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Abstract

Proteins are the molecular machines of life. The multitude of possible conformations that 

proteins can adopt determines their free energy landscapes. However, the inherently high 

dimensionality of a protein free energy landscape poses a challenge to deciphering how proteins 

perform their functions. For this reason, dimensionality reduction is an active field of research 

for molecular biologists. The Uniform Manifold Approximation and Projection (UMAP) is a 

dimensionality reduction method based on a fuzzy topological analysis of data. In the present 

study, the performance of UMAP is compared to other popular dimensionality reduction methods 

such as t-Distributed Stochastic Neighbor Embedding (t-SNE), Principal Component Analysis 

(PCA), and time-structure Independent Components Analysis (tICA) in context of analyzing 

molecular dynamics simulations of the circadian clock protein Vivid. A good dimensionality 

reduction method should accurately represent the data structure on the projected components. 

The comparison of the raw high-dimensional data with the projections obtained using different 

dimensionality reduction methods based on various metrics, showed that UMAP has superior 

performance when compared with linear reduction methods (PCA and tICA), and has competitive 

performance and scalable computational cost.
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1. Introduction

Proteins are molecular engines present in all lifeforms on earth. Protein structures have 

been described hierarchically as protein primary, secondary, and tertiary structures. Main 

protein functional information is expected to be derived from this structural information. 
1–4 However, protein molecules are in constant dynamics, which also is a key factor in the 

regulation of the protein functions. 5

Molecular dynamics (MD) simulations provide dynamical information of protein 

conformations in order to map the protein conformational space, and thus rationalize protein 

function. 6–8 The sampling of the protein conformations collected during the simulations 

compose the protein conformational space.

The high degrees of freedom of protein molecules present challenges also referred to as the 

curse of dimensionality. To face this challenge, various dimensionality reduction methods 

have been applied to MD simulations under the assumption that a few degrees of freedom 

through coordinate projections could account for the majority of the protein functions. 9–20 

The projections obtained can then be used as collective variables (CV) to build a Markov 

state model (MSM). MSMs have been applied to identify protein functional states on the 

free energy surface and to describe the transitions among them. 21–27

Dimensionality reduction methods can be broadly categorized in two groups: linear and 

non-linear. 28–30 Linear methods, such as principal component analysis (PCA) and time­

structure independent component analysis (tICA), construct new CVs by performing linear 

combinations of the input variables. On the other hand, non-linear methods, such as t­

Distributed Stochastic Neighbor Embedding (t-SNE) method and auto-encoders, construct 

new CVs by mapping the input variables to a non-linear function. Ultimately, due to the 

highly curved shape of protein free-energy landscapes, non-linear dimensionality reduction 

methods should be more beneficial to process MD trajectories, as compared to linear 

methods.11,16,19

All dimensionality reduction methods have their own advantages and limitations. Zhou et 

al.19 compared several algorithms widely used for the analysis of MD simulations and 

demonstrated the overall superior performance of the t-SNE method. In their study, t-SNE 

method was found to be able to correctly reproduce kinetic barrier and structural similarity 

of different clusters. However, relatively high computational cost of t-SNE method forces 
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the user to significantly reduce the sampling of protein trajectories to obtain results in a 

reasonable time frame. Furthermore, due to the intrinsic property of the Kullback–Leibler 

(KL) divergence as its loss function, t-SNE does not guarantee to always preserve distances 

correctly among data points in the low-dimensional space when the distances among these 

data points are large in the high dimensional space.

Recently, McInnes et al. 31 developed a new fuzzy topology-based dimensionality reduction 

method named as Uniform Manifold Approximation and Projection (UMAP), which could 

serve as an alternative method to t-SNE. UMAP has been used to process data from single­

cell experiments as a dimensionality reduction method with either equal or better quality 

than t-SNE. 32–35

In the present study, we aim to demonstrate the applicability and efficiency of UMAP 

in the computational studies of biomacromolecules. Using a well-studied protein as the 

model system, we performed a comparative study along with other popular dimensionality 

reduction tools including PCA, tICA, and t-SNE, to investigate the applicability of 

UMAP in the context of analyzing and processing data obtained from MD simulations of 

biomacromolecules to gain insight into their structure-function relations.

In this study, Vivid (VVD), which is a well characterized circadian clock protein as a 

member of the light oxygen voltage (LOV) domain family, 36 is used as the model protein. 

VVD is an allosteric protein and could be activated upon photo excitation. It has two distinct 

functional states: dark and light states. The VVD dark state could be excited by blue-light 

to form a covalent bond with its flavin co-factor and undergoes a global conformational 

change, mainly in its N-terminus region leading to a cascade of circadian clock related 

signaling events. 37–39

2. Materials and Methods

2.1 Dimensionality Reduction Methods

2.1.1 Principal Component Analysis (PCA)—PCA reduces the dimensionality of the 

data by projecting each data point onto a few principal components as a lower-dimensional 

representation of the original data while preserving the data’s variation. 39 The components 

in PCA are linear combinations of input variables and are orthogonal to each other. Given 

two variables, x and y, their sample covariance measures how these two variables deviate 

from their averages x and y in relation to each other based on n observations,

σ(x, y) = 1
n − 1 i = 1

n
(xi − x)(yi − y) (Eq. 1)

In PCA, a p×p covariance matrix, C, is constructed for a given dataset with p variables, in 

which each element Xij is represented by the covariance between two variables as expressed 

in Eq. 1. In this symmetric matrix, each element is a sample covariance between two 

variables xi and xj, expressed as Ci,j = σ (xi,xj). The eigenvectors of C are the components 

of PCA. The eigenvalues of C measure the contribution of each component in the dataset. 

The larger the magnitude of eigenvalue, the higher the contribution of its corresponding 
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component, i.e., eigenvector. Generally, the eigenvectors with the largest eigenvalues are 

designated as principal components to form 2D or 3D space for data projection. The PCA 

was performed using Scikit-learn implemented in python. 40

2.1.2 Time-Structure based Independent Component Analysis (tICA)—The 

tICA method aims to identify the slowest degrees of freedom and therefore in preserving 

the kinetic information present in the MD trajectories by maximizing the auto-correlation 

function. 41–43 Given a time-series of molecular coordinates provided by the MD 

trajectories, x(t) = (x1(t),…,xn(t)), tICA aims to reduce the dimensionality of the trajectories 

and to identify hidden key structural changes by decomposing the generalized eigenvalue 

problem CF = CFK, where K = diag(k1,…,kn) and F = (f1,…,fn) are the eigenvalue and 

eigenvector matrices, respectively; C and C are the covariance matrix and the time-lagged 

covariance matrix of the coordinate vector, respectively:

C = (x(t) − x(t) )t (x(t) − x(t) ) (Eq. 2)

C = (x(t) − x(t) )t (x(t + t0) − x(t) ) (Eq. 3)

where 〈…〉 denotes the average. In order to obtain a symmetric time-lagged covariance 

matrix, 1
2 (C + Ct) is calculated. The latter step assumes the time reversibility of the process, 

which is satisfied in MD simulations. The projected vectors of the MD are:

a(t) = (a1(t), …, an(t))t = Fx(t)t (Eq. 4)

The featurization and dimensionality reduction were performed using the MSMBuilder 

package. 44

2.1.3 t-Distributed Stochastic Neighbor Embedding Method (t-SNE)—t-SNE is 

an unsupervised non-linear dimensionality reduction method. 45 t-SNE builds its reduced 

representation first by constructing a probability distribution of distances between any two 

observations i and j in the high dimensional manifold as

pi | j = e
−‖xi − xj‖2

2σi2

k ≠ i
e

−‖xi − xk‖2

2σi2
(Eq. 5)

and a Student-t probability distribution in the lower dimensional space. Let yi and yj be the 

unknown lower-dimension representations of observations i and j, respectively. The t-student 

distribution in t-SNE is used to avoid overcrowding of data points in the lower dimensional 

space.
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qi | j = e−‖yi − yj‖−1

k ≠ i
e−‖yi − yk‖−1 (Eq. 6)

