Table 1.
Layers | Configurations | Size |
---|---|---|
Input | - | 3 × 250 × 250 |
Convolution block 1 | [k: 3 × 3, s: 1, p: 1] × 2 | 64 × 250 × 250 |
Pool 1 | mp: 2 × 2, s: 2 | 64 × 125 × 125 |
Convolution block 2 | [k: 3 × 3, s: 1, p: 1] × 2 | 128 × 125 × 125 |
Pool 2 | mp: 2 × 2, s: 2 | 128 × 62 × 62 |
Convolution block 3 | [k: 3 × 3, s: 1, p: 1] × 4 | 256 × 62 × 62 |
Pool 3 | mp: 2 × 2, s: 2 | 256 × 31 × 31 |
Convolution block 4 | [k: 3 × 3, s: 1, p: 1] × 4 | 512 × 31 × 31 |
Pool 4 | mp: 2 × 2, s: 2 | 512 × 15 × 15 |
Convolution block 5 | [k: 3 × 3, s: 1, p: 1] × 4 | 512 × 15 × 15 |
Pool 5 | mp: 2 × 2, s: 2 | 512 × 7 × 7 |
Flatten | - | 25088 × 1 |
FC 1 | nh: 1024 | 1024 × 1 |
Dropout | prob: 0.5 | 1024 × 1 |
FC 2 | nh: 1024 | 1024 × 1 |
FC 3 | nh: 2 | 2 × 1 |
Output | softmax | 2 × 1 |
k, s, p, mp, nh, prob are kernel, stride size, padding size, max pooling, number of neurons, and probability, respectively. FC: Fully connected single-layer neural network