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SUMMARY

Neural representations of head direction have been discovered in many species. Theoretical work 

has proposed that the dynamics associated with these representations are generated, maintained, 

and updated by recurrent network structures called ring attractors. We evaluated this theorized 

structure-function relationship by performing electron microscopy-based circuit reconstruction and 

RNA profiling of identified cell types in the heading direction system of Drosophila melanogaster. 
We identified motifs that have been hypothesized to maintain the heading representation in 

darkness, update it when the animal turns, and tether it to visual cues. Functional studies provided 

support for the proposed roles of individual excitatory or inhibitory circuit elements in shaping 

activity. We also discovered recurrent connections between neuronal arbors with mixed pre- and 

post-synaptic specializations. Our results confirm that the Drosophila heading direction network 

contains the core components of a ring attractor while also revealing unpredicted structural 

features that might enhance the network’s computational power.

Introduction

Mammalian head-direction cells provide one of the clearest examples of an internal 

representation of an animal’s relationship to its surroundings (Taube et al., 1990a). The 

head-direction representation uses visual cues in the environment as a reference, but persists 

in darkness, where it is updated by self-motion cues (Taube et al., 1990b). This internal 

representation likely guides navigation behaviors. Indeed, perturbations to the system in 

rats induce errors in path-integration (Butler et al., 2017; Valerio and Taube, 2012). A 

large body of theoretical work has addressed conceptual questions about how such a 

representation of head direction might be generated and updated (Knierim and Zhang, 
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2012). These studies propose that the neuronal population dynamics associated with head­

direction representations are maintained by network structures called ring attractors (Skaggs 

et al., 1995; Zhang, 1996). These recurrent networks, which are ideally suited to encode 

a circular variable like head-direction, are often schematized as a ring of neurons whose 

connectivity depends on their directional tuning preferences (Figure 1A). In most model 

implementations, neurons with similar directional tuning excite each other and those with 

different tuning inhibit each other (Figure 1A), thereby enabling the generation of a stable 

pattern of localized activity in any part of the network (Amari, 1977; Ben-Yishai et al., 

1995; Wu and Amari, 2005). Recurrent loops with a shift move the activity ‘bump’ around 

the ring as the animal turns (Figure 1B–D), and the compass-like representation is tethered 

to the animal’s surroundings through visual inputs, which are used as a reference to guide 

heading (Figure 1E, 1F). Experimental support for this general theoretical formulation has 

come from analyses of head-direction cell population activity under a variety of different 

conditions (Butler et al., 2017; Chaudhuri et al., 2019; Clark and Taube, 2012; Hargreaves et 

al., 2007; Muir et al., 2009; Peyrache et al., 2015; Taube et al., 1990b; Yoganarasimha 

et al., 2006). However, different network implementations of this general formulation 

make distinct assumptions about the connectivity of their constituent neurons (Ben-Yishai 

et al., 1995; Xie et al., 2002; Zhang, 1996) (for example, Figure 1A–F). Importantly, 

such assumptions, which dictate exactly how the circuit functions, have been difficult to 

test in the large mammalian brain. Mammalian head-direction cells are distributed across 

many brain regions (Taube, 2007) and are as yet not well classified into types, making it 

challenging to identify and target them reliably.

An internal heading representation with similarities to the mammalian head-direction 

representation has also been discovered in the fly brain (Seelig and Jayaraman, 2015). 

Like the mammalian system, this heading representation tethers to visual surroundings 

and is maintained and updated in darkness. The fly’s experimental advantages —its small 

brain, identified neurons, genetic tools, and physiological tractability— make it an excellent 

system to assess the assumptions underlying the function of ring attractor networks (Figure 

1A–F). Indeed, there is strong experimental and theoretical evidence from Drosophila 
melanogaster that the representation of heading is implemented by a ring attractor (Green 

et al., 2017; Kim et al., 2017; Seelig and Jayaraman, 2015; Turner-Evans et al., 2017). A 

computational model of a ring attractor that assumes recurrent connectivity between heading 

neurons and neurons that encode both angular-velocity and heading (Figure 1B–D) has been 

shown to maintain an accurate representation of the fly’s heading when the circuit is driven 

by realistic velocity inputs (Turner-Evans et al., 2017). This model replicates the dynamics 

of the fly heading direction network in darkness. Other models have invoked plasticity 

between visual inputs and heading neurons to suggest how visual and angular velocity 

information might update the representation in a mutually consistent manner (Figure 1E, 1F) 

(Cope et al., 2017; Kim et al., 2019).

Importantly, however, these and other models of ring attractor networks in the fly have 

assumed the circuit’s connectivity based on relatively indirect evidence (Cope et al., 2017; 

Han et al., 2019; Kakaria and de Bivort, 2017; Kim et al., 2019; Kim et al., 2017; Su et 

al., 2017; Turner-Evans et al., 2017). For example, the location of pre- and post-synaptic 

arbors has been inferred from whether neural processes visible in light-microscopic images 
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seem spine- or bouton-like in specific substructures (Hanesch et al., 1989; Lin et al., 2013; 

Wolff et al., 2015). The hypothesized connectivity of the circuit has then been derived 

from light-level overlap between the putatively pre- and post-synaptic arbors of neurons, 

in some cases further supported by GFP-reconstitution-across-synaptic-partners (GRASP) 

(Xie et al., 2017) and trans-Tango (Omoto et al., 2018) experiments, although the reliability 

and accuracy of these methods to estimate pairwise connectivity is known to be limited 

(Lee et al., 2017; Talay et al., 2017). Similarly, measurements of functional connectivity 

by optogenetic stimulation of a population of one type of neurons and calcium imaging of 

another (Franconville et al., 2018) can be difficult to interpret within recurrent networks, 

particularly if the connections are indirect.

In the current study, we used reconstructions based on serial transmission electron 

microscopy (EM) (Zheng et al., 2018) to determine synaptic connectivity within the neural 

network underlying the fly’s heading representation. To verify that our results are consistent 

across flies (and across methods), we compared our neural connectivity matrices to those 

extracted from the recently released fly hemibrain connectome (Scheffer et al., 2020; Xu 

et al., 2020), which was obtained by using focused ion beam scanning electron microscopy 

(FIBSEM). We supplemented this connectivity map with cell-type-specific RNA sequencing 

(RNA-Seq) and fluorescence in situ hybridization (FISH), which allowed us to characterize 

the expression profiles of the key cellular components of the ring attractor network. We then 

used this integrated information to quantitatively assess the role of each of the constituent 

cell types in the ring attractor’s dynamics. We found that the structure of the heading 

direction network contains motifs similar to those proposed in theoretical models. These 

motifs were hypothesized to maintain the heading representation activity and update it both 

in the dark and when visual features are present. We tested these ideas using targeted 

two-photon calcium imaging and thermogenetic perturbations of the constituent neuron 

types in behaving, head-fixed Drosophila. We also found that many neurons have mixed 

pre- and post-synaptic specializations within their innervations to single brain structures, 

creating “hyper-local” recurrent loops that may allow local computations to supplement 

the role of recurrence at the network level. Moreover, while many implementations of 

ring attractor networks rely on distinct units that provide local excitation and long-range 

inhibition to shape activity into one stable bump, consistent with our results, we found 

apparent redundancy in these structural elements. Both local excitation and long-range 

inhibition appear to be carried out by multiple classes of neurons. Taken together, our results 

provide new structural and functional insights into how a small biological ring attractor 

network allows an animal to maintain an accurate internal sense of direction.

Results

The fly’s heading is topographically represented in the toroid-shaped ellipsoid body (EB), 

a structure within a brain region called the central complex (Figure 1G). The representation 

manifests as a localized ‘bump’ of population activity in the so-called E-PG neurons (see 

STAR Methods for notes on nomenclature) (Seelig and Jayaraman, 2015). Neurons in 

the E-PG population together tile the EB, with each neuron’s arbors occupying a single 

~22.5° wedge of the EB (Wolff et al., 2015). E-PG neurons in nearby wedges are tuned 

to similar heading directions and those in angularly distant wedges to different heading 
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directions, resulting in a complete topographical representation across the circumference 

of the EB. To observe E-PG activity, we placed tethered, walking flies on a ball inside 

a visual virtual reality (VR) setup (Figure 1H). The setup permitted the fly to control its 

angular orientation relative to visual cues presented (see STAR Methods). We exposed 

the fly’s brain and performed two-photon laser scanning microscopy using the genetically 

encoded calcium indicator, GCaMP6f (Chen et al., 2013) (see STAR Methods), which we 

expressed selectively in E-PG neurons (Figure 1I). As in previous studies, we characterized 

E-PG population dynamics by computing and tracking the population vector average of 

E-PG activity (Figure 1I) in flies walking in darkness and in closed-loop VR in simple, 

single-stripe visual environments (Fisher et al., 2019; Green et al., 2017; Green et al., 2019; 

Seelig and Jayaraman, 2015; Turner-Evans et al., 2017). The E-PG bump tracked the fly’s 

heading in darkness and, more reliably, in closed loop visual VR conditions (Figure 1J, 

Figure S1A, S1B). We also quantified the stability of the heading representation over time, 

confirming that the bump reliably tracked the heading over a 5 s sliding window across the 

trial (Figure S1C–E, see STAR Methods). Having confirmed that the heading representation 

accurately integrates the fly’s heading, we sought to characterize the cell types and network 

motifs that together generate the E-PG bump and its ring-attractor-like dynamics.