The aim of t-SNE is to maximize the similarity between these two density distributions 

over yi’s. The metric used to assess the dissimilarity between the high- and low-dimensional 

distributions is the Kullback-Leibler (KL) divergence,

KL(Pi‖Qi) =
i

j pi | jlog pi | j
qi | j

(Eq. 7)

The optimization of the low-dimensional representation is achieved by the minimization 

of the KL divergence. One disadvantage of using KL divergence is that its loss function 

mainly preserves only local distances, and there is no guarantee regarding the preservation 

of large high dimensional distances in a low dimensional space. The t-SNE projections were 

performed using the Sci-kit learn package implementation. 40

2.1.4 Uniform Manifold Approximation and Projection (UMAP)—UMAP is a 

fuzzy topology-based dimensionality reduction method. 31 Similarly to t-SNE, UMAP 

constructs probability distributions in the high dimensional manifold as

pij = e−
d(xi, xj)

σi
(Eq. 8)

An important difference in the UMAP probability distributions is the local distance metric, 

which is unique for every pair of points. The distance probability in the low dimensional 

space in UMAP is given by:

qij = (1 + a(yi − yj)2b)−1
(Eq. 9)

Another main difference between UMAP and t-SNE is the loss function to be minimized. 

KL divergence is used as loss function in t-SNE. In UMAP, cross entropy (CE) is the loss 

function and defined as

CE(X, Y ) =
i j

pij(X)log pij(X)
qij(Y ) + (1 − pij(X))log 1 − pij(X)

1 − qij(Y ) (Eq. 10)

The CE function provides an advantage of being able to preserve the correlation between 

distances in the high- and low- dimensions for both small and large distances. UMAP 

projections were performed using the python implementation available at https://github.com/

lmcinnes/umap.

2.1.5 UMAP Hyper-parameters Selection—Two crucial hyper-parameters for UMAP 

usage are the number of neighbors and the minimum distance. The first parameter balances 
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the accuracy of local structure versus global structure of the data by varying the number of 

points in the local neighborhood. Small values of this hyper-parameter reflect high accuracy 

in local data structure, while large values reflect high accuracy in representing the global 

data structure, at the cost of the local one. The minimum distance parameter dictates the 

minimum distance between data points. Small values allow data clustering, while high 

parameters favor scattered data and should better preserve the global data structure. 31 

The UMAP hyper-parameters were selected based on a benchmarking performed using the 

Pearson correlation and the cluster similarity score as criteria. We found that with a number 

of neighbors of 1000 and a minimum distance of 1, UMAP delivered the best performance 

for our dataset as shown in Figure S1.

2.2 Molecular Dynamics Simulations

The crystal structures of VVD in its dark (ID: 2PD7 36) and light (ID: 3RH8 36) states were 

taken from the Protein Data Bank (PDB) 46. All the structures were cut to start at residue 37 

for consistency. All structure were modeled with the flavin mononucleotide (FMN). In the 

light state FMN was modeled with the photo-induced covalent bond between the FMN and 

a proximal CYS and the protonated N5. The force field parameters for the FMN in the dark 

and light states were obtained from a previous study. 47 In this study a total of four systems 

were simulated: VVD dark crystal structure with the FMN modeled in the dark state (native 

dark state), VVD light crystal structure with the FMN modeled in the light state (native light 

state), VVD dark crystal structure with the FMN modeled in the light state (transient light 

state), and VVD in the light state with the FMN modeled in the dark state (transient dark 

state).

The protonation state of the histidine has been confirmed using the ProteinPrepare tool at 

playmolecule.com. 48 The preparation of the structures and the heating step were performed 

using CHARMM c41b1.49 In particular, hydrogen atoms were added to the structures. 

The structures were then solvated using TIP3P water molecules and neutralized by adding 

chloride atoms and sodium cations. After the addition of the solvent, the size of simulation 

box was 64.70 Å3. The structures were minimized first using the steep descent method for 

200 steps and the adopted basis Newton-Raphson minimization for 1000 steps afterwards. 

An NVT dynamics of 24 ps was carried to increase the temperature of the system from 0K 

to 300K. For each structure, three 10 ns NPT equilibration dynamics starting with random 

initial velocities were carried out. The final coordinates and velocities were used to start 

a production simulation of 1.1 μs trajectory, in which the first 100 ns are considered as 

equilibration and excluded from the final analysis. A total of 12 µs of MD trajectories have 

been generated. The simulations were carried using OpenMM 7.3 on GPU. 50 A Monte 

Carlo barostat was used in the NPT simulations to maintain constant pressure. 51 The 

NVT simulations were performed using the Langevin Integrator. 50,51 For the integrator 

a friction coefficient of 1 ps−1 was implemented. For all simulations, the covalent bonds 

containing hydrogen atoms are constrained using SHAKE method. 52 A step size of 2 fs was 

used. Frames were saved every 100ps for the simulations. Period boundary conditions were 

applied, and particle mesh Ewald method to calculate the long-range interactions was used. 
53 The cutoff used for the long-range interactions was 12 Å.
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2.3 Analyses

2.3.1 Root Mean Squared Deviation—For a system represented in Cartesian 

coordinates, root mean squared deviation (RMSD) is calculated to measure the deviation 

from a reference structure by taking the square root of the averaged difference between the 

atomic coordinates vectors of a reference structure, ri
0, and of the structure in the ith frame 

among total of N frames, ri,

RMSD = i = 1
N (r1

0 − Uiri)
N

(Eq. 11)

Ui is the rotation matrix to superimpose the structure in the ith frame against the reference 

structure.

2.3.2 Pearson correlation analysis—The Pearson correlation is a measure of linear 

correlation between two variables. 54 In this study, Pearson correlation is applied to evaluate 

how well the distances in the high dimensional manifold are preserved in the embedded 

manifold. The distance metric to evaluate distances between points in both the high- and 

low- dimensional manifolds is the Manhattan distance. This type of distance has been shown 

to be a better metric of distance in high dimensional spaces. 55 The first step in building the 

Pearson correlation is building the covariance. The covariance is then divided by the square 

root of the product of the variance of each variable.

ρ(x, y) = σ(x, y)
var(x)var(y) (Eq. 12)

Pearson correlation is a dimensionless variable with values in the range of [−1, +1]. The 

negative values represent anti-correlation, and positive values represent correlation between 

two variables.

2.3.3 Clusters Similarity Score—The similarity between clusters in the high and low 

dimensions are measured using a cluster similarity score. The cluster similarity score was 

computed by comparing the population of the clusters obtained in the reduced dimensional 

space with the ones of the clusters in the high dimensional space. Two populations will be 

compared to check whether the same data point is present in both high- and low-dimensional 

clusters. Once a cluster with the highest similarity in the low dimension is identified, it will 

be excluded in the similarity search for the subsequent clusters. This guarantees the unique 

pairing between clusters in the high- and low-dimensional spaces. For each cluster, the 

number of points that are allocated in the same cluster both in the high and low dimensional 

spaces are summed and given as percentage values to the total number of data points in the 

trajectory.

CS = c = 1
tot sc

frames * 100 (Eq. 13)
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2.3.4 Silhouette Coefficient—The silhouette coefficient is a metric to evaluate 

clustering performance. 56 This coefficient, SC, is calculated by comparing the mean 

distance between a cluster and the points in the nearest cluster (x), and the mean distance of 

the points within a cluster (y).

