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ABSTRACT
Background  Durable efficacy of immune checkpoint 
blockade (ICB) occurred in a small number of patients 
with metastatic gastric cancer (mGC) and the determinant 
biomarker of response to ICB remains unclear.
Methods  We developed an open-source TMEscore R 
package, to quantify the tumor microenvironment (TME) 
to aid in addressing this dilemma. Two advanced gastric 
cancer cohorts (RNAseq, N=45 and NanoString, N=48) 
and other advanced cancer (N=534) treated with ICB 
were leveraged to investigate the predictive value of 
TMEscore. Simultaneously, multi-omics data from The 
Cancer Genome Atlas of Stomach Adenocarcinoma (TCGA-
STAD) and Asian Cancer Research Group (ACRG) were 
interrogated for underlying mechanisms.
Results  The predictive capacity of TMEscore was 
corroborated in patient with mGC cohorts treated with 
pembrolizumab in a prospective phase 2 clinical trial 
(NCT02589496, N=45, area under the curve (AUC)=0.891). 
Notably, TMEscore, which has a larger AUC than 
programmed death-ligand 1 combined positive score, 
tumor mutation burden, microsatellite instability, and 
Epstein-Barr virus, was also validated in the multicenter 
advanced gastric cancer cohort using NanoString 
technology (N=48, AUC=0.877). Exploration of the intrinsic 
mechanisms of TMEscore with TCGA and ACRG multi-
omics data identified TME pertinent mechanisms including 
mutations, metabolism pathways, and epigenetic features.
Conclusions  Current study highlighted the promising 
predictive value of TMEscore for patients with mGC. 
Exploration of TME in multi-omics gastric cancer data may 
provide the impetus for precision immunotherapy.

BACKGROUND
Clinical trials of immune checkpoint 
blockade (ICB), antibodies, such as anti-
programmed cell death protein 1 (PD-1) and 
anti-programmed death-ligand 1 (PD-L1), 
showed manageable toxicity and antitumor 
activity in patients with advanced gastric 
cancer (GC) in the ATTRACTION-2 and 
KEYNOTE-059 trials.1 2 However, different 

studies with ICB treatment revealed a highly 
variable objective response rate, ranging from 
10% to 26% in patients with GC.1 3 4 Hence, 
the precise biomarkers to discriminate poten-
tial responders to immune therapies remains 
an urgent priority.

The biomarkers predictive of ICB response 
are under investigation. Currently, PD-L1 
combined positive score (CPS), microsatellite 
instability-high (MSI-H), and tumor muta-
tion burden (TMB) are widely recognized 
as promising biomarkers suggest greater 
efficacy of ICB despite some limitations.5 6 
Immunohistochemistry (IHC)-based PD-L1 
CPS, is most adopted but controversial for the 
PD-L1 expression heterogeneity, unstandard-
ized detective process, and various positive 
criteria.7 Besides, ATTRACTION-2 suggested 
that the survival benefit with nivolumab in GC 
was independent of PD-L1 positivity (<1% vs 
≥1%), indicating that PD-L1 positivity might 
omit part of responders.1 Patients with high 
TMB have a higher chance of mobilizing host 
immune reaction, thus responding to ICB, 
but facing several measurement hurdles.8–10 
Likewise, MSI-H leads to the accumulation of 
somatic mutations and is rarely detected in 
patients with GC.11 12 The common ground of 
these biomarkers is the focus on the inherent 
characteristics of tumor cells and the neglec-
tion of the interactions with the tumor micro-
environment (TME) components,13 thus 
partially interpreting unsatisfactory results 
in GC clinical trials exploring predictive 
biomarkers towards ICB.

The TME comprizing various immune 
cells, stromal cells, and extracellular compo-
nents, profoundly affects tumorigenesis, 
progression, and therapeutic resistance.14–17 
Increasing evidence indicated the implication 
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of TME in the antitumor process, which can facilitate ICB 
response prediction.15 18 Researches reveal that a fraction 
of cancer-associated fibroblasts (CAFs), myeloid-derived 
suppressor cells, and macrophages can hijack ICB immu-
notherapy.6 17 19 Additionally, the TME stromal signals of 
the epithelial–mesenchymal transition (EMT)-related 
gene signature and transforming growth factor-beta 
(TGF-β)6 20 restrain antitumor immunity and response to 
ICB. However, ways to integrate these parameters lack full 
exploration, hindering optimizing selection strategies 
for potential ICB responders. Obstacles include an inac-
curate combination of these parameters and uncertain 
interactions of these signatures.

Investigating the multi-omics data of 1524 patients with 
GC, we previously established a methodology termed 
TMEscore15 to evaluate the immune cell infiltration 
pattern. TMEscore is promising in determining the 
responsiveness to ICB in melanoma and metastatic urothe-
lial cancer. For improvement, we optimized the TMEs-
core evaluation and verified its clinical utility in advanced 
gastric cancer using NanoString technology.18 21 22 We 
incorporated our TME-evaluation methodology into an 
open-source R package, TMEscore, to predict tumor 
immunogenicity and ICB sensitiveness from bulk tran-
scriptomic data. To understand the TMEscore-related 
tumor intrinsic characteristics and antitumor immunity, 
we comprehensively analyzed the genomic characteristics, 
molecular subtypes, metabolic, and methylation features. 
The genomic and molecular biomarkers of response and 
resistance to ICB we identified demonstrates the complex 
host-tumor interplay in treatment response.

METHODS
Human gastric cancer specimens and NanoString gene 
expression analysis
Formalin-fixed paraffin-embedded or fresh-frozen tumor 
tissue from multiple clinical centers was collected retro-
spectively at baseline before receiving checkpoint immu-
notherapy. Tumor responses were evaluated according 
to RECIST V.1.1 criteria. Tumor specimens derived from 
patients with mGC (up to 90 days from treatment start) 
were conducted as previously described by Ayers et al.21 Of 
70 specimens from five clinical centers (Nanfang Hospital 
of Southern Medical University, Sun Yat-sen Univer-
sity Cancer Center, Guangdong Provincial Hospital of 
Chinese Medicine, The Sixth Affiliated Hospital of Sun 
Yat-sen University and The First Affiliated Hospital of 
Sun Yat-sen University), 48 specimens were of sufficiently 
high quality for RNA evaluation. A minimum of approx-
imately 80 ng of total RNA was used to measure the 
expression of 51 TMEscore genes, comprizing 25 TME 
signature A genes, 19 TME signature B genes and some 
checkpoint-related genes (eg, PD-L1, LAG3, PDCD1LG2, 
CTLA4, TIGIT, TIM3 and PDCD1), and 10 housekeeping 
genes (ACTB, ABCF1, B2M, G6PD, GAPDH, GUSB, PGK1, 
RPLPO, TFRC and TUBB) using the nCounter platform 

(NanoString Technologies; Seattle, Washington, USA).22 
Data was normalized using the housekeeping genes.