Cellular- and synaptic- resolution network motifs underlying the ring attractor network

We first focused on uncovering —at cellular and synaptic resolution— the motifs that 

together constitute the core of the ring attractor network (Figure 1A–F). For this, we relied 

on a synaptic-resolution whole-brain EM dataset (Zheng et al., 2018) (Figure 2A). Note 

that the resolution of our data did not permit the identification of electrical synapses. We 

reconstructed several neurons of each of the ‘columnar’ cell types that connect localized 

areas within two of the brain regions where the heading representation has been studied 

previously in the fly: the EB and protocerebral bridge (PB) (Figure S2A) (Green et al., 

2017; Seelig and Jayaraman, 2015; Turner-Evans et al., 2017). We also reconstructed a 

few representative examples of ‘tangential’ neurons that arborize throughout either the EB 

or the PB. We reconstructed these selected neurons to morphological completion in both 

of these brain areas and annotated all synaptic contacts between the reconstructed neurons 

(Figure 2B, see STAR Methods). In all cases, we validated our conclusions by analyzing the 

connectivity between the same sets of neurons in the FIBSEM-based hemibrain connectome 

(Scheffer et al., 2020; Xu et al., 2020).

We focused on all the known ‘columnar’ neuron types (E-PG, P-EN1, P-EN2, P-EG) that 

link specific EB wedges with corresponding columns in the PB, and on a subset of known 

‘tangential neurons’ (ring and Δ7 neurons) within the specific sub-regions of the EB and PB 

that were innervated by the columnar neurons (Figure 2C–D; also see note on nomenclature 

in STAR Methods) (Hanesch et al., 1989; Lin et al., 2013; Wolff et al., 2015; Wolff and 

Rubin, 2018). Based on the stereotyped morphologies and tiled projection patterns of each 

of these cell types within the EB and PB, we expected that the connectivity patterns we 

uncovered within these selected sub-regions would generalize to the other wedges and 

columns in the EB and PB, something that awaits confirmation in the hemibrain connectome 

(manuscript in preparation). We marked every pre- and post-synaptic site in each neuron 

that we traced and constructed connectivity matrices for each region (Figure 2E). While 
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this approach allowed us to identify how often these chosen neurons synapsed onto one 

another, it still left many partners unidentified. To check the completeness of our synapse 

partner identification, we therefore looked at the percent of inputs and outputs that were 

labeled (See STAR Methods for synapse distribution protocol, Figure S3). We could identify 

approximately 60% of the total inputs in the PB and EB, approximately 40% of the inputs in 

the NO, and approximately 40% of all outputs across regions. The unidentified connections 

are to neurons that we did not reconstruct, but that should become clearer after analysis of 

the central complex network in the hemibrain connectome (manuscript in preparation).

Next, to determine the signs of the connections between identified partners —that is, 

whether synaptic connections are excitatory or inhibitory— we performed RNA-Seq on 

each cell type that we could target specifically with GAL4 driver lines (Figure 2F–H, Figure 

S2B; see STAR Methods) (Aso et al., 2019; Davis et al., 2019). For some cell types, we also 

used FISH in parallel to confirm the likely neurotransmitter (Long et al., 2017; Meissner et 

al., 2019). Most cell types appear to express only one neurotransmitter and likely express 

receptors for most, if not all, neurotransmitters (Davis et al., 2019).

Both receptor and neurotransmitter identity are needed to infer the likely sign of a synaptic 

connection between two neurons. Consistent with past work (Davis et al., 2019), in all cell 

types that we examined, we identified only a single neurotransmitter for which all associated 

genes were consistently expressed across samples and at levels comparable to or greater 

than the whole brain data. E-PGs, P-EGs, P-EN1s, and P-EN2s all express both biosynthetic 

acetyl transferase (ChAT) and vesicular transporter (VChAT) at levels comparable to the 

whole brain data, identifying them as cholinergic (Figure 2F, 2H, Figure S4A). The subclass 

of ring neurons that we targeted, likely visual neurons, expressed Gad1, the enzyme that 

produces GABA (adjusted p = 6.3E-5 with respect to the whole brain data), identifying 

them as GABAergic (Figure 2G, see Supplemental Information for neuropeptide signaling, 

Figure S4B) (Enell et al., 2007; Homberg et al., 1999; Kahsai et al., 2012; Martin-Pena et 

al., 2014; Zhang et al., 2013). The Δ7s expressed VGlut, marking them as glutamatergic 

(Figure 2F, adjusted p = 3.1E-2) (Daniels et al., 2008). Note that although VGlut expression 

is detectable in two of four E-PG samples, it is detected at much lower levels than seen in 

the glutamatergic Δ7 neurons or in the whole-brain data (Figure 2F, Figure S4A). Similarly, 

the expression levels of both the biosynthetic Gad1 and vesicular transporter VGAT are 

substantially lower in all E-PG neurons than those seen in the GABAergic ring neurons or 

in whole brain data. Receptor identity will be discussed in the following sections. Having 

measured the synaptic connectivity matrix for the key components of the EB-PB heading 

direction network, and having gained some insight into their synaptic and cellular properties 

from RNA-Seq and FISH, we next asked how these different cell types and motifs might 

underlie specific properties of the ring attractor network.

E-PG neuron output is essential to the maintenance of the heading representation

The fly ring attractor network is thought to enable the formation of a single, stable bump 

of activity through local excitation and near-uniform inhibition (Kim et al., 2017). Local 

excitation reinforces activity at the bump location while long-range inhibition suppresses 

activity in neurons with different heading tuning. In prior work (Turner-Evans et al., 2017), 
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we had suggested that the E-PG neurons are the center of the ring attractor network, and 

that their role in driving excitatory recurrent loops was essential to the generation of a 

stable heading representation (Figure 3A). We further suggested that the Δ7 neurons might 

provide the necessary long-range inhibition. Here, we test these assumptions at the level of 

connectivity and functional activity in the E-PG and Δ7 neurons.

Our data revealed that E-PG neurons (Figure 3B, 3C) are cholinergic (likely excitatory, 

Figure 2F), and are the sole columnar neuron type that both receives synaptic input in the 

EB and provides a significant number of synaptic outputs to neurons in the PB (E-PG: 872 

± 80 T-shaped presynaptic transmitter release sites, or T-bars, per neuron in the PB; P-EN1: 

1; P-EN2: 3; P-EG: 0). These data, which are corroborated by the FIBSEM connectome 

(manuscript in preparation), are consistent with the E-PG neuron type’s proposed role as 

the primary, excitatory neural population in the fly ring attractor network. In addition, 

examining the connectivity between E-PGs within the EB (Figure 3D, matching FIBSEM­

based connectivity matrix shown in Figure S5A), we found that the neurons within a given 

wedge are not purely post-synaptic (Lin et al., 2013), but rather make synapses onto one 

another (regions along the diagonal in the connectivity matrix), consistent with the locally 

excitatory connectivity predicted by many ring attractor models (Kim et al., 2017), an 

idea also supported by RNA-Seq analysis of the E-PGs, which revealed that they express 

nicotinic acetylcholine receptors (Figure 3E).

However, a key question about the E-PG neurons is whether their compass-like activity 

is entirely derived from their inputs or whether they are themselves required to generate 

these dynamics. If the heading representation is inherited from other cell types that provide 

input to the E-PG population, blocking E-PG outputs should leave their heading tuning 

unimpaired. By contrast, if E-PGs themselves are an important hub in the heading direction 

network, as has been strongly suggested previously (Kim et al., 2017; Turner-Evans et 

al., 2017), blocking the E-PG outputs should destroy their heading tuning. To answer 

this question, we expressed both GCaMP6f and the temperature-sensitive mutation of the 

Drosophila dynamin orthologue, shibirets1 (shits)(Kitamoto, 2002), which blocks vesicle 

endocytosis and thus synaptic transmission at elevated temperatures, in the E-PGs and 

measured their Ca2+ activity at both permissive and restrictive temperatures. At permissive 

temperatures, one bump of activity was clearly visible and tracked the animal’s movements 

(Figure 3F, top). In contrast, at higher temperatures, the E-PG activity in the entire EB 

instead rapidly increased when the animal turned and decreased shortly thereafter (Figure 3F 

bottom, Figure S5B–E). Average EB E-PG activity, which was higher in visual conditions 

than in darkness (Figure S5F), switched to being significantly lower under visual conditions 

at the restrictive temperature (Figure S5G), a phenomenon that we discuss in the section 

on ring neuron inputs to the compass. Perhaps most importantly, the magnitude of the 

population vector average (PVA, a measure of the degree of localization of E-PG activity) 

dropped drastically across flies at the restrictive temperature (Figure 3G), suggesting that the 

E-PGs are in fact required to generate compass-like activity dynamics.
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The Δ7 neurons stabilize the heading representation by inhibiting E-PG neurons

Long-range inhibition has been a necessary stabilizing feature of all ring attractor networks 

(Figure 4A), including those proposed for the fly heading direction network (Kakaria and de 

Bivort, 2017; Kim et al., 2017; Turner-Evans et al., 2017). A prominent candidate for this 

inhibition has been the Δ7 class of neurons (Heinze and Homberg, 2007; Wolff et al., 2015), 

which have been shown to functionally inhibit the E-PG population in the PB (Franconville 

et al., 2018). We first asked if this functional inhibition arises from direct synapses between 

individual Δ7 neurons onto E-PG neurons. Our EM reconstructions confirmed that E-PGs 

indeed receive synapses from Δ7 neurons (Figure 4B–D). Importantly, as is clear from 

more fully reconstructed Δ7 neurons from the FIBSEM connectome (Figure 4E and Figure 

S6A), and from both the FAFB connectivity matrix (Figure 4D) and the matching matrix 

based on the FIBSEM connectome (Figure S6B), Δ7 neurons do not synapse onto the E-PG 

neurons that they themselves receive input from, a difference from our simple schematic 

(Figure 4A). Our FISH (Figure 4F) and RNA-Seq (Figure 2F) analyses both confirmed 

previous results suggesting that the Δ7s were glutamatergic (Daniels et al., 2008). In the fly, 

glutamate can bind to many different types of receptors on downstream partners. NMDA and 

some mGluR receptors are believed to lead to excitatory responses, while GluClα receptors 

lead to inhibitory responses (Liu and Wilson, 2013; Xia et al., 2005). The RNA-Seq data 

revealed GluClα mRNA expression in the E-PG neurons (Figure 3E, Figure S4C, adjusted 

p = 0.39), raising the possibility that GluC1α channels underlie their inhibition by the Δ7 

population (Franconville et al., 2018), although we also observed expression of Nmdar1 

and Nmdar2 mRNA (adjusted p = 0.55, 0.28, respectively). Other glutamate-gated channels 

had much lower levels of expression (Figure S4C). Consistent with the columnar specificity 

of their pre- and post-synaptic specializations (Heinze and Homberg, 2007; Wolff et al., 

2015) (Figure 4E and Figure S6A), we found that Δ7 neurons synapse selectively onto only 

the subset of E-PGs within one column in the PB (upper left quadrant of the connectivity 

matrices in Figure 4D and Figure S6B) and receive broad input from the E-PGs away from 

that region (lower right quadrants of connectivity matrices in Figure 4D and Figure S6B). 