SC = (y − x)
max(x, y) (Eq. 14)

Silhouette coefficient is maximized when clusters are well separated from each other.

The calculations of the silhouette coefficients were performed using the implementation 

available in the Sci-kit learn package. 40

2.3.5 Machine Learning Classification: Random Forest—The random forest 

method is an ensemble learning method comprising multiple decision trees for classification. 
57 In each step of developing decision tree model, the model uses parameters Φ = (j,t) 
composed of the data features j and a threshold t to divide the data in two parts based on the 

threshold.

Qleft(θ) = (x, y) |xj ≤ t, Qrigℎt(θ) = (x, y) |xj ≥ t (Eq. 15)

with x being the training data and y being the training label. The Gini impurity criterion was 

used to assess the quality of the model. The Gini impurity score represents the likelihood 

of an incorrect classification of a new random variable of feature t according to the existing 

label distribution.

G = k pk(1 − pk) (Eq. 16)

By constructing multiple random decision trees, the random forest method minimizes 

potential bias towards certain set of features in each specific decision tree model. 58,59 

The random forest method implemented in the Scikit-learn python package was used in this 

study. 40

2.3.6 Markov State Model—The Markov state model (MSM) is used to estimate the 

conditional transition probabilities among non-overlapping states. 60 The collection of the 

transition probabilities among n states is represented as the transition matrix T, with its 

element calculated as Tij =
cij
kcik

, where cik is the count of the number of times the 

trajectories transition from a state i to a state j within a certain time interval Δt, called 

lag time τ.

In this study, the first two components of each dimensionality reduction method were used 

as collective variables to construct MSM. MSMBuilder python package was used to build 

the MSM. 44 The default hyper-parameters provided by MSMBuilder were used for the 

analysis. The ergodic cutoff was turned on and the Maximum Likelihood method was used 

to achieve the reversibility of the transition matrix. A lag time of 30ns was chosen.
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2.3.7 Transition Path Theory—To study the path of the conformational changes 

along the allosteric process, the transition path theory (TPT) was used. 61–63 The central 

element of TPT is the committor probability qi
+. The committor probability represents the 

probability of the state i belonging to the macrostate A to transition to the macrostate B 

instead of staying in the macrostate A. 63 Per definition, qi
+ for state i belonging to A or 

B are 0 and 1, respectively. 64 The committor probability for the intermediate states can be 

calculated as:

−q1
+ + i ∈ I T ikqk

+ = − i ∈ BT ik (Eq. 17)

with the committor probability increasing along the path. The transition probability matrix 

built from the MSM contains all transitions among different macrostates including the 

ones that return to the initial state. The effective flux fij contains the probability flux that 

contributes only to the transition A to B:

fij = πiqi−T ijqj
+ (Eq. 18)

The net flux, which does not account for detours is computed by:

fij
+ = max 0, fij − fji (Eq. 19)

The MSMBuilder implementation of TPT was used in this study. 44

The implementation of the cluster similarity score, Pearson correlation analysis, 

clustering RMSD, and grid-search for Random Forest is available at: https://github.com/

FrancescoTrozzi/Dimensionality-Reduction-Analysis.

3. Results

3.1 Comparison Between UMAP and Other Dimensionality Reduction

3.1.1 Preservation of the data structure—Protein conformations and dynamics are 

the key factors underlying protein functions. Our investigation started by comparing the 

preservation of the structure of the data in the high dimensional manifold, expressed in 

Cartesian coordinates, into a lower dimensional space. The correct representation of the 

high-dimensional data structure into a lower dimension is crucial for the interpretation of 

biological information such as reproduction of free energy barriers, evaluating transitions 

between conformations, etc.

To evaluate the preservation of the data structure in low dimensional space, the Pearson 

correlation analysis was carried out. Pearson correlation is a measure of linear correlation 

between two independent variables X and Y. In this analysis, X and Y are the distances 

in the high and low dimensional spaces, respectively. The distances in the projected low 

dimensional space should reflect the original distances in the high dimensional space. 

Frames saved by every 1ns were extracted from the MD trajectories and reduced to a 2D 

representation using UMAP, t-SNE, PCA, and tICA.
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The Pearson correlation scores for UMAP, t-SNE, PCA, and tICA are 0.87, 0.90, 0.89, 

and 0.84, respectively (Figure 1). Thus, the distances between points in the projections 

obtained from all methods are highly correlated with the distances in the high-dimensional 

Cartesian space (Figure 1A). Figure 1B shows the distance values for the same pair of 

datapoints in the low- and high-dimensional spaces. We observe that whilst PCA has a 

very narrow distribution, indicating high correlation overall, the deep blue points for small 

distances suggest that this method does not provide an accurate representation of the local 

data structure.

3.1.2 Local structure assessment via micro-clustering analysis—An accurate 

representation of the local data structure through clustering analysis is crucial for further 

analyses regarding protein kinetics. The large deviation among structures within the same 

cluster could result in inaccurate free-energy barriers and interfere consequent analysis 

such Markov state modeling. To evaluate the quality of clustering analyses using various 

dimensionality reduction methods, we investigate the preservation of the local data structure 

in the following clustering analyses using these methods.

The 12 µs of VVD trajectories were clustered into 1000 microstates using the k-means 

clustering method and the collective variables of the different embedding as input variables. 

The averaged RMSD of all structures within each microstate was calculated to measure the 

structural similarity within each microstate. To retain structural and dynamical information, 

each microstate should contain a similar degree of similarity corresponding to the cluster 

in the high-dimensional manifold. Figure 2 shows the comparison of the different 2D 

representation in terms of averaged RMSD with the non-reduced Cartesian representation. 

UMAP outperforms other dimensionality reduction methods in terms of similarity within 

each microstate, achieving a high degree of similarity to the non-reduced Cartesian 

representation. The second-best method in this aspect is t-SNE, followed by PCA and tICA. 

Both UMAP and t-SNE methods consistently have RMSD values below 1 Å, which is 

desired for an ideal dimensionality reduction method and has been proposed as a threshold 

of structural dissimilarity within a macrostate needed to avoid the presence of energy 

barriers within the structural cluster. 64,65

3.1.3 Division of the Conformational Space into Macrostates—Protein 

conformational landscape is characterized by a series of low free energy basins comprising 

low-energy conformations. To correctly cluster different structures into metastable states, 

k-means clustering method was used to build clusters with the mean RMSD within cluster 

smaller than 1 Å. As mentioned above, structures with their RMSD smaller than 1 Å are 

expected to belong to the same free energy basin and therefore the same metastable state. 

This procedure ensures that no artificial free energy barriers are hidden within each cluster. 

In this study, a total of 16 clusters were found to be the lowest number of clusters that have 

mean intra-cluster RMSD within 1 Å and maximal inter-clusters difference (Figure 3). These 

16 clusters are hereby referred to as macrostates.

To evaluate how well the clustering in the low dimensional space represents the original 

data in the high-dimensional space, we calculated a similarity score by comparing the 

population of each cluster in the reduced embedding with the corresponding cluster in 
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the high-dimensional manifold. The first step was the assignment of the clusters in the 

low dimensional embedding to the corresponding high-dimensional clusters. After the 

assignment being made, for each pair of clusters, one in the high-dimensional space and 

one in the low-dimensional space, the number of points shared by both clusters was counted. 

The total number of these shared points was summed and converted to the percentage to 

the total number of data points. Figure 4 shows that UMAP improves t-SNE performances 

and outperforms PCA and tICA in similarity score. This demonstrates that UMAP could 

appropriately assign protein structures into their corresponding functional metastable states 

(macrostates) for further analyses.

Another important criterion for dimensionality reduction method is clusters separation. 

