Skip to main content
. 2021 Jun 9;12:26. doi: 10.4103/jpi.jpi_52_20

Table 1.

Epithelium detection network architecture

Layers Configurations Size
Input - 3 × 250 × 250
Convolution block 1 [k: 3 × 3, s: 1, p: 1] × 2 64 × 250 × 250
Pool 1 mp: 2 × 2, s: 2 64 × 125 × 125
Convolution block 2 [k: 3 × 3, s: 1, p: 1] × 2 128 × 125 × 125
Pool 2 mp: 2 × 2, s: 2 128 × 62 × 62
Convolution block 3 [k: 3 × 3, s: 1, p: 1] × 4 256 × 62 × 62
Pool 3 mp: 2 × 2, s: 2 256 × 31 × 31
Convolution block 4 [k: 3 × 3, s: 1, p: 1] × 4 512 × 31 × 31
Pool 4 mp: 2 × 2, s: 2 512 × 15 × 15
Convolution block 5 [k: 3 × 3, s: 1, p: 1] × 4 512 × 15 × 15
Pool 5 mp: 2 × 2, s: 2 512 × 7 × 7
Flatten - 25088 × 1
FC 1 nh: 1024 1024 × 1
Dropout prob: 0.5 1024 × 1
FC 2 nh: 1024 1024 × 1
FC 3 nh: 2 2 × 1
Output softmax 2 × 1

k, s, p, mp, nh, prob are kernel, stride size, padding size, max pooling, number of neurons, and probability, respectively. FC: Fully connected single-layer neural network