Overall, the connectivity and RNA-Seq data are consistent with Δ7s putatively inhibiting 

those E-PGs that correspond to angular orientations distant from the current orientation.

We also discovered that the Δ7s synapse strongly onto one another (Figure 4D and Figure 

S6B, upper right quadrant), indicating that these neurons may play a much more nuanced 

computational role than their light-level anatomy suggests. Unfortunately, our RNA-Seq 

results for the receptors expressed by Δ7 neurons were inconclusive, with relatively weak 

signatures of both GluClα and mGluR (Figure S4C).

In many ring attractor models, a single activity bump is ensured by assuming that active 

head-direction neurons (in our case, E-PG neurons) inhibit others with distant angular 

orientation tuning preferences. If the Δ 7 population performs such a role, we would expect 

these neurons to be most active in columns in which the E-PGs are inactive and vice versa. 

We performed simultaneous two-color imaging of the Ca2+ activity of both populations 

of neurons, labeling one with the green indicator GCaMP6f and one with a red indicator, 

jRGECO1a (Figure 4G, 4H). As predicted, we found that a bump of Δ7 activity peaked in 

exactly the opposite angular orientation as the E-PG bump, so that the spatial locations of 
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their respective activity bumps are offset approximately 180° (3.6 ± 0.25 glomeruli, where 

a spacing of 4 glomeruli would correspond to an offset of 180°) with respect to one another 

(Figures 4G–J, Figure S6C).

Taken together, the offset between the Δ7 and E-PG bumps, along with the morphology, 

expression profile, and connectivity of the Δ7 neurons, suggests that the Δ7 neurons provide 

long-range inhibition that helps maintain a single stable E-PG bump. We used shits to 

perform perturbation experiments to ask if the Δ7s are, in fact, the only source of inhibition 

in the heading direction network. Specifically, we expressed GCaMP6f in the E-PGs and 

shits in the Δ7s, and measured E-PG Ca2+ activity at both permissive and restrictive 

temperatures. E-PG activity dynamics were as expected in control flies at both low and 

high temperatures (Figure S6D), with the bump tracking the fly’s virtual orientation. If the 

Δ7s are the main source of inhibition in the ring attractor network, we would expect that 

blocking their outputs would cause the overall activity of the E-PGs to increase and the 

bump shape to be altered, potentially even leading to multiple bumps. However, this is not 

what we observed. At the restrictive temperature, the bump was less visible than before 

(Figure 4K–M), and now moved erratically in response to the fly’s movements (Figure 

4N–S). Further, although the bump amplitude was lower in these flies as compared to 

control flies, the bump width remained the same (Figure S6E, S6F). For control flies, at 

both low and high temperatures, the bump accurately tracked the stripe (Figure 4N, 4P, 

4R, 4S; see STAR Methods) as it did for the flies expressing shits in the Δ7s at permissive 

temperatures (Figure 4O, 4Q–S). This tracking was significantly less consistent at the 

restrictive temperatures (Figure 4Q–S; see STAR Methods). This quantification confirmed 

that the bump no longer reliably tracks the fly’s movements when Δ7s are inhibited. 

These observations suggest that while the Δ7 neurons contribute to stabilizing the bump’s 

movements, other sources of inhibition must act to shape the E-PG activity into one bump. 

One potential source of such inhibition is the Gall-EB ring neuron population, which has 

been shown to inhibit the E-PG neurons (Franconville et al., 2018). We did not reconstruct 

these neurons, but FISH analysis confirms that they are GABAergic as well (Figure S6G).

P-EN1 neurons recurrently connected to E-PGs update the compass during turns

Ring attractor theories typically invoke a distinct class of neurons that are tuned to both 

angular velocity and heading to update the heading representation as the animal turns in 

darkness (Figure 1B–D) (Skaggs et al., 1995; Xie et al., 2002; Zhang, 1996). Previous 

studies provided strong evidence that P-EN1 neurons perform this role in the fly (Green 

et al., 2017; Turner-Evans et al., 2017). P-EN1 neurons are believed to shift the heading 

representation around the ring through clockwise and counter-clockwise anatomical offsets 

(Figure 5A). Light-level characterization and functional connectivity experiments have 

suggested that P-EN1 neurons receive input from the E-PGs in the PB (Lin et al., 2013; 

Turner-Evans et al., 2017; Wolff et al., 2015). These neurons then send their outputs to 

E-PGs in the EB in wedges that are adjacent to those innervated by the E-PGs that provided 

the same PEN1s with input (Figure 5B) (Green et al., 2017; Turner-Evans et al., 2017; Wolff 

et al., 2015). We examined whether these connections are direct and synaptic at the level 

of EM (Figure 5C). In the PB, the E-PGs indeed directly contact the P-EN1s as predicted 

(lower right quadrant of connection matrices in Figure 5D for FAFB and Figure S7A for 
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FIBSEM). They also likely inhibit P-EN1s in distant PB glomeruli (and therefore distant 

angular orientation tuning) through the Δ7 population (Figure S7B, S7C for FAFB and 

FIBSEM, respectively). In turn, the P-EN1s connect most strongly to anatomically shifted 

E-PGs in the EB (top left quadrant of connection matrices in Figure 5E for FAFB and 

Figure S7D for FIBSEM). Interestingly, while there are varying numbers of P-EN1s that link 

one glomerulus in the PB to one sector in the EB (1 for some columns, 2 for others), the 

total number of synapses between the P-EN1s and E-PGs in a given sector remains roughly 

constant (Figure 5F, p = 0.30).

We assessed the functional significance of these localized and precisely structured recurrent 

loops involving the E-PG and P-EN1 neurons by examining bump dynamics when E-PG 

outputs were blocked using shits. As mentioned in a previous section, this manipulation 

resulted in the entire E-PG population becoming active whenever the animal turned (Figure 

3F, Figure S5D, S5E), likely as a result of uniform P-EN1 inputs that were no longer 

sharpened in their heading tuning by excitation from the E-PGs or by structured inhibition 

from the Δ7 population (Figure S7B, S7C).

EM reconstruction and synapse annotation also revealed unexpected connections from the 

E-PGs back to the P-ENs within the EB (Figure 5E and Figure S7D, lower right quadrant). 

Thus, within the EB, these two classes of neurons form “hyper-local” feedback loops, 

with pre- and post-synaptic sites located within the same processes in the EB. This may 

contribute to the persistence of the heading representation in the absence of sensory input 

(other potential contributing mechanisms are suggested below and in Discussion). Persistent 

activity in the E-PGs could also be sustained by voltage-gated channels and prevented from 

running away by inhibitory autoreceptors. Indeed, RNA-Seq of E-PGs reveals expression of 

several voltage-gated channel-linked genes (Figure 5G, Figure S4D) and mAChR-B mRNA 

(Figure 3E, Figure S4C adjusted p = 7.4E-3). The mammalian homologue of mAChR-B, 

M4, can act as an inhibitory autoreceptor for acetylcholine (Zhang et al., 2002).

The P-EN1s also arborize within a third brain structure, the noduli (NO). Within this 

structure, either all of the right half or all of the left half P-EN1s synapse onto one another 

(quadrants along the diagonal in the connectivity matrices in Figure 5H and Figure S7E), but 

the function of this local recurrence is not yet clear.

In summary, consistent with previous functional observations (Green et al., 2017; Turner­

Evans et al., 2017), the P-EN1 population’s connectivity is consistent with their proposed 

role in updating the bump position. Further, unexpected local connections between P-EN1s 

and E-PGs in the EB point to its potential involvement in regulating sustained E-PG activity 

when the fly is standing still.

Ring neurons tether the compass to visual scenes by selectively inhibiting E-PG neurons

Ring attractor models of head direction networks provide a mechanism for angular 

integration in the absence of visual cues, but such models (and the real networks that they 

model) accumulate error over time in darkness. Indeed, the fly compass is more accurate 

at representing the fly’s heading direction in visual closed-loop conditions than in darkness 

(Figure 1J, Figure S1A, S1B) (Fisher et al., 2019; Seelig and Jayaraman, 2015). Most head 
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direction network models thus incorporate visual inputs (Figure 6A), and many hypothesize 

that the synapses between these inputs and compass neurons should be plastic, allowing 

visual cues to flexibly map onto and thereby tether the heading representation (Figure 1E–F) 

(Cope et al., 2017; Kim et al., 2019; Knierim et al., 1998; Ocko et al., 2018; Page and 

Jeffery, 2018).

