander, Litke Alan M, Chichilnisky 
EJ, and Simoncelli Eero P. Spatio-temporal correlations and visual signalling in a complete 
neuronal population. Nature, 454(7207):995–999, 2008. [PubMed: 18650810] 

[49]. Paninski Liam, Ahmadian Yashar, Daniel Gil Ferreira, Shinsuke Koyama, Kamiar Rahnama Rad, 
Michael Vidne, Vogelstein Joshua T., and Wu Wei. A new look at state-space models for neural 
data. Journal of Computational Neuroscience, 29(1–2):107–126, 2009. [PubMed: 19649698] 

[50]. Archer Evan, Urs Köster, Jonathan Pillow, and Macke Jakob H.. Low-dimensional models of 
neural population activity in sensory cortical circuits. Advances in Neural Information Processing 
Systems, 1(January):343–351, 2014.

[51]. Zoltowski David M. and Pillow Jonathan W.. Scaling the Poisson GLM to massive neural 
datasets through polynomial approximations. In Advances in Neural Information Processing 
Systems 32, pages 3517–3527, 2018.

[52]. Britten Kenneth H. and Heuer Hilary W.. Spatial summation in the receptive fields of MT 
neurons. Journal of Neuroscience, 19(12):5074–5084, 1999. [PubMed: 10366640] 

[53]. Park Mijung and Pillow Jonathan W.. Receptive field inference with localized priors. PLoS 
Computational Biology, 7(10), 2011.

[54]. Estebanez Luc, Boustani Sami El, Destexhe Alain, and Shulz Daniel E. Correlated input reveals 
coexisting coding schemes in a sensory cortex. Nature Neuroscience, 15(12):1691–1699, 2012. 
[PubMed: 23160042] 

[55]. Ching ShiNung and Ritt Jason. Control strategies for underactuated neural ensembles driven by 
optogenetic stimulation. Frontiers in Neural Circuits, 7:54, 2013. [PubMed: 23576956] 

[56]. Shanechi Maryam M., Orsborn Amy L., and Carmena Jose M.. Robust Brain-Machine Interface 
Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering. PLoS 
Computational Biology, 12(4):1–29, 2016.

[57]. Oweiss Karim. Statistical Signal Processing for Neuroscience and Neurotechnology. Elsevier, 
Burlington, 2010.

[58]. Chen Zhe and Sarma Sridevi V.. Dynamic Neuroscience. Springer International Publishing AG, 
Cham, 2018.

[59]. Yang Yuxiao, Connolly Allison T., and Shanechi Maryam M.. A control-theoretic system 
identification framework and a real-time closed-loop clinical simulation testbed for electrical 
brain stimulation. Journal of Neural Engineering, 15(6), 2018.

[60]. Eden Uri T, Frank Loren M, Barbieri Riccardo, Solo Victor, and Brown Emery N.. Dynamic 
analysis of neural encoding by point process adaptive filtering. Neural Computation, 16(5):971–
98, 52004. [PubMed: 15070506] 

[61]. Ahmadian Y, Packer AM, Yuste R, and Paninski L. Designing optimal stimuli to control neuronal 
spike timing. Journal of Neurophysiology, 106(2):1038–1053, 2011. [PubMed: 21511704] 

[62]. Nandi Anirban, Kafashan Mohammadmehdi, and Ching Shinung. Controlling Point Process 
Generalized Linear Models of Neural Spiking. In 2016 American Control Conference, pages 
5779–5784, 2016.

[63]. Todorov E and Weiwei Li. A generalized iterative LQG method for locally-optimal feedback 
control of constrained nonlinear stochastic systems. In Proceedings of the 2005, American 
Control Conference, 2005, pages 300–306, 2005.

[64]. Trautmann Eric M., Stavisky Sergey D., Lahiri Subhaneil, Ames Katherine C., Kaufman 
Matthew T., O’Shea Daniel J., Vyas Saurabh, Sun Xulu, Ryu Stephen I., Ganguli S, and Shenoy 
Krishna V.. Accurate Estimation of Neural Population Dynamics without Spike Sorting. Neuron, 
103(2):292–308.e4, 2019. [PubMed: 31171448] 

Bolus et al. Page 28

J Neural Eng. Author manuscript; available in PMC 2021 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[65]. Eleryan Ahmed, Vaidya Mukta, Southerland Joshua, Badreldin Islam S., Balasubramanian 
Karthikeyan, Fagg Andrew H., Hatsopoulos Nicholas, and Oweiss Karim. Tracking single units 
in chronic, large scale, neural recordings for brain machine interface applications. Frontiers in 
Neuroengineering, 7(JUL):1–13, 2014. [PubMed: 24478695] 

[66]. Okun Michael, Lak Armin, Carandini Matteo, and Harris Kenneth D.. Long term recordings with 
immobile silicon probes in the mouse cortex. PLoS ONE, 11(3):1–17, 2016.