Specifically, an adequate low-dimensional projection should retain the separation that these 

macrostates have in the high-dimensional space. The projection of the macro-cluster is 

plotted in Figure S2.

To quantitatively assess the quality of clustering projections, we employed the silhouette 

coefficient (SC). As described in the method section, the SC is a clustering quality 

assessment criterion which evaluates the separation distances between clusters. SCs ranges 

from −1 to +1, where positive values indicate better separation between clusters and negative 

values indicating their overlap. The SC for each method as well as in the Cartesian space are 

listed in Table S1. In Figure 5, we plot the difference between the SC of each dimensionality 

reduction method and the SC of the original Cartesian space. In this comparison, a negative 

value indicates that a projection using certain dimensionality reduction method increases 

the overlap among the macrostates compared to the results in Cartesian space. A positive 

value indicates a higher separation, possibly an over-separation, among macrostates in the 

projection compared to the results in Cartesian space. When only one dimension is used 

to project the conformational space, UMAP and t-SNE offer a more faithful projection 

of the macro-clusters, demonstrated by the small values of the SC difference. When two 

dimensions are considered, a similar amount of divergence in different directions is observed 

for the projection for all methods. Interestingly, the non-linear methods UMAP and t-SNE 

tend to over-separate the clusters, while the linear PCA and tICA tend to increase their 

overlap. When three dimensions are used, both UMAP and t-SNE still lead to higher 

separation than the Cartesian results. PCA method results in a slightly higher separation. 

tICA still results in a higher overlapping than the Cartesian results.

3.1.4 Machine learning classification—In our previous studies, it was demonstrated 

that machine learning based classification for the macrostates is an effective approach 

to delineate protein allosteric mechanism related to individual residues. 27,66–68 To build 

effective machine learning classification models, it is desired to have dimensionality 

reduction methods which could enhance the quality of classification models. We used 

Random Forest as machine learning classification model. The best combination of hyper­

parameters for the input data from each dimensionality reduction method was identified 

using grid searches (Table S2). Using UMAP and t-SNE, the machine learning classification 

models for the macrostates generated using the two most dominant dimensions reach 95% 

accuracy (Figure 6). As a comparison, the similar prediction accuracy is much smaller 

for PCA and tICA, as 66% and 70%, respectively. This is in the agreement with their 
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performance of the 1D projection of the 16 macrostates (Figure 5), in which macrostates 

generated using PCA and tICA methods have more overlaps than those from UMAP and 

t-SNE methods.

3.1.5 Kinetics—Proteins are in constant motions, whether when carrying out their 

biochemical functions or not. One common approach to probe protein dynamics is building 

Markov State Models (MSM) to estimate probabilities for protein transition among different 

macrostates. To build effective MSM, it is important for a dimensionality reduction method 

to retain information about how proteins transition among these macrostates. To evaluate the 

retaining of such information, we analyzed the relaxation timescales in MSM, also referred 

to as implied timescales, using different dimensionality reduction methods with comparison 

to the results using Cartesian coordinates. 19 The relaxation timescale can be interpreted as 

the time needed for a system to change its state. 69 As protein functions are presumed to 

be strongly correlated with protein slow motions, a well-behaving dimensionality reduction 

method is expected to preserve slow degrees of freedom of protein simulations for accurate 

description of protein kinetics related to their functions.

Overall, all methods behave well to produce the implied timescales range close to the 

Cartesian coordinates results except for PCA (Figure 7). UMAP produces implied timescales 

that is the closest to the Cartesian coordinates results, especially with the lag time longer 

than 60ns. The t-SNE method is the second best, and its implied timescales also converge 

to the Cartesian coordinates results with the lag time longer than 70ns. Although tICA 

also produces result close to the one of Cartesian coordinates, it overestimates the implied 

timescales of the system, and its results do not converge to the Cartesian coordinates results. 

This comparison demonstrates that UMAP could retain protein dynamics information to 

describe the kinetics of the target system.

The transition matrix produced in each MSM provides transition probability between each 

pair of macrostates as detailed kinetics information of the system. To further evaluate the 

performance of each dimensionality reduction method to retain kinetics information of the 

system, we implemented a transition matrix error analysis by comparing the transition 

matrices from different dimensionality reduction methods with the Cartesian coordinates 

results as the reference. For this comparison, we used a total of 16 macrostates identified 

in section 3.1.3. The absolute value for the difference of each transition matrix element 

is listed and illustrated as heatmaps (Figure 8). To quantify the deviation from the high 

dimensional transition matrix, the deviation sum was calculated for each method, as 8.26, 

9.33, 14.06, 9.39 for UMAP, t-SNE, PCA, and tICA, respectively. UMAP outperforms the 

other dimensionality reduction methods. This result indicates that UMAP well captures the 

system kinetics, related to the free energy surface. Moreover, tICA performs similarly to 

t-SNE and UMAP.

3.2 How many dimensions are needed?—Ideally, a good dimensionality reduction 

method should retain both structural and kinetic information of a trajectory using a minimal 

number of dimensions possible. Therefore, it was evaluated that how much information 

could be retained by the most dominant components generated in each method. One of 

the goals of this analysis is determining how many dimensions are optimal for retaining 
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structural and kinetic properties of the model system using each method. Both the Pearson 

correlation and transition matrix error for each method were used to evaluate the structural 

and kinetic information retention. The Pearson correlation is used to identify the structural 

similarities between the original data in the high dimensional space and low dimensional 

embedding using various numbers of dimensions.

Using the Pearson correlation analysis, the correlation between the original data and the 

new data projected onto different numbers of components starting with one was calculated 

and plotted for the selected methods (Figure 9A). For UMAP, t-SNE, and PCA, the Pearson 

correlation is above 0.80 when the original data are projected onto the most dominant 

dimension and above 0.90 with the top two dominant dimensions being used. Both PCA and 

t-SNE display the best Pearson correlation when using one or two components. For tICA, 

the Pearson correlation is much lower comparing to the other three methods, making it less 

ideal for the analysis of the protein conformational space.

To evaluate the kinetic information retention using various numbers of dimensions, the 

transition matrix error analysis was carried out for each method when using different 

numbers of components for data projection. The total of absolute transition matrix error for 

each case is plotted for comparison (Figure 9B). When using only one or two components 

for data projection, PCA displays the highest errors, probably due to its linearity nature. 

tICA also displays significant errors when using only one or two components for data 

projection. Surprisingly, t-SNE also displays significant errors when using only one or two 

components for data projection. UMAP consistently displays the lowest transition matrix 

error when using one, two or three components for data projection. Overall, the above 

analyses ensure the applicability of UMAP with a minimal loss of structural and kinetic 

information, two critical aspects in the study of protein biology.

3.3 Benchmark

From a practical point of view, another crucial factor in choosing a dimensionality 

reduction method is its computational cost. We carried out some benchmark calculations 

to compare the computational cost of UMAP, t-SNE, PCA, and tICA for various numbers 

of components for projection (Figure 10A). For PCA, tICA, and UMAP, the computational 

cost remains close to constant regardless the number of components used for projection. 

However, the computational cost increases exponentially with the number of components 

used for projecting when using t-SNE. In our benchmark calculation, we could only perform 

the calculation up to 5 dimensions with t-SNE method. The computational cost with only 

one or two components for data projection is also significantly higher than all other methods 

by factors of 5 to 8. This greatly limits the applicability of t-SNE for protein dynamics 

analyses. Although the computational cost for PCA and tICA is close to negligible as linear 

methods, the computational cost for UMAP as nonlinear dimensionality reduction method 

is not much higher, making UMAP as a very feasible option for dimensionality reduction 

analysis. All the benchmark calculations were performed with NVIDIA GPUs which are 

configured with dual Intel Xeon E5-2695v4 2.1 GHz 18-core “Broadwell” processors, 256 

GB of DDR4-2400 memory.
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The benchmark calculations were also carried for two components projection with different 

numbers of data points used, as 2D is the most widely used for protein dynamics analyses. 