Gastric cancer specimens derived from clinical trial
Prospective, open-label, phase 2 trial (NCT02589496) 
of advanced gastric cancer was designed as a single-arm, 
phase 2 study at Samsung Medical Center. Immune check-
point inhibitor (pembrolizumab) 200 mg was adminis-
tered as 30 min intravenous infusion every 3 weeks until 
documented disease progression, unacceptable toxicity, 
or up to 24 months. Tumor responses were evaluated 
every two cycles according to RECIST V.1.1 criteria. Toxic-
ities were graded based on the National Cancer Institute 
Common Terminology Criteria for Adverse Events V.4.0. 
Tumor sample collection, eligibility criteria, PD-L1 IHC, 
MSI status determination, Epstein-Barr virus (EBV) in 
situ hybridization, tissue genomic analysis, and RNA 
sequencing pipeline of this cohort were detailed in our 
previous research.5

Other patient cohorts used in this study
Patient cohorts used in this study are summarized in online 
supplemental table S1. Seven genomic and transcrip-
tomic data sets from patients with metastatic urothelial 
cancer treated with an anti-PD-L1 agent (NCT02951767),6 
patients with metastatic melanoma and non-small-cell 
lung cancer treated with MAGE-3 agent-based immuno-
therapy (NCT00706238),23 patients with advanced mela-
noma treated with PD-1 blocker,24 patients with advanced 
melanoma treated with various types of immunotherapy 
from The Cancer Genome Atlas of Skin Cutaneous 
Melanoma (TCGA-SKCM) cohort,25 patients with mela-
noma treated with anti-CTLA-4 (cytotoxic T-lymphocyte-
associated protein 4) or PD-1 (programmed cell death 
protein 1) antibody,26 and mouse model treated with anti-
CTLA-427 were downloaded and analyzed to determine 
the predictive capacity of TMEscore and were compared 
with its counterparts.

TMEscore evaluation, immune cell deconvolution and 
signature score estimation
For the gene expression (normalized by RMA, TPM, 
FPKM or housekeeping genes) matrix, the expression 
of each gene in a signature was standardized so that its 
mean expression was 0, and the SD was 1 across samples. 
Then, PCA was performed, and principal component 
1 was extracted to serve as the gene signature score. 
This approach had the advantage of focusing the score 
on the set with the largest block of well-correlated (or 
anti-correlated) genes in the set, while down-weighting 
contributions from genes that do not track with other set 
members.6 15 As our previous study15 indicated, TMEscore 
of each patient was estimated by the formula: TMEscore = 
∑ PC1i – ∑PC1j, where i is the signature score of clusters 
whose Cox coefficient is positive, and j is the expression 
level of the gene whose Cox coefficient is negative. The 
analytic code and package used to perform the TMEs-
core estimation are provided for non-commercial use 
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at GitHub: https://githubcom/DongqiangZeng0808/
TMEscore. To characterize the metabolism, immune 
microenvironment and other prevalent gene signatures 
activation in each tumor sample, multi-algorithms were 
applied to determine the pathway activity using IOBR 
package (https://​github.​com/​IOBR/​IOBR).28 Immun-
eScore, Stromalscore, and tumor purity were assessed 
computationally in RNA-seq data using the ESTIMATE 
algorithm29 that uses gene expression signatures to 
infer the fraction of stromal and immune cells in tumor 
samples. Other computational algorithms and tools used 
to estimate the microenvironment were detailed in the 
online supplemental methods.

Differentially gene expression analysis
All differential gene analyses were conducted using the 
DESeq2 package.30 Differential gene expression analysis 
was performed using a generalized linear model with 
the Wald statistical test, with the assumption that under-
lying gene expression count data were distributed per a 
negative binomial distribution with DESeq2. DEGs were 
considered for further analysis with a q value<0.05. The 
adjusted p value for multiple testing was calculated using 
the Benjamini-Hochberg correction.31

Identification of TMEscore relevant mutations and mutational 
signatures
The mutation MAF files were downloaded with TCGAbi-
olinks,32 and the mutation status and mutation burden 
were inferred from the MAF files. Mann-Whitney U test 
was adopted to define the significance of binary vari-
ables (wild type or mutated). We applied the Benjamini-
Hochberg method to convert the p values to adjusted p 
values.31 The mutational signature analysis was performed 
using the deconstructSigs package33 in R, which selects 
combinations of known mutational signatures34 that 
account for the observed mutational profile in each 
sample.

Functional and pathway enrichment analysis
Gene annotation enrichment analysis was performed with 
the R package clusterProfiler.35 Enrichment p values were 
based on 1000 permutations and subsequently adjusted 
for multiple testing using the Benjamini-Hochberg proce-
dure to control the false discovery rate (FDR).31 Gene 
Ontology (GO) and KEGG terms were identified with 
a strict cut-off of p<0.01 and an FDR of less than 0.05. 
We also identified pathways that were up-regulated and 
down-regulated among groups by running a gene set 
enrichment analysis (GSEA)36 of the adjusted expression 
data for all transcripts.

Single-sample gene-set enrichment analysis of tumor 
processes
To characterize the tumor processes and pathway activa-
tion status in each tumor sample, a ssGSEA algorithm37 
was applied to determine the pathway activity using GO,38 
KEGG39 and HALLMARK gene sets derived from MSigDB 
(V.6.2).40 Other prevalent gene signature scores with 

respect to the TME, tumor intrinsic pathway, and metabo-
lism were calculated for each sample using the PCA algo-
rithm by IOBR package.28

Differentially methylated probes analysis
Methylation data (β values of Illumina Infinium Human-
Methylation450) of The Cancer Genome Atlas of 
Stomach Adenocarcinoma (TCGA-STAD) patients were 
obtained through TCGAbiolinks.32 β values reported by 
the 450K Illumina platform for each probe were set as 
the methylation level measurement for the targeted CpG 
site. Methylation data quality control, normalization, and 
filtering of redundant probes were conducted using the 
pipeline of the ChAMP. Differentially methylated probes 
(DMP) analysis was detected by the ‘champ.DMP’ func-
tion of ChAMP package.41 DMPs were considered for 
further analysis with a q value <0.05. The adjusted p value 
for multiple testing was calculated using the Benjamini-
Hochberg correction.31

Statistical analysis
The normality of the variables was tested by the Shapiro-
Wilk normality test. For comparisons of two groups, 
statistical significance for normally distributed variables 
was estimated by an unpaired Student’s t-test, and non-
normally distributed variables were analyzed by the Mann-
Whitney U test. For comparisons of more than two groups, 
the Kruskal-Wallis and one-way analysis of variance tests 
were used for non-parametric and parametric methods, 
respectively. The correlation coefficient was computed 
by Spearman and distance correlation analyses. Χ2 test 
and two-sided Fisher’s exact tests were used to analyze 
contingency tables. The cut-off values of each data set 
were evaluated based on the association between survival 
outcome and signature score in each separate data set 
using the survminer package. The Kaplan-Meier method 
was used to generate survival curves for the subgroups 
in each data set, and the log-rank (Mantel-Cox) test was 
used to determine if they were statistically different. The 
HRs for univariate analyses were calculated using the 
univariate Cox proportional hazards regression model. 
The sensitivity and specificity of signature scores were 
depicted by the receiver operating characteristic (ROC) 
curve and quantified by the area under the ROC using 
the pROC package.42 The ‘​roc.​test’ function of pROC 
package was used to compare the area under the curve 
(AUC) or partial AUC of two correlated or uncorrelated 
ROC curves. All statistical analyses were conducted using 
R V.3.6.3.0 (https://www.​r-​project.​org/), and the p values 
were two-sided. P values of less than 0.05 were considered 
statistically significant.