[67]. Santaniello Sabato, Fiengo Giovanni, Glielmo Luigi, and Grill Warren M. Closed-loop control of 
deep brain stimulation: a simulation study. IEEE Trans Neural Syst Rehabil Eng, 19(1):15–24, 
2011. [PubMed: 20889437] 

[68]. Kozák Gábor and Berényi Antal. Sustained efficacy of closed loop electrical stimulation for 
long-term treatment of absence epilepsy in rats. Scientific Reports, 7(1):6300, 2017. [PubMed: 
28740261] 

[69]. Hodgkin AL and Huxley AF. A Quantitative Description of Membrane Current and its 
Application to Conduction and Excitation in Nerves. J. Physiol, 117:500–544, 1952. [PubMed: 
12991237] 

[70]. Prinz Astrid A., Abbott LF, and Marder Eve. The dynamic clamp comes of age. Trends in 
Neurosciences, 27(4):218–224, 2004. [PubMed: 15046881] 

Bolus et al. Page 29

J Neural Eng. Author manuscript; available in PMC 2021 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: Closed-loop optogenetic control using state-space linear dynamical systems models.
(a) Experimental Setup. (b) Control system block flow diagram. Spiking activity is fed back 

to a model-based estimator (‘EST’), which provides online estimates of the underlying state 

of the system (x) and the output (y), which is firing rate in the current application. The 

controller (‘CTRL’) uses a model to generate the system setpoint y * ⊤ x * ⊤ u * ⊤ ⊤ that 

corresponds to user-specified reference firing rate (r). An updated control signal is generated 

using feedback controller gains and the error between this setpoint and the online estimates 

of the system state/output. The updated control signal is sent to an LED driver to modulate 

light intensity. (c) Structure of the Gaussian LDS Model. The GLDS used throughout the 

control loop consists of a linear dynamical system (LDS) describing the evolution of the 

state (x) and a linear remapping of x to the output firing rate and eventually measured 

spiking (z). This model is used for single-neuron and multi-neuron estimation/control. (d) 

Workflow for closed-loop experiments. Neuronal responses to optical noise recorded in 

previous experiments (left) were used to fit state-space models and design the control system 

(middle). The resulting model-based control system was used in subsequent CL control 

experiments (right).
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Figure 2: State-space models of SISO optogenetic responses.
(a) SISO LDS model structure: Poisson (top) or Gaussian (bottom) output functions being 

considered. (b) Population impulse response. This impulse response was fit using pooled 

data from 37 neurons that were excited by optical noise. An FIR model fit to population data 

(black) is plotted alongside the impulse response from the 5thorder GLDS model fit to the 

same data (red). (c) Example Data and Model Fits. Top, the PSTH (black) was smoothed 

with a 1 ms standard deviation Gaussian window for visualization. The fit types include 

5th-order PLDS (orange), 5th-order GLDS (red). Middle, the corresponding trial-by-trial 

spike raster. Bottom, repeated instantiation of uniform optical noise. (d) Proportion variance 

in PSTH explained (pVE) and signal variance explained (pSVE) by model response to noise. 

All models were trained on data from first half of each trial, while model performance 

metrics (pVE, pSVE) were calculated from the second half of each trial. Error bars 
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represent bootstrapped 95% confidence intervals about the population mean (n=48 neurons, 

17 recordings, 9 animals).
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Figure 3: Kalman filtering for online estimation in SISO applications.
(a) Standard Kalman filter. Prediction error (e) is used to correct the estimate of state at each 

time step. (b) Example open-loop (OL) prediction of neuronal response (red) to step input of 

light (blue) using 5thorder GLDS fit to noise-driven data, compared to PSTH smoothed with 

25 ms Gaussian window (black) and the trial-averaged response estimated using the standard 

implementation of the Kalman filter (5th-order GLDS) (purple). (c) Example single-trial 

Kalman filter estimate (purple) along with corresponding spike raster (grey). (d) Parameter­

adaptive Kalman filter. In addition to estimating the state of the system, this approach jointly 

re-estimates a state disturbance (μ) at each time step. (e) Same as (b) but trial-averaged 

estimate of firing rate using the parameter-adaptive Kalman filter. (f) Same as (c) except 

single-trial estimate using parameter-adaptive Kalman filter. (g) Trial-averaged disturbance 

on the first state estimated using parameter-adaptive Kalman filter. (h) Population average 

squared-bias in estimation calculated between the single-trial spiking responses and the 

OL prediction of a 5th-order GLDS, the standard Kalman filter using the 5th-order GLDS, 

and the parameter-adaptive Kalman filter (aKF) using a 1st- or 5th-order GLDS. Black and 

grey data points correspond to error associated with using individually-fit models vs. a 

single population average fit model, respectively. Error bars represent bootstrapped 95% 

confidence intervals about the mean (n=48 neurons, 17 recordings, 9 animals).
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Figure 4: Experimental SISO control and estimation.
(a) SISO control block flow diagram. Shown inside the controller and estimator blocks are 

the notions of state being used in each operation. (b) Example experimental SISO control. 