In Drosophila, this tethering is thought to come from a large population of inhibitory ring 

neurons (Figure 6B) (Hanesch et al., 1989; Homberg et al., 2018; Lin et al., 2013; Omoto 

et al., 2018; Xie et al., 2017; Young and Armstrong, 2010), an assumption with recent 

experimental support (Fisher et al., 2019). A potential experimental complication is that 

there are many types of ring neurons, only some of which are visually tuned (Homberg et 

al., 2011; Omoto et al., 2017; Omoto et al., 2018; Seelig and Jayaraman, 2013; Shiozaki and 

Kazama, 2017; Sun et al., 2017). To identify appropriate visual ring neurons to reconstruct 

in the EM dataset, we performed stochastic labeling of broad ring neuron lines using the 

FLP-out technique (Figure S8A) (Golic and Lindquist, 1989) (see STAR Methods). This 

technique allows for individual neurons to be tagged, and here we used it to express 

GCaMP6f in single neurons in order to monitor their Ca2+ activity. This procedure labeled 

a wide array of morphologically distinct ring neurons, and we measured the activity of each 

type in response to open-loop rotating stripes (Figure S8A). Consistent with expectations 

from previous studies (Fisher et al., 2019; Omoto et al., 2017; Seelig and Jayaraman, 2013; 

Shiozaki and Kazama, 2017; Sun et al., 2017), R4d ring neurons consistently showed strong, 

ipsilateral responses to rotating stripes presented in open loop in contrast to several other 

types of ring neurons (Figure S8A). We thus focused our EM reconstruction efforts on the 

R4d class (Figure 6C), while noting that the R2 ring neurons are also known to be visually 

responsive (Fisher et al., 2019; Omoto et al., 2017; Seelig and Jayaraman, 2013).

We found that R4d neurons selectively target the E-PGs over the P-EN1s (Figure 6D), 

consistent with most models of visually tethered ring attractor networks (and with results 

from the FIBSEM connectome (manuscript in preparation). Insect compass models that 

incorporate visual input (Cope et al., 2017; Kim et al., 2019) suggest that ring neurons that 

respond to visual cues at specific orientations should more strongly inhibit E-PGs away 

from the desired bump location, creating a less-inhibited trough for the bump of activity 

to settle into for those orientations (Fisher et al., 2019). Such a trough is not visible in 

the synaptic counts of the ring neurons we reconstructed, nor —as is now clear from the 

hemibrain connectome (manuscript in preparation)— across the broader ring neuron and 

E-PG populations. Instead, the number of synapses between the ring neurons and the E-PGs 

is relatively constant across the sectors of the EB that we reconstructed. The trough may 

indeed be represented in synapse numbers, but it may not be visible across the limited 

section of the EB that we traced, or it may instead be represented in the strengths of the 

synapses but not in their numbers.

A surprise in the EM reconstructions was how heavily R4d ring neurons synapse onto 

each other (Figure 6E). RNA-Seq of these neurons revealed relatively high expression 

levels of GABA related receptor genes as compared to the whole brain data (Figure 6F, 

Figures S4B, adjusted p = 1.9E-19 for Rdl), suggesting that ring neurons are inhibited by 

GABA and therefore by each other. This hypothesis is consistent with recent observations 
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that combined optogenetic stimulation of individual R2 ring neurons with whole-cell patch 

clamp electrophysiological recordings of other R2 neurons (Isaacman-Beck et al., 2019). 

When we compared the calcium activity of the R4d population in darkness to the activity 

seen in the presence of a single bright stripe moving in open loop, we saw signatures of such 

inhibition in the R4d population as well (Figure S8B, S8C). The overall level of R4d ring 

neuron population activity was reduced when the fly was shown a stripe in open loop after 

a period of darkness (Figure S8D, S8E, p = 2.5E-4 for activity minimum). The ring neurons 

that are most strongly excited by the visual stimulus likely inhibit the others, leading to this 

overall reduction. Such mutual inhibition might also produce competitive dynamics between 

ring neurons (Sun et al., 2017).

Although we did not detect any consistent patterns in the synapse counts between the ring 

neurons and the E-PGs, we did find an indication of structured inhibition in our calcium 

activity recordings in flies that expressed shits in the E-PGs. At the permissive temperature, 

when a clear bump of E-PG activity could be observed, the amplitude of the bump increased 

when a fly that had previously been in the dark was shown a closed-loop stripe (Figure 

S5F). In contrast, at the restrictive temperature, when the E-PGs were more uniformly 

active throughout the EB, the mean EB activity decreased when the fly was shown a stripe 

(Figure S5G). Taken together, these results suggest that the inhibition locally decreases at 

the position of the bump while globally increasing in the EB, which is consistent with a 

trough-shaped structure of inhibitory weights between the visual ring neurons and the E-PG 

neurons.

In summary, R4d ring neuron connectivity to the E-PG neurons, and changes in E-PG 

activity in response to visual stimulation are both in line with predictions made by ring 

attractor models of visuomotor integration. Further, ring neuron-to-ring neuron connectivity 

may enable competitive dynamics across the ring neuron population.

Pathway from AOTU to EB tethers the compass to visual features

Although we focused on the R4d ring neurons, multiple classes of ring neurons respond 

to visual features (Omoto et al., 2017). These neurons all arborize in an ancillary structure 

known as the bulb (BU). They receive visual inputs from a pathway that is conserved across 

insects and originates in the photoreceptors and travels through the lamina, medulla, and 

anterior optic tubercle (AOTU) before reaching the BU (Held et al., 2016; Homberg et al., 

2011; Homberg et al., 2003). Lineage-based anatomical studies (Omoto et al., 2017) and 

photoactivatable-GFP (PA-GFP) uncaging in the BU (Sun et al., 2017) suggest that the 

TuBu neurons provide visual inputs to the ring neurons in the Drosophila BU. Silencing the 

outputs of the TuBu neurons should therefore “blind” the ring neurons and, in turn, “blind” 

the compass.

Consistent with previous results (Green et al., 2019), in flies with functional AOTU-BU 

pathways, E-PG neurons maintained a heading representation that accurately tracked a 

closed-loop stripe, even at high temperatures (Figure 6G, Figure S9A). We next expressed 

shits in TuBu neurons to silence their output. At permissive temperatures, flies that expressed 

shits in the TuBu neurons showed normal heading-tuned activity in E-PG neurons during 

closed-loop walking (Figure S9B). At the restrictive temperature, the E-PG population 
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representation was impaired, but tracked heading in darkness with no obvious increases in 

error relative to the permissive temperature (compare dark periods in left halves of Figure 

6G, 6H, and similar circular variance between dark periods in Figure 6I, 6J). However, 

the situation was completely different when the fly was walking in closed loop with a 

stripe at the restrictive temperature (Figure 6H, right half). In this condition, errors in 

tracking heading exceeded those in like conditions at the permissive temperature and, in 

fact, matched errors expected in darkness (6I bottom, 6J right). We therefore concluded 

that the pathway from the AOTU to the BU to the E-PGs (via the TuBu and ring neurons) 

provides visual cue information that is used as a reference by the fly compass, allowing 

the fly to maintain arbitrary headings within its surroundings. In the absence of input from 

this pathway, the heading representation is relatively untethered from visual stimuli. Based 

on what is known about visual projections to the EB, the anterior visual pathway from the 

AOTU likely encodes many more visual cues than just the ‘ON’ contrast stripes that we use 

here (Omoto et al., 2017). Thus, these results may generalize to more complex visual scenes 

involving light and dark patches (Kim et al., 2019; Seelig and Jayaraman, 2013; Sun et al., 

2017) and to polarized light (el Jundi et al., 2014; Heinze and Homberg, 2009; Omoto et al., 

2017).

The E-PG, P-EG and P-EN2 excitatory loop that maintains the compass bump in darkness

Finally, we reconstructed two additional classes of columnar neurons that are connected to 

the E-PG and Δ7 neurons, but whose function in the context of ring attractor models is 

less obvious: P-EG and P-EN2 neurons (Figure 7A–C) (Green et al., 2017; Wolff et al., 

2015). Based on light microscopy and RNA-Seq, P-EG neurons seemed like they could 

provide direct cholinergic (excitatory) feedback to the E-PG neurons, aiding in the bump’s 

persistence (Kakaria and de Bivort, 2017). However, although the P-EGs get strong direct 

input from the E-PGs in the PB (see lower right quadrant of connectivity matrices in 

Figure 7D and Figure S10A for FAFB and FIBSEM, respectively), they do not synapse 

directly back onto the E-PGs in the EB (upper left section of connectivity matrices in 

Figure 7E and Figure S10B for FAFB and FIBSEM, respectively). Instead they synapse 

onto the P-EN2s, which are also cholinergic, and in turn synapse onto the E-PGs (upper 

middle section and middle left section of connectivity matrices in Figure 7E and Figure 

S10B for FAFB and FIBSEM, respectively) (note that P-EN2s from each side of the PB 

are densely interconnected with each other and with angular-velocity-carrying P-EN1s in the 

NO (Figure 7F)). The P-EGs and P-EN2s therefore form a three-synapse feedback loop with 

the E-PGs: E-PG to P-EG to P-EN2 and back to E-PG. Any P-EG feedback to the E-PGs 

is therefore mediated by the P-EN2s in the EB. Indeed, P-EN2 activity in the EB largely 

matches P-EG activity (Figure 7G). Both populations display one bump of activity that 

moves around the EB, tracking the animal’s heading (Figure 7H), and the bump’s amplitude 

weakly correlates with the animal’s velocity for each population (Figure S11A–D). The PVA 

difference between the two is small, around ¼ of the bump full width at half maximum 

(Figure 7I, 7J), suggesting that the bump of activity in the two populations directly overlap.

We next tested the possibility that the P-EN2 population mediates the transmission of 

delayed excitatory feedback from the P-EGs to the E-PGs, potentially reinforcing the 

persistence of E-PG heading representation activity. We monitored E-PG activity while 
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silencing P-EN2 activity using Gal80 and the inwardly rectifying potassium channel, Kir 

(see STAR Methods), thereby breaking the P-EG feedback loop. Consistent with the 

importance of the P-EG input for maintaining E-PG bump strength, the E-PG bump was 

almost entirely abolished in the dark in flies in which Kir was expressed in the P-EN2 

population (Figure 7K). This was true regardless of the animal’s rotational velocity (Figure 

7L, 7M). Instead, the overall activity in the EB increased as the animal turned (Figure 

S11E, S11F). Interestingly, the bump was clearly visible and tracked the fly’s motions in 

the presence of a stripe in closed loop (Figure S11G–K), consistent with model predictions 

and recent experiments suggesting that the bump is shaped by visual input from ring neurons 

(Cope et al., 2017; Fisher et al., 2019; Kim et al., 2019).