RESULTS
TMEscore predicts ICB response of gastric cancer
To optimize the TME assessment for more efficient clin-
ical translations, feature engineering (see online supple-
mental methods) was conducted in six ICB data sets 
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(online supplemental table S1) and reduced TMEscore15 
signature genes from 244 to 44. As previous research 
suggested,15 genes negatively associated with ICB response 
were enriched in immune exclusion phenotype (EMT/
TGF-β pathway), whereas the immune relevant genes posi-
tively associated with treatment efficacy figure 1A, (online 
supplemental figure S1A). In several GC cohorts (online 
supplemental table S1), we found a consistent and closed 
association between the 44-gene TMEscore and the prior 
TMEscore measured of 244 genes (online supplemental 
figure S1B). Notably, the TMEscore was capable of serving 
as a prognostic biomarker of immunotherapy meta-cohort 
(GSE78220,24 IMvigor210,6 GSE93157,43 Snyder et al44 and 
TCGA-SKCM25) (figure 1B: TMEscore, p=0.0001; online 
supplemental figure S1C): TMEscoreA, p<0.0001 and 
online supplemental figure S1D: TMEscoreB, p=0.0396, 
respectively), and a predictive biomarker of ICB response 
in several independent cohorts (online supplemental 
figure S1E–L, online supplemental table S2. The AUCs of 
eight independent data sets indicated that the predictive 
value of simplifying TMEscroe (44 genes) was enhanced 
after dimension reduction (online supplemental figure 
S1E–L). In the advanced GC cohort receiving anti-PD-1 
immunotherapy,5 the TMEscore yielded the highest AUC 
(AUC=0.891), surpassing other prevalent biomarkers, 
including MSI status, TMB, CPS and EBV infection 
(AUC=0.708, 0.672, 0.817, and 0.708, respectively) 
(figure 1C and online supplemental table S3), and several 
transcriptomic-based predictive counterparts, comprizing 
gene expression profile score (GEPs),18 ImmunoScore,29 
CD8+ T effector score, and pan-fibroblast TGF-β response 
signature (Pan-F-TBRs)6(figure 1D).

We further measured expression of TMEscore genes 
in the tumor microenvironment, using NanoString 
nCounter platform22 and RNA isolated from tumor 
tissue obtained at baseline from 48 patients with 
advanced gastric cancer of multicenter before receiving 
ICB (table  1 and online supplemental table S4). 
Apparently, TMEscore achieves an overall accuracy of 
AUC=0.877, which is higher than other prevalent gene 
signature predictors6 18 21 and capturing almost all true 
responders (figure  1E,F). Consistent with our previous 
study,15 regressive tumors (complete response (CR)/
partial response (PR)) were observed markedly higher 
TMEscoreA than stable and progressive tumors (progres-
sive disease (PD)/stable disease (SD)), and TMEscoreB 
was negatively associated with the treatment efficacy 
of advanced GC (figure 1F, statistical p value of TMEs-
core, TMEscoreA and TMEscoreB were 6.1×10−6, 0.047 
and 0.00046, respectively), implicating stromal acti-
vation as a critical mechanism of resistance to ICB.6 15 
TMEscoreB (stromal-relevant) genes were more precise 
biomarker and significantly associated with treatment 
resistance, while TMEscoreA (immune-relevant) genes 
were highly expressed in a few non-responders (SD/PD) 
(figure 1G,H).

TMEscore predicts efficacy of checkpoint immunotherapy 
alone or combination with chemotherapy or angiogenesis 
inhibitor
To provide a precise map for understanding TMEscore 
performance in the context of mono- and combina-
tional immunotherapy, we further explored the NanoS-
tring result of a 48 patients gastric cancer cohort. The 
expression of PD-L1 is prevailingly enriched in the 
responsive subset (CR/PR) relative to the progressive 
counterparts (figure  2A–C and online supplemental 
table S5). Intriguingly, the PD-L2 and TIM3 were signifi-
cantly higher in non-responsive tumor, suggesting that 
upregulations of other corresponding or bypass check-
point pathway may contribute to the resistance of PD-1 
blockades (figure  2B–D and online supplemental table 
S5), by which according to reports the stromal activation 
and T-cell exclusion were induced.6 Additionally, SYNPO 
was reported to be upregulated during CAF activation,45 
which is the critical mechanism of ICB resistance.

The clinical benefit of ICB monotherapy for advanced 
gastric cancer is limited, and recent clinical trials have 
demonstrated that combinations of ICBs with chemo-
therapy, anti-vascular targeted therapy or other molec-
ular targeted therapies significantly improve treatment 
outcomes such as CheckMate-649.46 47 Consequently, 
there will be a pressing need for biomarkers that can 
be applied for patient selection for anti-PD-1 immuno-
therapy and chemotherapy combination. Among the 
multicenter data of GC, 19 patients received ICB mono-
therapy, and 29 patients were treated with ICBs combined 
with chemotherapy or other inhibitors (table  1). We 
systematically evaluated aforementioned biomarkers in 
both ICB monotherapy and the combination treatment 
settings. The majority of ICB relevant genes and immune 
relevant signatures were positively related to favorable 
mono-immunotherapy response, corroborating former 
discoveries (figure 2E,F and online supplemental figure 
S2A,B). Whereas their predictive efficacy significantly slid 
in therapy combination subset, especially the signatures 
related with immune activation (figure 2G,H). However, 
the TMEscore still harbored robust predictive capacities 
in both settings (figure 2G,H), possibly attributing to the 
superiorly essential influence exerted by stromal activa-
tion during synergic treatment (online supplemental 
figure S2C,D). Comparable trend of PD-L2 and TIM3 
expression were also exhibited in the synergic therapy. 
Their upregulations in progressive patients suggested 
the potential pivotal molecular characteristics in shaping 
tumor immune evasion (figure 2G,I), which also implied 
the existence of synchronously upregulation of immune 
checkpoint pertinent genes, indicating this subset of 
patients may be latent candidate to benefit from PD-L2 or 
TIM3 pathway inhibitions.

