Table 3. Summary of major parameters utilized in the deep learning approaches with Word2vec models.
Parameters | Value | Parameters | Value |
---|---|---|---|
Dimensionality | 100, 200, 300, 400 | Dropout | 0.2, 0.5 |
Sample | 0.001 | Seed | 1 |
Window size | 10 | min_alpha | 0.0001 |
Sentences | None | min_count | 5 |
Batch_words | 10,000 | cbow_mean | 1 |
Max_vocab_size | None | Alpha | 0.025 |
SG[0,1] | 1 for skim gram otherwise CBOW | null_word | 0 |
HS[0, 1] | 0 | Activation function | ReLU |
Negative | 5 | trim_rule | None |
Hashfxn | 5 | sorted_vocab | 1 |