In addition to receiving input from the P-EGs in the EB, the P-EN2s also receive input in 

the PB. There, they receive weak direct E-PG input but strong Δ7 input (see left quadrants 

in FAFB and FIBSEM connectivity matrices in Figure 7D and Figure S10A, respectively). 

Thus, there is also a second loop to the E-PGs. This second loop goes from E-PGs to Δ7s 

to P-EN2s and back to E-PGs (Figure 7A). This loop anatomically resembles the E-PG and 

P-EN1 loop and would not excite E-PG neurons in the same location in the EB. Curiously, 

however, a recent study reported that E-PG and P-EN2 activity in the PB are anticorrelated 

(Green et al., 2017), which we also observed (data not shown). If projected to the EB, this 

anticorrelated P-EN2 bump in the PB should translate to a bump in the EB that is offset from 

the P-EG bump, in contrast to what we observed. However, as described above, the P-EN2s 

also receive direct synaptic input from the P-EGs in the EB, thus complicating the picture in 

the EB. The discrepancy between P-EN2 activity in the EB and the PB may be accounted for 

by electrical isolation of the PB and EB compartments of individual P-EN2 neurons (Figure 

S11L–O, Supplemental Information). The compartmentalization of P-EN2 activity between 

the EB and PB raises as-yet-unanswered questions about the functional role of these neurons 

in the heading direction network.

Similar to the E-PG neurons, the activity of P-EG neurons, which receive considerable 

synaptic input from E-PGs in the PB, is also offset from the P-EN2 bump in the PB (Figure 

S11P, S11Q). This offset also matches the difference we see between Δ7 and E-PG activity 

(Figure 4J). Considering that E-PG neurons provide direct synaptic input to Δ7 neurons, and 

since those neurons, in turn, make synapses onto P-EN2 neurons, a likely possibility is that 

the glutamatergic Δ7 neurons excite P-EN2 neurons through excitatory glutamate channels. 

In contrast, the activity of P-EN1s, whose anatomy is almost identical to the P-EN2s, 

overlaps with the E-PG activity but is anticorrelated with Δ7 activity. We would therefore 

expect these neurons to be inhibited by the Δ7s. However, we found no clear difference 

between glutamate channel mRNA expression in the P-EN1s and P-EN2s (data not shown). 

Resolving this conundrum will require future experiments that establish the localization of 

specific glutamate channel types in P-EN1 and P-EN2 to their different arbors in the PB, EB 

and NO.

In summary, although the P-EN2 offset projection pattern leaves open other possibilities, 

their role in mediating excitatory feedback from P-EG neurons is likely key to the 

maintenance of E-PG bump strength in the dark.
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Flies lose flexibility in heading if AOTU input or EB-PB network is disrupted

In our imaging experiments in flies walking in visual VR (previous sections), we focused 

on how disrupting signals from specific cell types in the heading direction network impacted 

the stability of the E-PG heading representation. These disruptions also impacted the 

fly’s behavior (Figure S12). Recent studies have demonstrated that the E-PG compass is 

required for the fly to select and maintain arbitrary headings relative to visual cues in its 

surroundings (Giraldo et al., 2018; Green et al., 2019). Consistent with these results, we 

observed a distinct change in the fly’s fixation preferences when we disrupted the heading 

representation and its tethering to visual features (Figure S12A, S12C–F; STAR Methods). 

Control flies displayed individual heading preferences relative to a single stripe that were 

maintained across trials at high temperatures (Figure S12A, S12B), but there was a wide 

range of preferences across flies. Note that the observation that this behavior is most clearly 

manifest at higher temperatures is in line with other stripe fixation experiments in tethered 

walking flies, most of which have been performed at higher temperatures (Bahl et al., 2013; 

Green et al., 2019). A similar range of heading preferences was observed at the permissive 

temperature in flies that expressed shits in the E-PG, TuBu, and Δ7 neurons (Figure S12C, 

S12D, S12F top). In contrast, at the restrictive temperature, we observed these flies all 

had matching heading preferences, keeping the stripe exclusively in the frontal field of 

view (Figure S12C, S12D, S12F bottom). Taken together with previous results (Giraldo et 

al., 2018; Green et al., 2019), we conclude that flies’ ability to maintain a stable heading 

representation and exhibit different heading preferences relative to visual cues in their 

surroundings relies on an intact EB-PB network that receives visual information from the 

AOTU-BU pathway via the visual ring neurons.

Discussion

Efforts to model the dynamics of head direction networks have long focused on ring 

attractors. Although this conceptual framework has been very influential, testing the 

validity of the structural assumptions and functional predictions made by ring attractor 

models in biological circuits has been challenging. Here, we applied connectomics, 

transcriptional profiling, and functional imaging with perturbation of genetically targeted 

neural populations to examine the structure and function of the neuronal circuits underlying 

heading direction in the fly. Our results allow us to firmly place several cell types and 

network motifs from the fly into the context of previous ring attractor models: E-PG neurons 

construct the heading representation from their inputs; heading-tuned P-EN1 neurons 

provide angular velocity inputs that update the heading representation when the animal 

turns; and Δ7 neurons provide inhibition that stabilizes the E-PG heading representation 

by sculpting P-EN1 activity. We previously invoked the E-PG, P-EN1 and, implicitly, Δ7 

neurons in a ring attractor model that captured the observed dynamics of the heading 

direction network (Figure 8A, see STAR Methods) (Turner-Evans et al., 2017). The weights 

of this model were tuned without any knowledge of the actual synaptic connections. If we 

extrapolate the measured synapse counts around the ring to form a complete connectivity 

matrix of the biological network, the theoretical and the experimentally derived connectivity 

matrices are similar (Figure 8B). Finally, ring neurons, which are known to bring visual 

information to the EB in a variety of insects (el Jundi et al., 2014; Heinze and Reppert, 
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2011; Omoto et al., 2017; Phillips-Portillo, 2012; Seelig and Jayaraman, 2013; Shiozaki and 

Kazama, 2017; Sun et al., 2017; Vitzthum et al., 2002), make synaptic contacts with E-PG 

neurons, consistent with recent modeling and experimental work suggesting that the ring 

neuron population tethers the compass to the fly’s sensory surroundings (Cope et al., 2017; 

Fisher et al., 2019; Kim et al., 2019).

However, while the theoretical predictions and our biological observations are largely 

consistent, we also uncovered surprises in the biology that will require further theoretical 

and experimental work to understand. The long-range inhibition that has been invoked to 

form a stable bump of activity appears to be split across multiple brain regions and multiple 

classes of neurons (Figure 8C). The Δ7 neurons cannot be the only source of inhibition 

in the circuit since the E-PG population organizes into a single bump even if the output 

of the Δ7 neurons is reduced. GABAergic R4d (and other) visual ring neurons also inhibit 

much of the E-PG population in the presence of visual stimuli. Further, the Gall-EB ring 

neuron population provides a source of inhibition onto the E-PG neurons (Franconville et 

al., 2018). We did not reconstruct these neurons, but FISH analysis confirms that they are 

GABAergic as well (Figure S6G). Indeed, the cumulative inhibition from multiple classes of 

ring neurons may account for some of the mutual suppression between E-PG neurons (Kim 

et al., 2017).

Local excitation also appears to be implemented through multiple classes of neurons (Figure 

8D). Within the EB, E-PGs synapse onto one another and onto the P-ENs, which in turn 

synapse back onto the E-PGs—this local recurrence may enable the fly’s internal compass 

to perform more smoothly than its limited number of neurons may otherwise permit (see, for 

example, the ‘stickiness’ in bump movement evident in Figure 10 of (Turner-Evans et al., 

2017)). Local excitation also appears to be structured across compartments, with the E-PGs 

synapsing onto the P-ENs in the PB and the P-ENs synapsing on the E-PGs in the EB. 

Finally, P-EGs appear to create a potentially slower multi-synaptic feedback loop, receiving 

input from the E-PGs in the PB and synapsing onto the P-EN2s in the EB which in turn 

synapse back onto the E-PGs. Overall, the redundancy of local excitation and long-range 

inhibition may allow the network to maintain heading direction activity in the absence of 

external input. These network features may also provide a means to stabilize the heading 

representation in the presence of noisy inputs and inhomogeneous synaptic weights, which 

can disrupt the function of continuous attractor networks (Burak and Fiete, 2012; Compte 

et al., 2000; Itskov et al., 2011; Renart et al., 2003; Seeholzer et al., 2019; Wu and Amari, 

2005; Wu et al., 2008; Zhang, 1996).

Local connections were not limited to the E-PGs. Instead, they appeared across neuron 

classes and may lead to local computations within the broader ring attractor network. 

For example, consistent with previous observations from electron microscopy in locusts 

(Homberg and Muller, 2016) and from trans-Tango experiments in flies (Omoto et al., 2018), 

we observed synapses between the visual ring neurons. These ring neurons tether the bump 

to a visual scene. Visual scenes are often complex and dynamic and so inter-ring neuron 

connections may either form a winner-take-all network that leads one visual feature to 

dominate, preventing the bump from moving erratically as the scene shifts over time (Figure 

8E) or provide a mechanism for gain control that normalizes the total level of inhibition 
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from those ring neurons onto the E-PG neurons. The R4d ring neurons traced here are but 

one of many classes of ring neurons. Other ring neuron types respond to contralateral visual 

features, or are linked to sleep, circadian rhythm, nutrients, or the animal’s movements 

(Donlea et al., 2018; Dus et al., 2013; Liang et al., 2019; Liu et al., 2016; Park et al., 

2016; Seelig and Jayaraman, 2013; Shiozaki and Kazama, 2017). If similar connections exist 

between or across these different ring neuron classes, then they may perform computations 

amongst or between themselves, preprocessing information rather than acting solely as 

parallel input streams to the E-PG neurons.