Regarding the speed for varying number of points, the number of data-points was varied 

by progressively increasing the stride between consecutive frames in the trajectories. Figure 

10B shows that UMAP achieves similar speed performance of PCA and tICA. While its 

computational time increases with the increase the sample number, its speed remains close 

to the linear methods. The time required by t-SNE significantly exceeds the time required by 

tICA, PCA, and UMAP.

3.4 Leading to Insight into Protein Function Mechanism

The purpose of using dimensionality reduction methods for protein dynamics analyses is 

providing mechanistic insights into protein structures and functions. As there is no universal 

standard to evaluate such performance, some demonstrative analyses were carried out for 

the model system used in this study. VVD is a well characterized circadian clock protein 

that has been shown to undergo conformational changes depending on the light condition. 

Following the rational of the sections discussed above, the conformational space of this 

protein sampled in the MD simulations has been clustered in 16 macrostates projected onto 

the 2D surface using the top two components from UMAP analysis (Figure 11A). In this 

plot, blue is used to indicate the dark state, lighter blue is used to indicate the transition dark 

state, red is used to indicate the light state, and lighter red for the transition light state. The 

light (red) and dark (blue) states in the UMAP projections are well separated (Figure 11A), 

which is ideal to study proteins with distinct functional states.

With well-separated representation of functional states in the reduced dimensions, the 

Transition Path Theory (TPT) could be used to provide detailed kinetics of transitions 

among different macrostates. Using TPT, it is identified that the major transition pathway 

from the dark state (State 6) to the light state (State 12) gradually transition via transition 

pathway through State 4 belonging to the transient dark state and State 7 belonging to the 

transient light state (Figure 11B).

The α helix movement and undocking of the N-terminus as key changes are illustrated in the 

representative structures (Figure 11C). These movements have been recognized to be crucial 

steps in VVD allostery in the comprehensive mechanistic study done on this system by Zhou 

et al. 27 This analysis not only demonstrates the ability of UMAP of capturing fundamental 

biological properties of the system, but showcases that UMAP can be used as visualization 

tool for protein conformational space.

4. Discussion

Molecular dynamics simulations have been used as indispensable approaches for the studies 

of protein functions within the dynamics framework. Although the time scales affordable 

for the MD simulations have been increasing significantly in recent years, it is still far 

from being comparable with the actual time scales for the protein biological functions. 

Even with this limitation, the curse of the dimensionality still prevents direct analyses of 

many properties of protein dynamics. Therefore, dimensionality reduction methods have 
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been serving as essential tools to process protein MD simulations to gain insight into protein 

dynamical properties including both conformational space and kinetics information.

RMSD is a simple and effective measurement of conformational deviation between 

two structures. Using this quantity, the ability of each dimensionality reduction method 

to represent the conformational space sampled from the simulation could be evaluate 

accurately. The reason that the nonlinear dimensionality reduction methods, including 

UMAP and t-SNE, could produce much better clustering results than the linear methods, 

including PCA and tICA, is probably because the most protein conformational changes have 

intrinsic nonlinearity, such as bond bending, dihedral angle rotations, and global motion 

of protein structures. UMAP produces better results than t-SNE when comparing with the 

Cartesian coordinates results as the benchmark (Figure 2), suggesting that this method is 

approaching methodological limit of dimensionality reduction methods in general. This is 

also supported by the highest similarity score of UMAP among all four methods (Figure 

4). It should be noted that the comparison presented here is by no means complete or 

exhaust. Therefore, it should not be concluded that UMAP is the best option to represent the 

conformational space sampling in all cases.

In addition to representing conformational changes well, it is more important and 

challenging to retain the kinetics information of protein dynamics when projecting the 

simulation trajectories onto reduced dimensional space. As this is an active research area, 

a universal standard to evaluate kinetics information is yet to be determined. Therefore, 

the convergence test of implied timescales in MSM is used as the benchmark for kinetics 

information retention. Although it is not surprising that tICA demonstrates closer trend to 

the results of Cartesian coordinates as tICA was developed to capture the slow and global 

motion of proteins, it is somewhat suspicious that the tICA results do not converge to the 

Cartesian coordinates results with longer lag times. Overall, UMAP is demonstrated as a 

more balanced option than both tICA and t-SNE methods. With smaller lag times, UMAP 

results are also close to the Cartesian coordinates results, similar to tICA (Figure 7). With 

longer lag times, UMAP results display better convergence to the Cartesian coordinates 

results than t-SNE (Figure 7). The superiority of UMAP for kinetics information retention is 

also supported by the high accuracy of machine learning based prediction model based on 

MSM using UMAP projection (Figure 6). The fact that UMAP results are better than other 

methods in both conformation and kinetics representations is promising. Although there 

is no direct evidence, the satisfactory performance of UMAP to preserve protein kinetics 

information could be partially due to the good representation of protein conformational 

space.

Because of the limitation of human perception of dimensionality, the dimensions of 

graphical representation of protein dynamics analysis have been limited to two. This is 

validated by the evaluation of Pearson correlation between the projected data in low 

dimensional spaces and the original data and transition matrix error analyses (Figure 9). 

Both t-SNE and PCA methods display high Pearson correlation with one or two dimensions 

for data projection. As a linear method, PCA is not always suitable for protein dynamics 

simulations, leaving t-SNE as a better choice in this regard. UMAP produces comparable 

Pearson correlations with one or two dimensions for data projection. Interestingly, the 
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UMAP method produces much lower transition matrix error than all other three methods, 

making it a well-balanced method for low dimensional spaces projection. Considering 

almost constant computational cost of UMAP method, which is similar to PCA and tICA 

and much lower than the exponentially increasing computational cost of t-SNE (Figure 10), 

UMAP clearly serves as a viable option for dimensionality reduction analyses of complexed 

biomolecular systems, including proteins.

5. Conclusions

In this study, the suitability and performance of the Uniform Manifold Approximation 

and Projection (UMAP) as a new fuzzy topology-based dimensionality reduction method 

for the simulation of macromolecules was systematically evaluated and compared with 

other widely used dimensionality reduction methods, including Principal Component 

Analysis (PCA), time-structure Independent Components Analysis (tICA), and t-Distributed 

Stochastic Neighbor Embedding (t-SNE). Using the Cartesian coordinates representation as 

the benchmark, it was demonstrated that UMAP could well retain the protein conformational 

information after the projection of original data. More importantly, the UMAP could 

also retain the protein kinetics information, which is critical to gain insight into protein 

functions within dynamics framework. The balanced performance of UMAP to preserve 

protein kinetics is achieved through building Markov state model (MSM) based on 

UMAP projection with well-preserved conformational space information. As a non-linear 

dimensionality reduction method, UMAP displays similar overall performance and is more­

balanced between conformational and kinetics information retention than t-SNE. In addition, 

the computational cost of UMAP remains close to constant regardless the number of 

dimensions being used for data projection. As comparison t-SNE requires exponentially 

increasing computational cost regarding the number of dimensions for the target data 

projection. Overall, the UMAP method is a well behaving and balanced dimensionality 

reduction method for in-depth biomacromolecule simulation analyses to gain insight into 

both structure-function and dynamics-function relations.
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PCA Principal Component Analysis

t-ICA time-structure Independent Component Analysis

MD molecular dynamics

CV collective variable

MSM Markov state model

KL Kullback–Leibler

VVD vivid

CE cross entropy

RMSD root mean squared deviation

PC Pearson correlation

SC silhouette coefficient

ML machine learning

TPT transition path theory

References

(1). Joshi T; Xu DQuantitative Assessment of Relationship between Sequence Similarity and Function 
Similarity. BMC Genomics2007, 8 (1), 1–10. 10.1186/1471-2164-8-222. [PubMed: 17199895] 