TMEscore accurately identifies more patients than MSI, EBV 
and TMB in mGC
In order to assess the predictive value and underlying 
mechanisms of TMEscore in advanced GC systematically, 
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Figure 1  TMEscore holds promise in predicting immunotherapeutic response. (A) Feature engineering was conducted to 
minimize the number of TMEscore signature genes. Gene importance was exhibited with genes significantly associated 
with favorable immune checkpoint blockade (ICB) responses (top right, green), and genes correlated positively with immune 
exclusion and negatively with immunotherapeutic efficacy (bottom left, blue). (B) Kaplan-Meier survival analysis demonstrated 
that a high TMEscore was significantly related to more favorable overall survival in the study of multiple meta-data (p=1×10−4, 
HR=0.61, 95% CI: 0.48 to 0.78, cut-off=0.08). (C) Receiver operating characteristic (ROC) analyses indicated that the TMEscore 
harbored the highest area under the curve (AUC) (AUC=0.891) in comparison with other reported biomarkers of ICB, comprizing 
microsatellite instability (MSI) status, tumor mutation burden (TMB), programmed death-ligand 1 combined positive score (CPS), 
and Epstein-Barr virus (EBV) status in gastric cancer (AUC=0.708, 0.672, 0.817, 0.708, respectively; p values of pair comparison 
test see online supplemental table S7). (D) Tumor microenvironment (TME) relevant signatures and the TMEscore are estimated 
to compare the predictive sensitivity for responses. ROC analyses suggested that the TMEscore substantially outperformed 
these published transcriptomic-based methodologies for prediction of ICB treatment response, including gene expression 
profile scores (GEPs), ImmunoScore, pan-fibroblast transforming growth factor-beta (TGF-β) response signature (pan-fibroblast 
TGF-β response signature), and immune checkpoint (AUC=0.836, 0.606, 0.715, 0.803, respectively; detailed p values of 
pair comparison test see online supplemental table S7) (E–H) The predictive capacity of TMEscore for treatment response is 
corroborated in a multicenter clinical gastric cancer cohort. TMEscore possessed highest AUC surpassing immune checkpoint, 
CD8+ effector T cell and GEPs (AUC=0.877, 0.457, 0.656, 0.791, respectively); (E). Box plot supported that elevated TMEscore 
and TMEscoreA, as well as decreased TMEscoreB of responders (CR/PR) versus non-responder (SD/PD) in multicenter cohort 
(p=6.1×10−6, 4.7×10−2, 4.6×10−4, respectively); (F). Heatmaps exhibited the signature genes expression of TMEscoreA (G) and 
TMEscoreB (H), respectively, in the responsive (CR/PR) and the progressive (SD/PD) gastric cancer, validating prior results. CR, 
complete response; PD, progressive disease; PR, partial response; SD, stable disease.

https://dx.doi.org/10.1136/jitc-2021-002467
https://dx.doi.org/10.1136/jitc-2021-002467
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we performed integrative analysis across multi-omics data 
of advanced GC treated with pembrolizumab as a salvage 
treatment (NCT02589496, N=45) (online supplemental 
table S3), TCGA-STAD (N=375),11 and Asian Cancer 
Research Group (ACRG, N=299)12 cohorts (online 
supplemental table S6). A combination of the TMEs-
core with TMB or CPS (AUC=0.964, 0.973, respectively) 
observed a slight elevation in the AUC compared with 
TMEscore alone (AUC=0.921), despite no statistically 
significant discrepancy observed in pairwise compar-
isons (online supplemental figure S2E and online 

supplemental table S7). Intriguingly, the TMEscore was 
not correlated with tumor somatic mutation burden and 
histology subtypes in Kim cohort (figure 2J,K). However, 
in markedly stratified patients, when referring to levels of 
some biomarkers associated with ICB responsiveness,5 48 
such as tumorous PD-L1 expression evaluated using CPS, 
MSI status and EBV infection, respectively (figure 2L–N). 
Accordingly, our analyses indicated that the TME estima-
tion might have an alternative and more amenable mech-
anism than that of tumor intrinsic genomic features to 
serve as a robust biomarker for predicting ICB responses 
in advanced GC.

We depicted a landscape of the TME signature score, 
clinicopathological features, and molecular characteriza-
tion in patients with metastatic GC treated with anti-PD-1 
immunotherapy5 to investigate factors potentially associ-
ated with the treatment efficacy of ICB. We observed that 
patients with better responses were more likely to possess 
EBV and MSI-H molecular subtypes but were rarely 
enriched in chromosomal instability (CIN), genomically 
stable (GS), and EMT molecular subtypes (figure 3A, EBV 
and MSI-H: responders (n=9), non-responders (n=0); 
GS and CIN: responders (n=3), non-responders (n=33); 
p=2.5×10−7, Fisher’s exact test). Consistent with our recent 
research15 in TCGA-STAD and ACRG cohorts, the TMEs-
core was significantly higher in patients with MSI-H and 
EBV subtypes, relative to CIN and GS (figure 3B, p=0.003), 
suggesting that the predictiveness of the TMEscore was 
mostly contributed to molecular phenotype stratifica-
tion. We next examined the predictive capacity of gene 
signatures and prevalent biomarkers in stratified patients 
with EBV and MSI-H molecular subtypes that indicates 
better responses to ICBs.48 49 ROC analyses indicated that 
the TMEscore (AUC=0.895) was superior in predicting 
EBV and MSI-H molecular subtypes, compared with MSI 
status, TMB, CPS, EBV status, GEPs, ImmuneScore, Pan-
F-TBRs, and Immune Checkpoint (AUC=0.778, 0.781, 
0.797, 0.708, 0.847, 0.646, 0.764, 0.767, respectively; 
online supplemental figure S2F–H and online supple-
mental table S7).

To validate above findings, we performed the 
same statistical analyses in two large multi-omics GC 
cohorts.11 12 We next focused on TCGA-STAD cohort11 
and analyzed the clinical features (figure 3C and online 
supplemental figure S3A). In the low TMEscore group, 
the MSI and EBV subtypes were largely absent, while they 
took the majority of the group with the high TMEscore 
(EBV and MSI-H: high TMEscore (n=48), low TMEs-
core (n=16); GS and CIN: high TMEscore (n=25), low 
TMEscore (n=132); p<2.2×10−16, χ2 test; figure  3D). A 
similar trend was also observed in the ACRG cohort 
(EBV and MSI: high TMEscore (n=78), low TMEscore 
(n=8); other subtypes: high TMEscore (n=80), low TMEs-
core (n=134); p<2.2×10−16, χ2 test; Online supplemental 
figure S3B–D). Intriguingly, our analyses indicated that 
EBV infected tumors have comparable TMEscore with 
MSI-H tumors in the ACRG cohort (p=0.261; figure 3E) 
and even possessed a higher TMEscore than that of 

Table 1  Baseline characteristics of patients with advanced 
gastric cancer

NanoString cohort Kim cohort

Total (n=48) Total (n=61)

Age (years) 61.50 (27–76) 57 (26–78)

Sex

Male (28, 58%) Male (43, 70%)

Female (20, 42%) Female (18, 30%)

Race

Asian (48, 100%) Asian (61, 100%)

Type of specimens

FFPE (28, 58%) FFPE (0, 0%)

Biopsy (20, 42%) Biopsy (61, 100%)

Clinical center

NFH (12, 25%) Samsung Medical 
Center (61, 100%)

SYSUCC (21, 44%)

GDPHCM (6, 13%)

TSAHSYSU (5, 10%)

TFAHSYSU (4, 8%)

Type of checkpoint inhibitors

Camrelizumab (12, 25%) Pembrolizumab (61, 
100%)

Toripalimab (12, 25%) Camrelizumab (0, 
0%)

Sintilimab (11, 23%) Toripalimab (0, 0%)

Nivolumab (9, 19%) Sintilimab (0, 0%)

Pembrolizumab (4, 8%) Nivolumab (0, 0%)

Regimen

Monotherapy (19, 40%) Monotherapy (61, 
100%)

Combination (29, 60%) Combination (0, 0%)

Number of previous therapies

 � 0 11 (23%) 0 (0%)

 � 1 23 (48%) 32 (52.5%)

 � >=2 14 (29%) 29 (47.5%)

FFPE, formalin-fixed paraffin-embedded; GDPHCM, Guangdong 
Provincial Hospital of Chinese Medicine; NFH, Nanfang Hospital, 
Southern Medical University; SYSUCC, Sun Yat-sen University Cancer 
Center; TFAHSYSU, The First Affiliated Hospital of Sun Yat-sen 
University; TSAHSYSU, The Sixth Affiliated Hospital of Sun Yat-sen 
University.