Both the structural and functional results also left several puzzles unsolved and raised new 

questions. The glutamatergic Δ7 neurons synapse onto many columnar neuron types in the 

PB that project back to the EB, including the P-EN1, P-EN2, and P-EG populations. Indeed, 

a primary role of the Δ7s may be to pass the heading representation from the E-PGs to other 

columnar neurons in the circuit. Many columnar neuron types leave the heading direction 

network and pass into a structure in the CX known as the fan-shaped body. While we did 

not trace any of these fan-shaped body neurons, we would predict that they also receive 

input from the Δ7s (something that is indicated in the FIBSEM connectome (manuscript 

in preparation)). Of the P-EN1, P-EN2, and P-EG neurons, it appears that the Δ7 neurons 

inhibit the P-EN1 and P-EG neurons but may excite the P-EN2 neurons. This excitation 

would create a bump of P-EN2 activity that is perfectly offset from the E-PG bump in the 

PB. However, because of compartmentalization, the P-EN2 activity in the PB only produces 

a small shoulder of a bump in the EB. There, the main part of the P-EN2 activity instead 

appears to be driven by local excitation from the P-EG neurons at the E-PG bump location. 

The combination of P-EG and P-EN2 neurons feeding back with a delay onto the E-PG 

neurons in the EB helps maintain the strength of the heading representation in darkness, but 

we cannot yet explain the functional role of the shoulder of activity and its displacement 

from the E-PG bump.

Behaviorally, the heading representation has been shown to be required for the fly to 

select and maintain arbitrary headings relative to visual cues in its surroundings (Giraldo 

et al., 2018; Green et al., 2019), a result that we replicated here. Whenever the heading 

representation was altered, the fly only walked directly towards a visual cue. However, we 

note that behavioral genetics experiments in the fly have also implicated the CX in sleep 

and nutrient-state-induced modulation of activity (Donlea et al., 2018; Dus et al., 2013; 

Liang et al., 2019), short-term visual orientation memory (Kuntz et al., 2017; Neuser et al., 

2008), long-term visual and thermal place memory (Liu et al., 2006; Ofstad et al., 2011), and 

body-size-dependent motor control (Krause et al., 2019; Triphan et al., 2010). The role of 

the EB-PB circuit in such functions is unknown.

At a methodological level, the recent completion of the FIBSEM-based connectome 

(Scheffer et al., 2020; Xu et al., 2020) allowed us to compare our FAFB-based EM 

reconstructions and synaptic connectivity matrices with those extracted from the hemibrain 

connectome. As is evident from a visual comparison of the matching connectivity matrices 

throughout, the FIBSEM dataset reinforces all the conclusions that we drew from FAFB. We 

quantified the level of correspondence between the datasets by computing the differences 

between synaptic connectivity for neurons matched across datasets by type and innervation 
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pattern (Figure S13). As shown for the example of the NO (Figure S13A–D), there are 

sometimes more connections detected for connections between specific types in one or 

the other dataset (Figure S13E shows this for different connection types in the NO, EB 

and PB), but it is rare that there are synaptic connections between neuron types in one 

dataset that are not found in the other (see Figure S13F for the exceptions). We did find 

that a few of the finer hyper-local connections within neuron types that we could identify 

in the FAFB dataset were occasionally absent in FIBSEM. It is important to note that, 

unlike the FIBSEM connectome, the connectivity examined in this study constitutes only 

a partial connectome, focused on a specific set of neurons selected because of their likely 

participation in the fly ring attractor network: the E-PG, Δ7, P-EN1, P-EN2, and P-EG 

neurons. However, this is not an isolated circuit, and we did not attempt to identify all the 

upstream and downstream partners of these neurons, an analysis of which should be possible 

in the hemibrain (manuscript in preparation).

Importantly, the CX and its neurons have been studied not just in other contexts, but also 

in other insects. Intracellular electrophysiological recordings from CX neurons in a diverse 

array of insects have discovered topographically-organized visual responses, suggesting 

the potential involvement of the region in computations ranging from sky-compass-based 

navigation in locusts (Heinze and Homberg, 2007), monarch butterflies (Heinze and 

Reppert, 2011), and dung beetles (el Jundi et al., 2015) to optic-flow-based path integration 

in sweat bees (Stone et al., 2017). Extracellular recording and stimulation in the cockroach 

CX have also implicated the region in sensory-guided orienting and motor control (Bender et 

al., 2010; Guo and Ritzmann, 2013; Varga and Ritzmann, 2016). Looking ahead, scaled-up 

electron microscopic reconstructions of CX networks in different insects (for example, 

recent EM-guided modeling in the sweat bee CX (Stone et al., 2017)) may enable an 

exploration of how circuits that are optimized for navigation differ based on the particular 

sensory statistics, ecological niches and biomechanical constraints of each insect.

Finally, our efforts to link structure to function also highlight the challenges that this task 

poses. Connectomics is often perceived as providing strong constraints on models of circuit 

function. However, although this was partly true for the heading direction network, our 

results also identified unexpected computational mechanisms that the circuit may employ. 

For example, the profusion of mixed pre- and post-synaptic specializations within single 

compartments of individual neurons created many more locally recurrent loops between 

similar and different neuron classes. We cannot yet provide a functional account for such 

dense recurrence. Future theoretical and experimental work to probe their function may well 

reveal that the fly brains are more powerful than their numerical simplicity might suggest.

STAR Methods

Nomenclature

The columnar neurons (E-PGs, P-EN1s, P-EN2s, and P-EGs) were each assigned a number 

and an “R” or an “L”. This number-letter combination refers to the glomerulus in the 

protocerebral bridge in which they arborize. The bridge can be split into right (“R”) and left 

(“L”) halves, and each half has nine glomeruli (1–9). 9 is always the outer glomerulus while 

1 is the glomerulus in the middle. Hence, from left to right, the numbering goes from L9 to 
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L1 and then from R1 to R9. Where multiple neurons of a single type arborize in the same 

glomerulus, an “a,” “b,” or “c” was appended to the name (e.g. E-PG 5Rc). The Δ7s arborize 

throughout the bridge but were named based on the 2 or 3 glomeruli to which they send 

axons. Finally, ring neurons were assigned an arbitrary letter label from a–g.

More information on the anatomy and nomenclature of the individual neurons can be found 

in (Wolff et al., 2015). Briefly, E-PG and P-EG neurons that arborize in glomerulus 5 (right 

or left) project to the 12 o’clock position in the ellipsoid body. P-EN1s and P-EN2s project 

to offset positions in the ellipsoid body (10:30 for the right bridge neurons, and 1:30 for the 

left bridge neurons). This offset is consistent for all similar E-PG/P-EG and P-EN1/P-EN2 

pairs.

Experimental protocols

Genotypes

Experiment Parent #1 Parent #2

FISH UAS-HaloTag SS00096

“ “ SS00131

“ “ GR37F06

“ “ VT08135

“ “ SS02238

“ “ SS30295

“ “ SS02232

“ “ SS02233

“ “ SS02191

“ “ SS27853

“ “ GR18A05

FLP-out GCaMP 20XUAS>myrTopHat2>Syn21-OpGCaMP6f-p10 su(Hw) 
attP8; pGP-JFRC59-13XLexAop2-IVS-NES-jRGECO1a-p10 
in su(Hw)attP5; +

pBhsFlp2::PEST; LexA­
VT25957;EB1

pBhsFlp2::PEST; LexA­
VT25957;c232

Two color calcium 
imaging

pGP-JFRC59-13XLexAop2-IVS-p10-GCaMP6f; 20XUAS­
IVS-jRGECO1a-p10

LexA-60D05; GR55G08

“ LexA-55G08; R60D05

13XLexAop2-IVS-Syn21-OpGCaMP6f-p10 su(Hw) attp40; 
LexA-37F06 VK22; 20XUAS-IVS-jRGECO1a-10

SS02191

20XUAS-IVS-Syn21-OpGCaMP6f p10 su(Hw)attP8; 
LexA-37F06 VK22; 13XLexAop2-IVS-Syn21-jRGECO1a

SS02191

Shi LexA-VT25957; pJFRC100-20XUAS-TTS-Shibire-ts1-p10 
in VK00005, 13xLexA-syn21-syt-OpGCaMP6f-p10 in attP2 
(wtB)

SS00096

“ LexA-60D05; GR55G08

“ R76B06

Kir tubP Gal80ts; UAS-kir2.1::GFP LexA-27F02, LexAOp­
jRGECO1a; VT20739
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Experiment Parent #1 Parent #2

“ LexA-27F02, LexAOp­
jRGECO1a; GR12D09

RNA-Seq 10XUAS-IVS-myr::GFP; 10XUAS-IVS-nls-tdTomato SS000096

“ SS000131

“ SS30295

“ SS02238

“ SS02191

“ SS00238

“ SS02232

“ SS62862

Simultaneous behavioral and calcium activity recordings of a fly on a ball—All 

imaging experiments were performed with head-fixed, tethered female flies walking on an 

air-suspended ball as described in (Seelig et al., 2010). Each fly was first cold anaesthetized 

and the proboscis fixed with wax to limit brain movement. The fly was then glued to a 

pin and positioned in an inverted pyramidal metal shim such that the top of the head was 

exposed while the body was free and visibility only minimally occluded. The head was then 

glued to the shim and immersed in saline. The cuticle was removed above the brain, along 

with any fat, and the air sacs and trachea were pinned to the side. Finally, the muscles that 

run along the top of the esophagus were cut to limit brain movement. The holder was then 

positioned such that the fly was centered on the ball and could walk freely.