(2). Fowler DM; Araya CL; Fleishman SJ; Kellogg EH; Stephany JJ; Baker D; Fields SHigh­
Resolution Mapping of Protein Sequence-Function Relationships. Nat. Methods2010, 7 (9), 741–
746. 10.1038/nmeth.1492. [PubMed: 20711194] 

(3). Hegyi H; Gerstein MThe Relationship between Protein Structure and Function: A Comprehensive 
Survey with Application to the Yeast Genome. J. Mol. Biol1999, 288 (1), 147–164. 10.1006/
jmbi.1999.2661. [PubMed: 10329133] 

(4). Orengo CA; Todd AE; Thornton JMFrom Protein Structure to Function. Curr. Opin. Struct. 
Biol1999, 9 (3), 374–382. 10.1016/S0959-440X(99)80051-7. [PubMed: 10361094] 

(5). Hensen U; Meyer T; Haas J; Rex R; Vriend G; Grubmüller HExploring Protein Dynamics Space: 
The Dynasome as the Missing Link between Protein Structure and Function. PLoS One2012, 7 
(5), e33931. 10.1371/journal.pone.0033931. [PubMed: 22606222] 

(6). Karplus M; Kuriyan JMolecular Dynamics and Protein Function. Proc. Natl. Acad. Sci. 
U.S.A2005, 102 (19), 6679–6685. 10.1073/pnas.0408930102. [PubMed: 15870208] 

(7). Klepeis JL; Lindorff-Larsen K; Dror RO; Shaw DELong-Timescale Molecular Dynamics 
Simulations of Protein Structure and Function. Curr. Opin. Struct. Biol2009, 19 (2), 120–127. 
10.1016/j.sbi.2009.03.004. [PubMed: 19361980] 

(8). Hansson T; Oostenbrink C; Van Gunsteren WFMolecular Dynamics Simulations. Curr. Opin. 
Struct. Biol2002, 12 (2), 190–196. 10.1016/S0959-440X(02)00308-1. [PubMed: 11959496] 

(9). García AELarge-Amplitude Nonlinear Motions in Proteins. Phys. Rev. Lett1992, 68 (17), 2696–
2699. 10.1103/PhysRevLett.68.2696. [PubMed: 10045464] 

(10). Stein SAM; Loccisano AE; Firestine SM; Evanseck JDChapter 13 Principal Components 
Analysis: A Review of Its Application on Molecular Dynamics Data. Annual Reports in 
Computational Chemistry. 2006, pp 233–261. 10.1016/S1574-1400(06)02013-5.

(11). Tian H; Tao PIvis Dimensionality Reduction Framework for Biomacromolecular Simulations. J. 
Chem. Inf. Model2020, 60 (10), 4569–4581. 10.1021/acs.jcim.0c00485. [PubMed: 32820912] 

Trozzi et al. Page 17

J Phys Chem B. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(12). Song Z; Zhou H; Tian H; Wang X; Tao PUnraveling the Energetic Significance of Chemical 
Events in Enzyme Catalysis via Machine-Learning Based Regression Approach. Commun. 
Chem2020, 3 (1), 1–10. 10.1038/s42004-020-00379-w.

(13). Das P; Moll M; Stamati H; Kavraki LE; Clementi CLow-Dimensional, Free-Energy Landscapes 
of Protein-Folding Reactions by Nonlinear Dimensionality Reduction. Proc. Natl. Acad. Sci. U. 
S. A2006, 103 (26), 9885–9890. 10.1073/pnas.0603553103. [PubMed: 16785435] 

(14). Brown WM; Martin S; Pollock SN; Coutsias EA; Watson J-PAlgorithmic Dimensionality 
Reduction for Molecular Structure Analysis. J. Chem. Phys2008, 129 (6), 064118. 
10.1063/1.2968610. [PubMed: 18715062] 

(15). Stamati H; Clementi C; Kavraki LEApplication of Nonlinear Dimensionality Reduction 
to Characterize the Conformational Landscape of Small Peptides. Proteins Struct. Funct. 
Bioinforma2010, 78 (2), 223–235. 10.1002/prot.22526.

(16). Ferguson AL; Panagiotopoulos AZ; Kevrekidis IG; Debenedetti PGNonlinear Dimensionality 
Reduction in Molecular Simulation: The Diffusion Map Approach. Chem. Phys. Lett2011, 509 
(1–3), 1–11. 10.1016/j.cplett.2011.04.066.

(17). Duan M; Fan J; Li M; Han L; Huo SEvaluation of Dimensionality-Reduction Methods from 
Peptide Folding-Unfolding Simulations. J. Chem. Theory Comput2013, 9 (5), 2490–2497. 
10.1021/ct400052y. [PubMed: 23772182] 

(18). Doerr S; Ariz-Extreme I; Harvey MJ; De Fabritiis GDimensionality Reduction Methods for 
Molecular Simulations. arXiv. 2017.

(19). Zhou H; Wang F; Tao PT-Distributed Stochastic Neighbor Embedding Method with the Least 
Information Loss for Macromolecular Simulations. J. Chem. Theory Comput2018, 14 (11), 
5499–5510. 10.1021/acs.jctc.8b00652. [PubMed: 30252473] 

(20). Tribello GA; Gasparotto PUsing Dimensionality Reduction to Analyze Protein Trajectories. 
Front. Mol. Biosci2019, 6 (JUN), 46. 10.3389/fmolb.2019.00046. [PubMed: 31275943] 

(21). Prinz JH; Wu H; Sarich M; Keller B; Senne M; Held M; Chodera JD; Schtte C; Noé FMarkov 
Models of Molecular Kinetics: Generation and Validation. J. Chem. Phys2011, 134 (17), 174105. 
10.1063/1.3565032. [PubMed: 21548671] 

(22). Bowman GR; Pande VS; Noé FAn Introduction to Markov State Models and Their Application to 
Long Timescale Molecular Simulation. Springer2014, 797, 148. 10.1007/978-94-007-7606-7.

(23). Shukla D; Hernández CX; Weber JK; Pande VSMarkov State Models Provide Insights into 
Dynamic Modulation of Protein Function. Acc. Chem. Res2015, 48 (2), 414–422. 10.1021/
ar5002999. [PubMed: 25625937] 

(24). Shukla S; Shamsi Z; Moffett AS; Selvam B; Shukla DApplication of Hidden Markov Models in 
Biomolecular Simulations. In Hidden Markov Models; Springer, 2017; pp 29–41.

(25). Shamsi Z; Moffett AS; Shukla DEnhanced Unbiased Sampling of Protein Dynamics Using 
Evolutionary Coupling Information. Sci. Rep2017, 7 (1), 1–13. [PubMed: 28127051] 

(26). Zhou S; Wang Q; Wang Y; Yao X; Han W; Liu HThe Folding Mechanism and Key Metastable 
State Identification of the PrP127–147 Monomer Studied by Molecular Dynamics Simulations 
and Markov State Model Analysis. Phys. Chem. Chem. Phys2017, 19 (18), 11249–11259. 
10.1039/c7cp01521f. [PubMed: 28406520] 

(27). Zhou H; Dong Z; Verkhivker G; Zoltowski BD; Tao PAllosteric Mechanism of the Circadian 
Protein Vivid Resolved through Markov State Model and Machine Learning Analysis. PLoS 
Comput. Biol2019, 15 (2), e1006801. 10.1371/journal.pcbi.1006801. [PubMed: 30779735] 

(28). Roweis ST; Saul LKNonlinear Dimensionality Reduction by Locally Linear Embedding. Science. 
2000. 290 (5500), 2323–2326 10.1126/science.290.5500.2323. [PubMed: 11125150] 

(29). Cunningham JP; Ghahramani ZLinear Dimensionality Reduction: Survey, Insights, and 
Generalizations. J. Mach. Learn. Res2015, 16 (89), 2859–2900.