https://clinicaltrials.gov/ct2/show/NCT02589496
https://dx.doi.org/10.1136/jitc-2021-002467
https://dx.doi.org/10.1136/jitc-2021-002467
https://dx.doi.org/10.1136/jitc-2021-002467
https://dx.doi.org/10.1136/jitc-2021-002467
https://dx.doi.org/10.1136/jitc-2021-002467
https://dx.doi.org/10.1136/jitc-2021-002467
https://dx.doi.org/10.1136/jitc-2021-002467
https://dx.doi.org/10.1136/jitc-2021-002467
https://dx.doi.org/10.1136/jitc-2021-002467
https://dx.doi.org/10.1136/jitc-2021-002467
https://dx.doi.org/10.1136/jitc-2021-002467
https://dx.doi.org/10.1136/jitc-2021-002467
https://dx.doi.org/10.1136/jitc-2021-002467
https://dx.doi.org/10.1136/jitc-2021-002467
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MSI-H tumors in TCGA cohort (p=2.9×10−5; figure 3F), 
whereas a significantly lower tumor mutation counts than 
that of MSI-H tumors in both TCGA-STAD and ACRG 
cohorts remained (p=5.9×10−13 and 6.9×10−6, respectively; 

figure 3G,H). We also noted a markedly lower neoantigen 
load in EBV infected tumors compared with MSI-H GC in 
TCGA cohort (p=2.7×10−10, figure 3I). Correlation anal-
ysis revealed that the TMEscore was positively associated 

Figure 2  TMEscore predicts efficacy of checkpoint immunotherapy alone or combination with chemotherapy. (A) A heatmap 
numerated the expression of various immune checkpoint genes in the responder (blue) and the non-responder (yellow) 
subsets, highlighting upregulation of programmed death-ligand 1 (PD-L1) in responsive patients in a multicenter cohort of 
gastric cancer. (B) The box plot compared the expression levels of immune checkpoint genes in the responsive (blue) and non-
responsive (yellow) cancer settings and corresponding p values were displayed on the top. (C) Receiver operating characteristic 
curve analysis demonstrated that the TMEscore with highest predictive efficacy for therapy sensitivity (area under the curve 
(AUC)=0.866), outperforming all the immune checkpoints comprizing PD-L1, TIM3, LAG3, and PD-L2 (AUC=0.709, 0.662, 0.557, 
0.682, respectively). (D) An elevation of stromal activation indexes, including FAP, MIR100HG, SYNPO and TGFB1l1 (p=0.0069, 
0.0002, 0.0001, 0.0007, respectively), was discovered in the patients with complete response (CR) or partial response (PR) 
relative to the counterparts. (E–H) An upregulation of the aforementioned immune checkpoints (E) and immunotherapy pertinent 
biomarkers (F) including TMEscore, was measured in the context of anti-programmed cell death protein 1 (PD-1) monotherapy, 
as well as anti-PD-1 combination therapy (G–H). Relevant p values were depicted on the top. (I) Heatmap demonstrated 
aforementioned immune checkpoint expression discrepancies in the setting of anti-PD-1 combination therapy responder (red) 
and non-responder (blue), indicative of the upregulation of PD-L2 and TIM3 in the non-responsive subset. (J) No statistical 
significance was observed between tumor mutation burden (TMB) and TMEscore (Kruskal-Wallis test, p=0.14). The number of 
non-synonymous single nucleotide variant ≥400 was defined as high mutational load (high TMB); 100–400, moderate mutation 
load (moderate TMB); and <100, low mutation load (low TMB). (K) A boxplot exhibited bare statistical significance in TMEscore 
diversity among different pathologies of gastric cancers (Kruskal-Wallis test, p=0.14). (L) An increase of TMEscore was observed 
in PD-L1 combined positive score (CPS) positive patients (Wilcoxon, p=0.0015). The specimen was considered to have high 
PD-L1 expression if CPS≥1. (M–N) A boxplot demonstrated that gastric cancers with high microsatellite instability (MSI) status 
(M) (Wilcoxon, p=0.051) and positive Epstein-Barr virus (EBV) infective status (N) (Wilcoxon, p=0.0005) harbored an elevated 
TMEscore. ADC, adenocarcinoma; PD, progressive disease; SD, stable disease.
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Figure 3  TMEscore is closely correlated with microsatellite instability-high (MSI-H) and Epstein-Barr virus (EBV) infective 
status in gastric cancer. (A) For each patient (columns) with metastatic gastric cancer, clinicopathological features and molecular 
characterizations were annotated. Column annotations represent epithelial–mesenchymal transition (EMT) (mesenchymal, 
non-mesenchymal); histology (moderate adenocarcinoma (ADC), poor ADC, signet ring cell, others); MSI status (MSS, MSI); 
EBV status (negative, positive); molecular subtype (chromosomal instability (CIN), EBV, genomically stable (GS), MSI-H); 
programmed death-ligand 1 combined positive score (CPS) (high, low, NE); tissue tumor mutation burden (tTMB); best overall 
response (BOR) (CR, PR, PD, SD); and binary BOR (responder, non-responder) for each sample. TMEscore, TMEscoreA, 
and TMEscoreB are displayed at the top of the panel. A high TMEscore is capable of identifying patients with EBV positive 
and MSI-H and responders to immune checkpoint blockade. (B) EBV and MSI gastric molecular subtype were substantially 
associated with higher TMEscore in the Kim cohort (Kruskal-Wallis test, p=0.0029). (C–D) For each patient (columns) in The 
Cancer Genome Atlas of Stomach Adenocarcinoma (TCGA-STAD) cohort, the landscape of clinicopathological features and 
molecular characterizations are displayed. Column annotations represent the AJCC stage (stage I, II, III, IV); OS 5-year (alive, 
dead); histology (diffuse, intestinal, mixed); EBV status (negative, positive, NE); molecular subtype (CIN, EBV, GS, MSI-H); 
and TME subtype (high, low) for each sample. TMEscore, TMEscoreA, and TMEscoreB are displayed at the top of the panel 
(C). Analysis of TCGA-STAD cohort corroborated that patients with EBV positive and MSI-H harbored a higher TMEscore (D) 
(Fisher’s exact test, p<2.2×10−16). (E–H) Boxplots indicated the TMEscore is substantially elevated in EBV and MSI molecular 
subtype either in both Asian Cancer Research Group (ACRG) (E) (Kruskal-Wallis test, p<2.2×10−16) and TCGA-STAD cohorts 
(F) (Kruskal-Wallis test, p<2.2×10−16). However, TMB is positively related to the MSI subtype but is not predictive of EBV status 
in both TCGA-STAD cohort (G) (Kruskal-Wallis test, p<2.2×10−16) and ACRG cohort (H) (Kruskal-Wallis test, p=2.4×10−15). (I) 
Neoantigens failed to identify EBV status in TCGA-STAD cohort, despite its significant correlation with MSI-H subtype (Kruskal-
Wallis test, p<2.2×10−16). (J) A dotplot demonstrated a close correlation between TMB and the TMEscore. Every single dot 
represents one sample, corresponding molecular subtypes are identified in different colors (CIN: yellow, EBV: blue, GS: red, 
MSI: pink) (Spearman test, r=0.432, p=4.4×10−16). (K) ROC analyses suggested the TMEscore was predictive of EBV and MSI 
status of gastric cancer in TCGA-STAD and ACRG cohorts (n=634), with a higher AUC than that of gene expression profile 
scores and TMB (AUC=0.88, 0.78, 0.726, respectively). AJCC, The American Joint Committee on Cancer; OS, overall survival; 
CR, complete response; NE, unknown; PD, progressed disease; PR, partial response; SD, stable disease.
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with tumor mutation burden in both data sets (TCGA-
STAD: p=4.4×10−16; figure 3J; ACRG: p=8.6×10−11; online 
supplemental figure S3D) and predicted neoantigen load 
in TCGA-STAD cohort (p=2.5×10−11; online supplemental 
figure S3E). Collectively, the EBV subtype remained at a 
low level of TMB and neoantigens with a high TMEscore 
and immune associated signatures in Pan-Caner cohorts 
(online supplemental figure S4A–G and online supple-
mental table S8). As shown by previous research48 49 about 
GC cohort treated with ICBs,5 patients with EBV infec-
tion, as well as the MSI-H phenotype, had an increased 
potential to benefit from ICB treatment. These obser-
vations further confirmed that TMB, as a widely used 
predictive biomarker,50 is incapable of identifying patients 
with GC with EBV subtype and tumor with virus infection 
(online supplemental figure 1 S5A-F), which also benefit 
from immunotherapy. As expected, the TMEscore could 
identify the EBV and MSI subtypes from all patients in 
TCGA-STAD and ACRG cohorts with significantly higher 
accuracy than TMB, GEPs,18 Pan-F-TBRs,6 and Immune 
checkpoint score33 (DeLong test, p=2.1×10−6, 8.8×10−10, 
1.5×10−32, and 2.5×10−8, respectively; figure 3K and online 
supplemental table S7. Sufficiently, the aforementioned 
data confirmed that the TMEscore might perform better 
in selecting candidate patients with GC that can benefit 
from ICB immunotherapy.