The movements of the ball (a proxy for the walking movements of the fly) were recorded 

using the fly spherical treadmill system (Seelig et al., 2010). These movements were fed via 

USB to a PC and both recorded and used to update closed loop visual stimuli as needed 

(described further below).

Calcium imaging experiments were performed as described in (Turner-Evans et al., 2017). 

Briefly, a custom two-photon microscope running ScanImage, similar to the one described 

in (Seelig and Jayaraman, 2015), was used for all experiments. A full description of the 

filter sets can be found in (Turner-Evans et al., 2017). All imaging was performed using a 

tunable femtosecond pulsed laser at ~20 mW power, set at 930 nm for one color and 1020 

nm for two color experiments. 256 × 256 pixel images were obtained across multiple Z 

planes to form a volume. The volumes were ~50 μm on a side and consisted of 6 Z planes, 

each spaced 8 μm apart (for ellipsoid body imaging) or 12 Z planes, each spaced 4 μm 

apart (for protocerebral bridge imaging). Volumes were obtained at a rate of 11.4 Hz and 8.2 

Hz, respectively. The ball position was tracked at 200 Hz and synchronized to the calcium 

imaging using TTL pulses triggered after each frame grab.

For the single ring neuron FLP-out experiments, high resolution stacks were taken at the end 

of every experimental session to inspect the ring anatomy. These stacks were 1024 × 1024 

pixels, with 25 planes each spaced 2 μm apart, and the laser power was turned up to ~100 

mW to obtain 20 volumes with these parameters.
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Open and closed-loop visual display—A custom-built digital micromirror device 

(DMD) projector system was used to show visual stimuli to the flies. A 240°, 2.5 inch 

tall, 3 inch diameter, cylindrical frame was 3D printed and covered with a single white 

diffuser sheet (V-HHDE-PM06-S01-D01 sample, BrightView Technologies, Durham, NC, 

USA). Three projectors each covered 80° of the screen (two DepthQ WXGA 360 HD 3D 

Projector, developed by Anthony Leonardo, Janelia, and Lightspeed Design, Bellevue, WA, 

USA and one Texas Instruments DLP 3010 Light Control). These projectors were modified 

to accommodate external blue LEDs as their light source (ThorLabs M455L3 455 nm LEDs 

with two Semrock BrightLine 447/60 nm bandpass filters in the path)

Custom C++ code using the OpenGL API generated the visual projections, which was 

either a completely dark virtual arena or a 15° bright stripe on a dark background. The 

projections were rendered with an Nvidia Quaddro K4000 graphics card. The code creates 

virtual objects and then uses the treadmill positional data to update the objects’ positions as 

the fly moves. Brightness and spatial distortions due to the cylindrical screen are corrected 

via the software.

The voltage from a photodiode placed on top of the screen was recorded with a DAQ each 

time the projection was updated (at a 360 Hz framerate). The DAQ also recorded a TTL 

pulse each time a calcium imaging frame was grabbed. The two signals were then registered 

with respect to one another to link activity and behavior.

Visual stimuli consisted of one of four different conditions: darkness, a closed-loop stripe, 

an open loop stripe that circled the projection screen every 5 s, or a closed-loop stripe that 

periodically underwent open-loop jumps of 120°. For the closed-loop stripe trials, whenever 

the stripe moved into the 120° arc behind the fly where no screen or projector was present, it 

was moved such that it immediately appeared on the other side, making the closed-loop span 

effectively 240°.

Shi experiments—Experiments using the temperature sensitive, synaptic vesicle reuptake 

inhibitor Shibirets were performed as described in (Turner-Evans et al., 2017). Briefly, the 

first two trials occurred at room temperature (the permissive temperature). Heated saline was 

then perfused across the brain until a temperature of 30°C (the restrictive temperature) was 

reached, as measured by a thermocouple placed near the head capsule. The fly was then 

shown a closed-loop 15° stripe for 10 min, during which time the temperature was stabilized 

at 30°C. Three trials were then performed at the elevated temperature.

Kir experiments—At low temperatures, Gal80ts inhibits Gal4 transcriptional activity. At 

high temperatures, Gal80ts becomes inactive, leading to kir transcription. Flies were reared 

and raised for one day at 21.5°C before being split into two groups. Group one (the control 

group) was maintained at 21.5°C for two more days while group two (the experimental 

group) was shifted to a 30°C incubator. At 30°C, Gal80ts becomes inactive, allowing kir 

to be transcribed. Immediately before each experiment, either control or experimental flies 

were taken out of the incubator and dissected and measured at room temperature.
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Electron microscopy reconstruction: Neuron Tracing—Neuron reconstructions 

were created from manual skeleton tracing of neuronal arbors and annotation of synapses 

from image stacks in CATMAID (http://www.catmaid.org) as described in Zheng et al. 

(2018). In brief, all neurons included in analyses were reconstructed by a minimum of 

two team members, an initial tracer and a subsequent proofreader who corroborated the 

tracer’s work. To parallelize reconstruction efforts, some neurons were assigned more 

than one initial tracer and/or more than one proofreader. If a tracer or proofreader 

encountered ambiguous features (neural processes or synapses that were not identifiable 

with high confidence), (s)he consulted other tracers and proofreaders to determine the 

validity of the features in question, enlisting more expert tracers as needed. Any feature 

that remained ambiguous after scrutiny by an expert tracer was not included in the neural 

reconstruction and/or flagged to be excluded from analyses. During the proofreading 

phase, the proofreaders and tracers iteratively consulted each other until each neuron was 

deemed morphologically and synaptically correct per its tracing objective. Chemical synapse 

identification required that at least three of the following features were present, with the first 

being required: 1) an active zone including vesicles; 2) presynaptic specializations (i.e. a 

ribbon or T-bar with or without a platform); 3) synaptic clefts; 4) postsynaptic membrane 

specializations such as postsynaptic densities (PSDs). In cases where PSDs were not visible, 

all cells with membranes that had unobstructed access to a clearly visible synaptic cleft were 

annotated as postsynaptic. Since gap junctions are unlikely to be resolved at the resolution of 

this dataset we made no effort to annotate them.

Electron microscopy reconstruction: Tracing to classification—Neural 

reconstruction of microtubule-containing backbone neurites (see Schneider-Mizell et al., 

2016) or gross morphology alone is often sufficient to classify a neuron based on expert 

identification or searching of existing LM datasets with NBLAST software (Costa et 

al., 2016). Neurons traced to classification were at a minimum reconstructed, with or 

without synapses, to the point at which their gross morphologies (i.e. backbone skeletons) 

unambiguously matched that observed by LM for a given cell class, or were unambiguously 

deemed to be a new cell type not previously observed.

Electron microscopy reconstruction: Tracing to completion—Every identifiable 

neurite was traced to achieve morphological completion, and every identifiable presynaptic 

release site or postsynaptic density was annotated to achieve pre- or postsynaptic 

completion, respectively, for a given neuron. Some neurons were traced to morphological or 

synaptic completion only on portions of their arbors or only in certain brain regions (e.g., D7 

presynaptic glomeruli were traced to morphological and synaptic completion, whereas the 

remainder of these neurons were only traced to classification).

RNA Sequencing: Overview—Three different types of sequencing protocols were 

performed: bulk sequencing for the EPGs, Δ7s, PEN2s, and PEGs, low-cell sequencing for 

the PEN2s and R4m neurons, and single cell sequencing for the PEN1 and PEN2 lines. The 

low-cell sequencing protocol, which was developed after an initial round of bulk sequencing, 

allowed for more replicates and therefore was used at a later point to obtain R4d expression 

data. The PEN1 and PEN2 cell lines each have an additional cell type (PFN neurons for 
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each) and therefore single cell sequencing was performed on these lines to look for different 

expression patterns across cells. We were unable to convincingly cluster the single cell 

results into two or more groups (data not shown) and therefore the mean expression was 

considered across the single cell replicates.

RNA Sequencing: Expression checks—Neurons of interest were isolated by 

expressing the fluorescent reporter 10XUAS-IVS-myr::GFP; 10XUAS-IVS-nls-tdTomato 

using split-Gal4 drivers specific for particular cell types and then manually picking the 

fluorescent neurons from dissociated brain tissue. As a preliminary to the sorting process, 

each driver/reporter combination was ‘expression checked’ to determine if the marked cells 

were sufficiently bright to be sorted effectively and if there was any off-target expression in 

neurons other than those of interest. Drivers that met both these requirements were used in 

sorting experiments as described below.

RNA Sequencing: Sorting of fluorescent-labelled neurons—Drosophila adults 

were collected daily as they eclosed, and aged 3–5 days prior to dissection. For each sample, 

60–100 brains were dissected in freshly prepared, ice cold Adult Hemolymph Solution 

(AHS, 108 mM NaCl, 5 mM KCl, 2 mM CaCl2, 8.2 mM MgCl2, 4 mM NaHCO3, 1 

mM NH2PO4, 5 mM HEPES, 6 mM Trehalose, 10 mM Sucrose), and the major tracheal 

branches removed. The brains were transferred to a 1.5 ml Eppendorf tube containing 500 

μl 1 mg/ml Liberase DH (Roche, prepared according to the manufacturer’s recommendation) 

in AHS, and digested for 1 h at room temperature. The Liberase solution was removed and 

the brains washed twice with 800 microliters ice cold AHS. The final wash was removed 

completely and 400 μl of AHS+2% Fetal Bovine Serum (FBS, Sigma) were added. The 

brain samples were gently triturated with a series of fire-polished, FBS-coated Pasteur 

pipettes of descending pore sizes until the tissue was homogenized, after which the tube was 

allowed to stand for 2–3 m so that the larger debris could settle.