(30). Sugiyama MNonlinear Dimensionality Reduction. In Introduction to Statistical Machine 
Learning; Elsevier, 2016; pp 429–446. 10.1016/b978-0-12-802121-7.00047-9.

(31). McInnes L; Healy J; Saul N; Großberger LUMAP: Uniform Manifold Approximation and 
Projection. J. Open Source Softw2018, 3 (29), 861. 10.21105/joss.00861.

Trozzi et al. Page 18

J Phys Chem B. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(32). Becht E; McInnes L; Healy J; Dutertre CA; Kwok IWH; Ng LG; Ginhoux F; 
Newell EWDimensionality Reduction for Visualizing Single-Cell Data Using UMAP. Nat. 
Biotechnol2019, 37 (1), 38–47. 10.1038/nbt.4314.

(33). Cao J; Spielmann M; Qiu X; Huang X; Ibrahim DM; Hill AJ; Zhang F; Mundlos S; 
Christiansen L; Steemers FJ; Trapnell C; Shendure JThe Single-Cell Transcriptional Landscape 
of Mammalian Organogenesis. Nature2019, 566 (7745), 496–502. 10.1038/s41586-019-0969-x. 
[PubMed: 30787437] 

(34). Packer JS; Zhu Q; Huynh C; Sivaramakrishnan P; Preston E; Dueck H; Stefanik D; Tan K; 
Trapnell C; Kim J; Waterston RH; Murray JIA Lineage-Resolved Molecular Atlas of C. Elegans 
Embryogenesis at Single-Cell Resolution. Science. 2019, 365 (6459). 10.1126/science.aax1971.

(35). Diaz-Papkovich A; Anderson-Trocmé L; Ben-Eghan C; Gravel SUMAP Reveals Cryptic 
Population Structure and Phenotype Heterogeneity in Large Genomic Cohorts. PLoS Genet. 
2019, 15 (11), e1008432. 10.1371/journal.pgen.1008432. [PubMed: 31675358] 

(36). Zoltowski BD; Schwerdtfeger C; Widom J; Loros JJ; Bilwes AM; Dunlap JC; Crane 
BRConformational Switching in the Fungal Light Sensor Vivid. Science. 2007, 316 (5827), 
1054–1057. 10.1126/science.1137128. [PubMed: 17510367] 

(37). Zoltowski BD; Crane BRLight Activation of the LOV Protein Vivid Generates a Rapidly 
Exchanging Dimer. Biochemistry2008, 47 (27), 7012–7019. 10.1021/bi8007017. [PubMed: 
18553928] 

(38). Zoltowski BD; Vaccaro B; Crane BRMechanism-Based Tuning of a LOV Domain Photoreceptor. 
Nat. Chem. Biol2009, 5 (11), 827–834. 10.1038/nchembio.210. [PubMed: 19718042] 

(39). Wold S; Esbensen K; Geladi PPrincipal Component Analysis. Chemom. Intell. Lab. Syst1987, 2 
(1–3), 37–52. 10.1016/0169-7439(87)80084-9.

(40). Pedregosa F; Michel V; Varoquaux G; Thirion B; Dubourg V; Passos A; Perrot M; Grisel O; 
Blondel M; Prettenhofer P; Weiss R; Vanderplas J; Cournapeau D; Pedregosa F; Varoquaux 
G; Gramfort A; Thirion B; Grisel O; Dubourg V; Passos A; Brucher M; Perrot M; Duchesnay 
ÉScikit-Learn: Machine Learning in Python. J Mach Learn Res. 2011, 12, 2825–2830.

(41). Naritomi Y; Fuchigami SSlow Dynamics in Protein Fluctuations Revealed by Time-Structure 
Based Independent Component Analysis: The Case of Domain Motions. J. Chem. Phys2011, 134 
(6), 02B617. 10.1063/1.3554380.

(42). Schwantes CR; Pande VSImprovements in Markov State Model Construction Reveal Many 
Non-Native Interactions in the Folding of NTL9. J. Chem. Theory Comput2013, 9 (4), 2000–
2009. 10.1021/ct300878a. [PubMed: 23750122] 

(43). Sultan MM; Pande VSTICA-Metadynamics: Accelerating Metadynamics by Using Kinetically 
Selected Collective Variables. J. Chem. Theory Comput2017, 13 (6), 2440–2447. 10.1021/
acs.jctc.7b00182. [PubMed: 28383914] 

(44). Harrigan MP; Sultan MM; Hernández CX; Husic BE; Eastman P; Schwantes CR; Beauchamp 
KA; McGibbon RT; Pande VSMSMBuilder: Statistical Models for Biomolecular Dynamics. 
Biophys. J2017, 112 (1), 10–15. 10.1016/j.bpj.2016.10.042. [PubMed: 28076801] 

(45). Van der Maaten Laurens and Hinton G. Visualizing Data Using T-SNE. J. Mach. Learn. Res 
2008, 9 (11), 2579–2605.

(46). Berman HM; Battistuz T; Bhat TN; Bluhm WF; Bourne PE; Burkhardt K; Feng Z; Gilliland 
GL; Iype L; Jain S; Fagan P; Marvin J; Padilla D; Ravichandran V; Schneider B; Thanki N; 
Weissig H; Westbrook JD; Zardecki CThe Protein Data Bank. Acta Crystallogr. Sect. D Biol. 
Crystallogr2002, 58 (6), 899–907. 10.1107/S0907444902003451. [PubMed: 12037327] 

(47). Freddolino PL; Gardner KH; Schulten KSignaling Mechanisms of LOV Domains: New Insights 
from Molecular Dynamics Studies. Photochem. Photobiol. Sci2013, 12 (7), 1158–1170. 10.1039/
c3pp25400c. [PubMed: 23407663] 

(48). Martínez-Rosell G; Giorgino T; De Fabritiis GPlayMolecule ProteinPrepare: A Web Application 
for Protein Preparation for Molecular Dynamics Simulations. J. Chem. Inf. Model2017, 57 (7), 
1511–1516. 10.1021/acs.jcim.7b00190. [PubMed: 28594549] 

(49). Brooks BR; Brooks CL; Mackerell AD; Nilsson L; Petrella RJ; Roux B; Won Y; Archontis 
G; Bartels C; Boresch S; Caflisch A; Caves L; Cui Q; Dinner AR; Feig M; Fischer S; Gao J; 
Hodoscek M; Im W; Kuczera K; Lazaridis T; Ma J; Ovchinnikov V; Paci E; Pastor RW; Post 

Trozzi et al. Page 19

J Phys Chem B. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CB; Pu JZ; Schaefer M; Tidor B; Venable RM; Woodcock HL; Wu X; Yang W; York DM; 
Karplus MCHARMM: The Biomolecular Simulation Program. J. Comput. Chem2009, 30 (10), 
1545–1614. 10.1002/jcc.21287. [PubMed: 19444816] 

(50). Eastman P; Swails J; Chodera JD; McGibbon RT; Zhao Y; Beauchamp KA; Wang LP; 
Simmonett AC; Harrigan MP; Stern CD; Wiewiora RP; Brooks BR; Pande VSOpenMM 7: 
Rapid Development of High Performance Algorithms for Molecular Dynamics. PLoS Comput. 
Biol2017, 13 (7), e1005659. 10.1371/journal.pcbi.1005659. [PubMed: 28746339] 

(51). Eastman P; Friedrichs MS; Chodera JD; Radmer RJ; Bruns CM; Ku JP; Beauchamp KA; Lane 
TJ; Wang LP; Shukla D; Tye T; Houston M; Stich T; Klein C; Shirts MR; Pande VSOpenMM 
4: A Reusable, Extensible, Hardware Independent Library for High Performance Molecular 
Simulation. J. Chem. Theory Comput2013, 9 (1), 461–469. 10.1021/ct300857j. [PubMed: 
23316124] 

(52). Ryckaert JP; Ciccotti G; Berendsen HJ . Numerical Integration of the Cartesian Equations of 
Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. J. Comput. Phys 1977, 
23 (3), 327–341. 10.1016/0021-9991(77)90098-5.