ARID1A and PIK3CA deficiency potentiate therapeutic 
antitumor immunity in gastric cancer
Somatic gene mutations can alter the vulnerability of 
cancer cells to T cells and T cell immunotherapies.44 51 52 
We sought to uncover the immunogenomic determi-
nants of therapeutic response and the tumor immune 
microenvironment activation of GC in two large patient 
cohorts (TCGA-STAD and ACRG). Mutations associ-
ated with TMEscore was identified utilizing Wilcoxon 
test and Fisher’s exact test (figure  4A and online 
supplemental table S9). Our analyses highlighted that 
mutation of ARID1A and PIK3CA (figure 4A), whether 
evaluated continuously (figure 4B,C) or binarily (online 
supplemental table S9), were markedly correlated with 
TMEscore levels in TCGA-STAD cohort, which were 
verified in the ACRG cohort (online supplemental 
figure S6A). Meanwhile, TMB was divided into high 
TMB group and low TMB group (cut-off=400, (online 
supplemental figure S6B) to analyze the relationship 
between TMEscore and ARID1A or PIK3CA muta-
tions. As shown in online supplemental figure S6C,D, 
patients with ARID1A or PIK3CA mutations exhibited 
significantly higher TMEscore in the low TMB group. 
However, no significant trend was observed in the high 
TMB group. The above results suggested that in low 
TMB conditions, both ARID1A and PIK3CA mutations 
are associated with TME activation, while in high TMB 
conditions, the effect of ARID1A and PIK3CA mutations 
might be covered by the phenomenon that increasing 
neoantigens caused by abundant mutations further 
activating TME. PIK3CA is the most commonly mutated 

oncogene across all solid tumors.53 ARID1A deficiency, 
also a frequent mutation in various malignancies, has 
been reported to contribute to compromised mismatch 
repair (MMR), increased mutagenesis, and microsatel-
lite instability genomic signature, and may cooperate 
with anti-PD-L1 therapy.54

Notably, we investigated further into the specific 
mutation locations to identify recurrent mutations with 
top mutation frequencies in binary TMEscore settings 
to visualize results by trackViewer.55 Intriguingly, 
p.D18550Tfs*33 and p.F2141Sfs*59 of the ARID1A 
mutation were highlighted in high-TMEscore tumors 
(figure  4D) and statistically correlated with TMEs-
core levels (p=0.03; figure  4E, online supplemental 
table S10). Gastric cancer with PIK3CA p.E545K and 
p.H1047R mutations were prominently enriched in 
the high-TMEscore group (online supplemental figure 
S7A, online supplemental table S10). However, limited 
statistical difference was observed in the continuous 
TMEscore despite the significant discrepancy across 
mutated and wild type (p=2.7×10−8; online supple-
mental figure S7B). Additionally, the mutation rate of 
ARID1A and PIK3CA in TCGA-STAD cohort were also 
higher in EBV and MSI molecular subtypes, which was 
correlated with an elevated TMEscore and immuno-
therapeutic response as compared with CIN and GS 
subtypes (ARID1A: p<2.2×10−16; PIK3CA: p<2.2×10−16; 
χ2 test; online supplemental figure S7C,D). We further 
found that the ARID1A-inactivating mutation in 
low TMB group was correlated with an upregulated 
immune checkpoint, CD8+ T effector, antigen presen-
tation process (online supplemental figure S8A), and 
cellular response to glutamate metabolism (online 
supplemental figure S8B), which collectively suggested 
the higher T-cell infiltration and potential benefit from 
the blockade of ICB. Two recent studies indicated that 
the mutation of signaling pathways could serve as an 
immunotherapy biomarker56 and suggested combina-
tion therapy opportunities.52 The current study demon-
strated pathway mutations derived predominantly from 
MSI molecular subtype (figure  4F and online supple-
mental table S11) and significant mutation accumu-
lations of almost all pathways in the high-TMEscore 
fraction (figure 4F and online supplemental table S11). 
Nevertheless, in accordance with prior results (online 
supplemental figure S7D), a higher PI3K pathway muta-
tion frequency was also observed in the EBV subtype in 
comparison with the GS and CIN subtypes, suggesting 
a latent interplay between EBV infections and the PI3K 
signaling pathway (online supplemental figure S9A and 
online supplemental table S11), which may partially 
explain the predominant increase of the TMEscore in 
EBV-infected patients (figure  3F and online supple-
mental figure S9B). Previous studies indicated that the 
interaction of PIK3CA mutation and EBV protein prod-
ucts may activate PI3K/ATK pathway which might be 
an initiator in tumorigenesis and progression. PIK3CA 
mutation revealed high intratumoral heterogeneity 

https://dx.doi.org/10.1136/jitc-2021-002467
https://dx.doi.org/10.1136/jitc-2021-002467
https://dx.doi.org/10.1136/jitc-2021-002467
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characterized with three to five different PIK3CA 
genotypes (including wildtype) in EBV-positive gastric 
cancer.57 Additionally, analyzing mutation signatures in 
the Catalog Of Somatic Mutations In Cancer34 indicated 

an intimate correlation between the TMEscore and 
mismatch repair associated signature 6 (online supple-
mental figure S9C and online supplemental table 
S12). Collectively, large data analyses of gastric TME 