(top) Fed-back online estimate in purple (single trial in light purple, trial-averaged in bold), 

along with the corresponding trial-average offline estimate (25 ms s.d. Gaussian-smoothed 

PSTH); (middle) across-trial spike count variability (Fano factor in 500 ms sliding window) 

and corresponding example spike rasters from 10 randomly selected trials; (bottom) 

controller input. (c) Population controller performance. In spontaneous vs. closed-loop (CL) 

control conditions, mean squared error (left) and squared bias (middle) were calculated 

between the reference (20 spikes/s) and single-trial feedback spiking data smoothed with a 

25 ms s.d. Gaussian window; average Fano factor was also calculated (right). For each trial, 

four seconds of spontaneous data were compared to four seconds of CL control data. The 

first second was ignored in order to obtain a measure of steady-state performance. Error 

bars represent bootstrapped 95% confidence intervals about the mean. Green bands represent 

95% confidence band for the metrics calculated from simulated Poisson firing at the target 

rate.
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Figure 5: Effects of SISO control on local population.
(a) SISO control block flow diagram with multi-output recordings. (b) Example 

experimental SISO control with simultaneous multi-output recordings. (top) Fed-back online 

firing rate estimate in purple (single trial in light purple, trial-averaged in bold) relative to 

reference (green); (middle) trial-averaged firing rate estimates for simultaneously recorded 

non-FB neurons (25 ms s.d. Gaussian-smoothed PSTH); (bottom) controller input. To the 

right are the waveforms of each neuron in this example (average waveform in black, ±1 s.d. 

in grey). (c) Spontaneous vs. CL population average firing rate (left) and Fano factor (right) 

for the feedback neuron (black) as compared to the other non-feedback-neurons recorded 

simultaneously (grey). Error bars represent bootstrapped 95% confidence intervals about 

the mean. (d) Population spike cross-correlogram of simultaneously recorded pairs during 

optical stimulation. Bold black represents population mean in each 1 ms bin for CL, while 

fills represent 2 standard errors about the mean. For comparison, red represents population 

average spike cross-correlogram for response of the same cells to 5 ms square pulses of 

light presented in open-loop. (e) Population synchrony for spontaneous vs. closed-loop vs. 

Bolus et al. Page 35

J Neural Eng. Author manuscript; available in PMC 2021 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pulsatile conditions. Synchrony was taken as the number of spikes occurring in the ±7.5 ms 

bins, relative to the total number of spikes in the ±50 ms window. Error bars represent 95% 

confidence intervals about the mean.
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Figure 6: State-space models of SIMO optogenetic responses.
(a) Multi-output GLDS model diagram. A common state is mapped to multiple outputs. 

(b) Example impulse responses from a single multi-output GLDS model (red) vs. multiple 

single-output FIR models (black). (c) (top) Example multi-output GLDS model response to 

optical noise (red) vs. PSTH (black). (bottom) Optical noise stimulus used to fit the model. 

(d) Population proportion variance in PSTH explained (pVE) and signal variance explained 

(pSVE) by model response to noise. All models were trained on data from first half of 

each trial, while model performance metrics (pVE, pSVE) were calculated from the second 

half of each trial. Error bars represent bootstrapped 95% confidence intervals about the 

population mean. (e) Range of static input-output gain across and within recordings.
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Figure 7: Kalman filtering for online estimation in SIMO applications.
(a) Online estimation for example SIMO system using parameter-adaptive Kalman filter 

with a 1st-order GLDS. Shown for each of three simultaneously recorded single neurons: 

PSTH (black), trial-averaged estimate (bold purple), and example single trial (light purple). 

(b) Online estimation of firing rate using parameter-adaptive 5th-order GLDS (same data as 

in (a)). (c) Population summary squared-bias: Open-loop (OL) prediction of 5thorder GLDS, 

standard Kalman filter (KF), and parameter-adaptive KF (aKF) for 1st- and 5th-order models. 

Fills/error bars represent 95% confidence intervals about the mean.
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Figure 8: Simulated SIMO control and estimation.
(a) Simulated control of a SIMO PLDS model system. A 2-output PLDS was simulated, 

whose second channel of output was a gain-modulated version of the first channel. (b) 

Example SISO Control. Only data from neuron 1 (top) was fed back during the simulated 

control. PLDS neuron 2 was 1.5 times more sensitive than neuron 1 before exponentiation in 

this example. Actual firing rate of each neuron (PSTH smoothed with 25 ms s.d. Gaussian) 

is shown in black as compared to reference (green). (c) Example of multi-output control. 

Both neurons’ data are fed back to controller for online estimation and control. Signals are 

the same as in (b). (d) Simulated mean-squared tracking error for SISO control of neuron 

1 (red) vs. SIMO control (black) as a function of the relative log-linear gain of neuron 2. 

Circles denote mean-squared error for examples in (b), (c).
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