(53). Essmann U; Perera L; Berkowitz ML; Darden T; Lee H; Pedersen LGA Smooth Particle Mesh 
Ewald Method. J. Chem. Phys1995, 103 (19), 8577–8593. 10.1063/1.470117.

(54). Benesty J; Chen J; Huang Y; Cohen IPearson Correlation Coefficient. In Noise reduction in 
speech processing; Springer, 2009; pp 1–4.

(55). Aggarwal CC; Hinneburg A; Keim DAOn the Surprising Behavior of Distance Metrics in High 
Dimensional Space. In Lecture Notes in Computer Science (including subseries Lecture Notes 
in Artificial Intelligence and Lecture Notes in Bioinformatics); 2001; Vol. 1973, pp 420–434. 
10.1007/3-540-44503-x_27.

(56). Rousseeuw PJSilhouettes: A Graphical Aid to the Interpretation and Validation of Cluster 
Analysis. J. Comput. Appl. Math1987, 20 (C), 53–65. 10.1016/0377-0427(87)90125-7.

(57). Liaw A; Wiener MClassification and Regression by RandomForest. R news2002, 2 (December), 
18–22.

(58). Turney PBias and the Quantification of Stability. Mach. Learn1995, 20 (1), 23–33.

(59). Breiman LRandom Forests. Mach. Learn2001, 45 (1), 5–32. 10.1023/A:1010933404324.

(60). Husic BE; Pande VSMarkov State Models: From an Art to a Science. J. Am. Chem. Soc2018, 
140 (7), 2386–2396. 10.1021/jacs.7b12191. [PubMed: 29323881] 

(61). E W; Vanden-Eijnden ETowards a Theory of Transition Paths. J. Stat. Phys2006, 123 (3), 503–
523. 10.1007/s10955-005-9003-9.

(62). Metzner P; Schütte C; Vanden-Eijnden ETransition Path Theory for Markov Jump Processes. 
Multiscale Model. Simul2009, 7 (3), 1192–1219. 10.1137/070699500.

(63). Noé F; Schütte C; Vanden-Eijnden E; Reich L; Weikl TRConstructing the Equilibrium Ensemble 
of Folding Pathways from Short Off-Equilibrium Simulations. Proc. Natl. Acad. Sci. U. S. 
A2009, 106 (45), 19011–19016. 10.1073/pnas.0905466106. [PubMed: 19887634] 

(64). Bowman GR; Beauchamp KA; Boxer G; Pande VSProgress and Challenges in the Automated 
Construction of Markov State Models for Full Protein Systems. J. Chem. Phys2009, 131 (12), 
124101. 10.1063/1.3216567. [PubMed: 19791846] 

(65). Pande VS; Beauchamp K; Bowman GREverything You Wanted to Know about Markov State 
Models but Were Afraid to Ask. Methods. 2010, 52 (1), 99–105. 10.1016/j.ymeth.2010.06.002. 
[PubMed: 20570730] 

(66). Wang F; Shen L; Zhou H; Wang S; Wang X; Tao PMachine Learning Classification Model 
for Functional Binding Modes of TEM-1 β-Lactamase. Front. Mol. Biosci2019, 6, 47. 10.3389/
fmolb.2019.00047. [PubMed: 31355207] 

(67). Tian H; Tao PDeciphering the Protein Motion of S1 Subunit in SARS-CoV-2 Spike 
Glycoprotein through Integrated Computational Methods. J. Biomol. Struct. Dyn2020, 1–8. 
10.1080/07391102.2020.1802338.

(68). Tian H; Trozzi F; Zoltowski BD; Tao PDeciphering the Allosteric Process of the Phaeodactylum 
Tricornutum Aureochrome 1a LOV Domain. J. Phys. Chem. B2020, 124 (41), 8960–8972. 
[PubMed: 32970438] 

Trozzi et al. Page 20

J Phys Chem B. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(69). Swope WC; Pitera JW; Suits F; Pitman M; Eleftheriou M; Fitch BG; Germain RS; Rayshubski 
A; Ward TJC; Zhestkov Y; Zhou RDescribing Protein Folding Kinetics by Molecular Dynamics 
Simulations. 2. Example Applications to Alanine Dipeptide and a β-Hairpin Peptide. J. Phys. 
Chem. B2004, 108 (21), 6582–6594. 10.1021/jp037422q.

Trozzi et al. Page 21

J Phys Chem B. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Pearson correlation analysis of UMAP, t-SNE, PCA, and tICA calculated based on the 

2D reduced representations. A) Pearson correlations values between projected and high­

dimensional trajectories. B) Scatterplots where the X-axis represent the distances in the high 

dimensional space, while the Y-axis represent the distances in the low dimensional space. 

The coloring represents the agreement between the original and projected distances. Red and 

blue represent agreement and disagreement, respectively.
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Figure 2. 
Averaged RMSD of 1000 microstates for various 2D representations and Cartesian 

coordinates. Microstates were sorted based on the average RMSD values.
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Figure 3. 
Selection of number of macrostate based on cluster RMSD. A) Heatmap of RMSD within 

each state. B) Violin plot of RMSD values within states (blue) and inter states (orange).

Trozzi et al. Page 24

J Phys Chem B. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Similarity, expressed in percentage, between cluster populations in low-dimensional 

representations and high-dimensional Cartesian space.
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Figure 5. 
Comparison of silhouette coefficient for UMAP, t-SNE, PCA, and tICA projections vs 

Cartesian space results. Bar heights represent the deviation in coefficient from the Cartesian 

case. Positive values represent higher separation of the clusters in the projected space. 

Negative values represent overcrowding of the clusters in projected spaces.
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Figure 6. 
Machine learning prediction accuracy of the different macrostates based on the 2D input of 

the low-dimensional representation using Random Forest.
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Figure 7. 
Comparison of implied timescales of different methods.
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Figure 8. 
Heatmap representation of divergence of the different transition matrices obtained using 

different dimensionality reduction methods from the high dimensional transition matrix.
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Figure 9. 
Performance of different methods regarding the number of components used in projection. 

A) Pearson correlation between high dimensional representation and reduced representation 

of the data at varying number of projected dimensions. B) Transition matrices error between 

high dimensional representation and reduced representation of the data at varying number of 

projected dimensions.
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Figure 10. 
Benchmark using different dimensionality reduction methods. A) Time in seconds required 

for dimensionality reduction at various numbers of projected dimensions. B) Time in 

seconds required for 2D projections using different number of frames as data points.

Trozzi et al. Page 31

J Phys Chem B. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11. 
Demonstration of protein function analysis using UMAP method. A) UMAP 2D projection. 

Reduced space was clustered in 16 macrostates according to the criteria presented above. 

The clusters were color coded based on their population. Dark states are blue, and light 

states are red. Dashed line represents division between dark and light areas. Arrows 

represent pathway for allosteric conversion from fully dark to fully light states. B) 

Population states analysis of the macrostates involved in VVD allosteric process. C) 

Visualization of the four representative states involved in the allosteric process.
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