Figure 4  ARID1A and PIK3CA mutation potentiate antitumor immunity. (A) Mutation frequency and corresponding levels 
of TMEscores are exhibited in the dotplot, and the significance of ARID1A, PIK3CA, and KMT2D mutations are highlighted. 
Every single spot represents a gene, and statistical significance was shown through y-axis (Spearman test, r=0.078, p=0.12). 
(B–C) ARID1A (B) and PIK3CA (C) mutations were significantly associated with an increase of TMEscore. ARID1A (Wilcoxon, 
p=4.8×10−10) and PIK3CA (Wilcoxon, p=1.6×10−9) mutations were categorized in a binary way. (D–E) The landscape of the 
ARID1A mutation positions and corresponding TMEscore was displayed and highlighted p.D18550Tfs*33 and p.F2141Sfs*59 
of ARID1A mutation in the high-TMEscore tumors. The mutation rates of high (yellow) and low (blue) TMEscores are shown (D). 
The ARID1A recurrent mutation is correlated with the higher TMEscore (Kruskal-Wallis test, p=9×10−11) (E). (F) The landscape 
of intrinsic pathway mutations (rows) is characterized for each sample (columns). Column annotations represent OS status 
(live, dead), molecular subtype (chromosomal instability (CIN), Epstein-Barr virus (EBV), genomic stable (GS) and microsatellite 
instability (MSI)); and tumor microenvironment (TME) subtype (high, low). The TMEscore is displayed in the top panel. Genomic 
mutations were limitedly enriched in the EBV molecular subtype, which exhibited a high TMEscore. Colors (blue to red) 
represent the corresponding expression levels (low to high). WT, wild type; OS, overall survival.
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elucidated the estimation of ARID1A and PIK3CA muta-
tion status as a potential biomarker for immunotherapy 
strategies of GC.

TME-associated metabolic characteristics
Given the intriguing metabolic regulations observed in 
the different ARID1A-mutant statuses, we further explored 
transcriptomic profiles and dissected the latent intrinsic 
mechanism contributing to the crucial predictive capacity 
of the TMEscore. Metabolic signatures were estimated by 
PCA methodology6 and comprehensively investigated 
in TCGA-STAD cohort. Correlation analysis highlighted 
that kynurenine metabolism, purine metabolism and 
cysteine metabolism were activated in the high-TMEscore 
subset, while glycogen metabolism, transsulfuration, and 
glycine serine metabolism were significantly upregulated 
in low TMEscore group (figure  5A,B). Statistical anal-
ysis suggested that kynurenine metabolism was closely 
correlated with a high TMEscore (p=2.0×10−53, r=0.702; 
figure  5C and online supplemental table S13) and 
immunotherapy-favorable molecular subtypes including 
EBV and MSI-H (Kruskal-Wallis, p=3.3×10−10; figure 5C). 
The downregulated kynurenine metabolism was also 
observed to suggest T cell exclusion, which may indi-
cate insensitivity to ICB therapy (figure 5E). Kynurenine 
metabolism processes may be a promising target to restore 
tumor-restraining T-cell immunogenicity and there-
fore promote ICB therapeutic efficacy in gastric cancer, 
such as IDO1 inhibitor.58 We observed that glycogen 
metabolism was significantly activated in low TMEscore 
tumors and immune exclusive molecular subtypes both 
in TCGA-STAD cohort and ACRG cohort (figure 5D and 
online supplemental figure S10A–F), which suggest that 
it may be correlated with immune exclusion phenotype 
(figure 5E and online supplemental figure S10G,H) and 
mediate treatment resistance of immunotherapy. Consis-
tently, Curtis et al indicated that the interaction between 
cancer cells and CAFs supported glycogenolysis which 
funneled into glycolysis, leading to increased prolifera-
tion, immune evasion, and metastasis of cancer cells.59 
Together, we identified a collection of metabolism char-
acteristics and biological processes associated with TME, 
which reflects the intricacy of the TME and indicates 
potential combination therapy opportunities.

Methylation regions correlate with immune activity
A prior study60 demonstrated that a high m6Ascore indi-
cates an immune-exclusion TME phenotype, stromal acti-
vation, decreased survival, decreased neoantigen load, 
and inferior response in GC. Thereafter, we attempted 
to identify the epigenetic immunomodulation involved 
in the antitumor immunity and tumor immune editing, 
which may be fundamental for understanding the inflam-
matory reaction that occurs in the diseases. Notably, 
a comprehensive investigation into the DNA methyla-
tion position landscape suggested demethylation of the 
VAMP8, was enriched in the low-TMEscore cluster, with 
the demethylation of the ATG7 in the high-TMEscore 

cluster (figure 5F–I and online supplemental table S14). 
Intriguingly, further exploration of corresponding meth-
ylation regions revealed that cg04877910, cg12542933, 
cg05656364, cg05486094 and cg20056908 of VAMP8 
methylation were consistently negatively associated with 
high TMEscore and MSI and EBV molecular subtypes, 
whereas cg23752985 of VAMP8 methylation harbored a 
relatively diverse distribution in molecular subtypes and 
correlations with the TMEscore (online supplemental 
figure S11A,B). Enrichment of differentially methylated 
genes highlighted the vital role VAMP8 methylation plays 
in the TME regulatory network via upregulating immune 
pathways, comprizing pathways of leukocyte activation 
regulation, protein location to the membrane, antigen 
processing and presentation, coated vesicle, and recycling 
endosome (online supplemental figure S11C), which 
indicated the crucial role VAMP8 plays in the complex 
gene interactions and crosstalk in extensive signaling 
pathways. Additionally, the demethylation of ATG7, as 
a gene marker of autophagy, is significantly correlated 
TMEscore (online supplemental figure S11D). Further 
analyses of the relationship among discovered ATG7-
associated signatures (positive regulation of autophagy) 
indicated that demethylation of the ATG7 was contrib-
uted to the immune exclusion in TME, with elevated 
TMEscoreB and fibroblast infiltration in TCGA-STAD 
and ACRG cohort (online supplemental figure S11E,F). 
Collectively, DNA methylation, such as different methyl-
ation regions of VAMP8 and ATG7, may offer a lens into 
the complexity and diversity of the TME and immune-
activity determination, thereafter might assist in opti-
mizing immunotherapy strategies.

DISCUSSION
Our studies leveraging multi-omics data highlight TME 
evaluation (TMEscore) as a predictor of tumor immuno-
genicity and objective response rates and overall survival 
in six independent cohorts treated with ICBs. Moreover, 
the synergic therapy of ICB with chemotherapy or angio-
genesis inhibitor is encountering the dilemmas of lacking 
functional molecular biomarkers. Notably, based on a 
multicenter clinical gastric cancer cohort, we discovered 
TMEscore is robust in predicting treatment efficacy in 
the context of checkpoint immunotherapy alone or its 
combination with chemotherapy or angiogenesis inhib-
itor, where the predictive accuracy of immune activation 
relevant signatures markedly shrinks.

Given the promising predictive value of TMEscore, we 
systematically investigated TMEscore pertinent under-
lying mechanisms to reinforce our refined understanding 
of the interplay between tumor-intrinsic features and 
TME and offer novel precise methodologies to accelerate 
precision immunotherapy. Selection strategies of optimal 
biomarkers remain controversial due to complicated clin-
ical applications.9 10 For example, though PD-L1 expres-
sion level indicated therapeutic benefit, patients with 
PD-L1 <1% also responded to ICBs.1 In current study, 
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Figure 5  Tumor microenvironment (TME) associated metabolism and methylation characteristics. (A) Wilcoxon test show 
the differentially express metabolism pathway in high and low TMEscore tumor. For each patient (columns), signaling 
pathways (rows) are characterized in the heatmap. Colors (blue to red) represent the corresponding expression levels (low to 
high). Column annotations high (orange) and low (green) TMEscore. (B) Correlation analysis highlighted the most significant 
metabolism pathways in the high and low TMEscore tumors. Annotations of the pathways are listed on the left. Colors (yellow to 
green) represent p values, and the size of each dot represents the spearman coefficient. (C) A scatter plot demonstrated a close 
correlation between the TMEscore and kynurenine metabolism. Every single dot represents one sample, and corresponding 
molecular subtypes are identified in different colors (chromosomal instability (CIN): yellow, Epstein-Barr virus (EBV): blue, 
genomically stable (GS): red, microsatellite instability (MSI): pink; Spearman test, r=0.702, p=2.0×10−53). Kynurenine metabolism 
was significantly activated in EBV and MSI subtype (Kruskal-Wallis test, p=3.3×10−10). (D) A scatter plot demonstrated a close 
correlation between the TMEscore and glycogen metabolism. Every single dot represents one sample, and corresponding 
molecular subtypes are identified in different colors (CIN: yellow, EBV: blue, GS: red, MSI: pink; Spearman test, r=−0.675, 
p=3.6×10−48). Glycogen metabolism was significantly activated in GS subtype (Kruskal-Wallis test, p<2.2×10−16). (E) A corrplot 
displays correlations among kynurenine metabolism, glycogen metabolism and TME-related signatures. Coefficients are 
characterized in number. Colors red and purple represent positive and negative correlations. (F) The heatmap exhibited 
the landscape of differentially methylated genes in high and low TMEscore tumors. For each patient (columns), significant 
methylated regions of specific genes (rows, annotated on the right) are characterized. The column annotations represent 
high (red) and low (blue) TMEscore. Colors (yellow to purple) represent the corresponding methylation levels (low to high). (G) 
Correlation analysis highlighted the top 20 methylated probes and genes in the high and low TMEscore tumors. Annotations of 
the probes and genes are listed on the left. Colors (green to purple) represent p values, and the size of each dot represents the 
spearman coefficient. (H) The discrepancy of VAMP8 methylation in different regions in high (blue) and low (yellow) TMEscore. 
Annotations of probes (cg23752985, cg05486094, cg04877910, cg12542933, cg05656364, cg20056908), features (3′UTR, 
5′UTR, TSS1500, TSS200), and CpG islands (CGI) (opensea, shelf) are exhibited on the bottom panel. (I) The discrepancy of 
ATG7 methylation in different regions in high (blue) and low (yellow) TMEscore. Pan-F-TBRs, pan-fibroblast TGF-β response 
signature.
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the TMEscore substantially outperformed the counter-
parts including PD-L1 abundance, TMB, and MSI-H in 
discriminating response to ICBs.9 10 Merits of TMEscore 
is mainly attributed to the accurate identification of 
immune microenvironment activation, especially high 
CD8+ T cell infiltration tumors, immune exclusion and 
EBV infection status. Notably, EBV infection commonly 
accompanies with a low TMB, but is a unique marker with 
a high potential for response to ICB in GC,5 48 which was 
consistently confirmed by Subudhi et al in the setting of 
prostate cancer.61

Although TMB is a wide-recommended biomarker, 
specific alterations usually initiate carcinogenesis and 
neo-antigens generation but their roles in immune 
therapy sensitivity remain obscure. We identified muta-
tions of ARID1A and PIK3CA associated with immune acti-
vation facilitating checkpoint immunotherapy. ARID1A 
is a component of the SWI/SNF chromatin remod-
eling complex,62 frequently mutated in GC.11 12 ARID1A 
deficiency closely correlates with the ICB response,54 
potentially attributing to impairing MMR and elevating 
PD-L1 expression. Our study unprecedently proposed 
that ARID1A deficiency reformed the TME, with two 
specific ARID1A mutation locations of p.D18550Tfs*33 
and p.F2141Sfs*59 harboring markedly higher TMEs-
core. Current work also indicated a potential interaction 
between ARID1A48 and PIK3CA11 mutations and EBV 
infection, partially explaining the elevated TMEscore in 
EBV subtype.

Metabolically speaking, we discovered that activation 
of kynurenine metabolism was correlated with EBV infec-
tion and MSI-H status subsequently upregulate immune 
suppressive markers, such as PD-L1 and IDO. Consis-
tently, a recent report indicated the mechanistic link 
between kynurenine metabolism and the immunosup-
pressive microenvironment.63 64 Therefore, the inhibition 
of kynurenine metabolism may be a potential target for 
combinational therapy to improve the efficacy of ICB.58

DNA methylation guided the epigenetic regulation 
of genes, which was not limited in cancer cells but also 
immune cells and stromal cells, thereafter hypomethyla-
tion of specific genes could modify TME components and 
their interactions.65 Xiao et al have emphasized the contri-
bution of the specific gene SOCS1 methylation of CAFs 
made in reprogramming the TME induced by PDAC 
cells.66 Similarly, our analysis of DNA methylation land-
scape highlighted another gene methylation, VAMP8, 
correlated with the TME and immune-activity-related 
pathways. Additionally, extensive exploration of different 
methylation regions of VAMP8 exhibited an inverse trend 
in different TMEscore groups, thereby offering a novel 
understanding of complex interplay linking methyla-
tion with TME. Macroautophagy is an essential cellular 
catabolic process required for survival under conditions 
of starvation. Recent study indicated that loss of ATG7 
in cancer cells which mediates autophagy disruption 
can enhance antitumor immune responses.67 Our data 
suggest that ATG7 demethylation was closely associated 

with immune exclusion and CAF infiltration, which may 
provide insights into possible mechanisms.

Despite the TMEscore presenting high sensitivity in 
predicting immunotherapy efficacy, its application may 
be limited across diverse cancer types.15 Tumor heteroge-
neity and tissue specificity are presumed to be the main 
reasons and could also be interpreted by the various 
immune microenvironments. We are collecting a large 
number of gastric cancer samples before immunotherapy 
to determine an appropriate TMEscore cut-off value for 
consequent clinical practice. To develop TMEscore into a 
clinical-grade immunotherapy biomarker, we are devoted 
to carrying out two clinical trial of gastric cancer treated 
with ICBs (NCT04850716, NCT04850729).

CONCLUSIONS
Collectively, we optimized a TME evaluation tool that 
may serve as a robust biomarker and integrated it as an 
open-source R package for further application in clin-
ical implementation. The predictive capacity of TMEs-
core was verified in two advanced gastric cancer cohorts, 
which highlighted the predictive efficacy of tumor micro-
environment evaluation. The intrinsic features involving 
the ARID1A and PIK3CA mutations, kynurenine metab-
olism, glycogen metabolism, ATG7 and VAMP8 methyla-
tion provide new insight into the potential mechanisms of 
TMEscore-guided precision immunotherapies.
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