For hand sorting, the cell suspension was transferred to a Sylgard-lined Glass Bottom Dish 

(Willco Wells), leaving the debris at the bottom of the Eppendorf tube, and distributed 

evenly in a rectangular area in the center of the plate with the pipet tip. The cells were 

allowed to settle for 10–30 m prior to picking. Fluorescent cells were picked with a mouth 

aspirator consisting of a 0.8 mm Nalgene Syringe Filter (Thermo), a short stretch of tubing, 

a plastic needle holder, and a pulled Kwik-Fil Borosilicate Glass capillary (Fisher). Cells 

picked off the primary plate were transferred to a Sylgard-lined 35 mm Mat Tek Glass 

Bottom Microwell Dishes (Mat Tek) filled with 170 μl AHS+2%FBS, allowed to settle, and 

then re-picked. Three washes were performed in this way before the purified cells were 

picked and transferred into 50 μl buffer XB from the PicoPure RNA Isolation Kit (Life 

Technologies), lysed for 5 m at 42°C, and stored at −80°C.

For FACS, the samples were triturated in AHS+2%FBS that was run through a 0.2 μm filter, 

and the cell suspension was passed through a Falcon 5 ml round-bottom tube fitted with a 

35 μm cell strainer cap (Fisher). Samples were sorted on a SONY SH800 cell sorter gated 

for single cells with a fluorescence intensity exceeding that of a non-fluorescent control. 

For bulk samples, GFP+tdTom+ events were purity sorted directly into 50 microliters 

PicoPure XB buffer, the sample lysed for 5 m at 42°C, and stored at −80°C. For low-cell 
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samples, replicates of 40 cells were either purity sorted directly or yield sorted to enrich for 

GFP+tdTom+ cells followed by a purity sort into 3 μL Lysis Buffer (0.2% Triton X-100, 

0.1 U/μL RNAsin) and flash frozen on dry ice. For single-cell (scRNA-Seq), individual cells 

were purity sorted directly into a 96-well plate containing 3 μL Lysis Buffer per well.

RNA Sequencing: Library preparation and sequencing—For bulk samples, total 

RNA was extracted from 100–500 pooled cells using the PicoPure kit (Life Technologies) 

according to the manufacturer’s recommendation, including the on-column DNAse1 step. 

The extracted RNA was converted to cDNA and amplified with the Ovation RNA-Seq 

System V2 (NuGEN), and the yield quantified by NanoDrop (Thermo). The cDNA was 

fragmented and the sequencing adaptors ligated onto the fragments using the Ovation Rapid 

Library System (NuGEN). Library quality and concentration was determined with the Kapa 

Illumina Library Quantification Kit (KK4854, Kapa Biosystems), and the libraries were 

pooled and sequenced on an Illumina NextSeq 550 with 75 base pair reads. Sequencing 

adapters were trimmed from the reads with Cutadapt (Martin, 2011) prior to alignment 

with STAR (Dobin et al., 2013) to the Drosophila r6.17 genome assembly (Flybase). The 

resulting transcript alignments were passed to RSEM (Li and Dewey, 2011) to generate gene 

expression counts.

For low-cell and single-cell samples, one microliter of harsh lysis buffer (50 mM Tris pH 

8.0, 5 mM EDTA pH 8.0, 10 mM DTT, 1% Tween-20, 1% Triton X-100, 0.1 g/L Proteinase 

K (Roche), 2.5 mM dNTPs (Takara), and ERCC Mix 1 (Thermo-Fisher) diluted to 1e-7) 

and 1 μl10 μM barcoded RT primer were added, and the samples were incubated for 5 m 

at 50°C to lyse the cells, followed by 20 m at 80°C to inactivate the Proteinase K. Reverse 

transcription master mix (2 μL 5X RT Buffer (Thermo-Fisher), 2 μL 5M Betaine (Sigma­

Aldrich), 0.2 μL 50 μM E5V6NEXT template-switch oligo (Integrated DNA Technologies), 

0.1 μL 200 U/μL Maxima H-RT (Thermo-Fisher), 0.1 μL 40U/μL RNAsin (Lucigen), and 

0.6 μL nuclease-free water (Thermo-Fisher) was added to the lysis reaction and incubated 

at 42°C for 1.5 h, followed by 10 m at 75°C to inactivate the reverse transcriptase. PCR 

was performed by adding 10 μL 2X HiFi PCR Mix (Kapa Biosystems) and 0.5 μL 60 μM 

SINGV6 primer and incubating at 98°C for 3 m, followed by 20 cycles of 98°C for 20 s, 

64°C for 15 s, 72°C for 4 m, and a final extension of 5 m at 72°C. Groups of 8 reactions 

were pooled to yield ~250 μL and purified with Ampure XP Beads (0.6x ratio; Beckman 

Coulter), washed twice with 75% Ethanol, and eluted in 40 μL nuclease-free water. The 

DNA concentration of each sample was determined using Qubit High-Sensitivity DNA kit 

(Thermo-Fisher).

To prepare the Illumina sequencing library, 600 pg cDNA from each pooled sample was 

used in a modified Nextera XT library preparation (Illumina) (Soumillon et al., 2014) 

using the P5NEXTPT5 primer and extending the tagmentation time to 15 m. The resulting 

libraries were purified according to the Nextera XT protocol (0.6x ratio) and quantified 

by qPCR using Kapa Library Quantification (Kapa Biosystems). Six to eight sequencing 

libraries were loaded on a NextSeq High Output flow cell reading 26 bases in Read 1, 

including the spacer, sample barcode and UMI, 8 bases in the i7 index read, and 50 bases in 

Read 2 representing the cDNA fragment from the 3’ end of the transcript.
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For post-sequencing processing, sample barcode and UMI sequences were extracted from 

Read 1 using custom python scripts. Barcode error correction was done using starcode v1.1 

(Zorita et al., 2015) with the following additional parameters: “-d l -q --print_clusters”. 

Read 2 sequences were renamed using the error-corrected barcode from the starcode 

and UMI sequences from Read 1, and were aligned to the Drosophila melanogaster 
genome assembly r6.17 from Flybase (flybase.org) using STAR (Dobin et al., 2013) with 

the following additional parameters: “— alignIntronMax 200000 --outSAMattributes All 

--outSAMunmapped Within --out SAMtype BAM Unsorted”. An alignment is considered 

valid if it aligns to an exon feature on the correct strand and is unique. Valid alignments that 

had at least 50% of the read aligned to an exon feature were used to create gene-level counts 

using a custom python script to collapse UMIs by gene. All custom scripts available upon 

request.

Fluoresence in Situ Hybridization—Fluorescence in situ hybridization followed the 

protocol outlined in (Meissner et al., 2019)

Stochastic expression of GCaMP6f in ring neurons with the FLP-out technique
—Flies were reared at 25°C. Less than one day after eclosion, adults were heat shocked in a 

water bath at 37°C for 8 min, which consistently lead to 0–3 individual neurons labeled with 

GCaMP.

Simulation

Biophysical modelling of P-EN2s—All biophysical modelling was done using 

NEURON with python software (Hines et al., 2009). For the simulations, neurons of interest 

were first imported into python using pymaid (https://pymaid.readthedocs.io). They were 

then simplified by removing all stretches of nodes that were not branchpoints or synapses 

and replacing them with a single straight cylinder of the same length. The width of the 

cylinder was taken to be d = 0.442 μm for axonic regions and d = (0.442 − 0.025)e−0.040589 l 

+ 0.025 for dendritic regions, where d is given in μm and l is measured in nm. These values 

were based on empirical data from the EM images. For all simulations, we set Erest = −55 

mV, Rm = 20800 Ωcm2, Cm = 0.79 uF cm−2, and Ra = 266 Ωcm (Gouwens and Wilson, 

2009). We implemented all synapses as NEURON Exp2Syn synapses and let cholinergic 

synapses have a reversal potential of Erev = 0 mV, time constants of τ1 = 0.61 ms and τ2 = 

2.11 ms, and a maximum conductance of 16/75000 μS (Lee and O’Dowd, 1999).

To quantify the variability in potential within and between neuropils in P-EN2 neurons for a 

given number of input synapses n, we first selected n Δ7 input synapses at random 10 times 

in each of the 5 P-EN2 neurons for which we have traced Δ7 input neurons. We then ran a 

NEURON simulation for 70 ms with each input synapse firing thrice at 25 ms intervals with 

a NetStim noise parameter of 0.2. In the EB, we quantified the potential at all E-PG output 

synapses and found the maximum potential for each synapse. We then averaged the mean 

and standard deviation of these maximum potentials across all simulations for a given n. In 

the PB we averaged the maximum potentials over all input synapses from Δ7 neurons since 

the P-EN2 neurons do not have significant output in the PB.
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Extrapolation of the ring attractor weight matrix from Turner-Evans*, 
Wegener*, et al.—The rate model in (Turner-Evans et al., 2017) only explicitly included 

the E-PGs and P-EN1s. Inhibition was implicitly assumed to come from the Δ7s, but it 

was incorporated into the E-PG connectivity matrix. Each E-PG was assumed to inhibit all 

P-EN1s equally, but for the P-EN1s which shared a given E-PG’s heading tuning: these were 

inhibited more weakly.

For Figure 8A, the Δ7s were instead assumed to act as a standalone population. In this 

scenario, each Δ7 inhibits one P-EN1 and receives excitatory input from all E-PGs except 

for the one that shares the chosen P-ENl’s heading tuning. In the limit that the Δ7 time 

constant goes to 0, the weight matrix in Figure 8A will match that of (Turner-Evans et al., 

2017).

Data Analysis

Calcium imaging and behavior preprocessing—Maximum intensity projections 

were obtained for each volume within a stack. To correct for movement, a mean of the 

individual projections was then computed, and each projection was registered to the mean 

through normalized cross correlation. In the case of two-color imaging, the green channel 

was used for registration.

Reference regions of interest were defined for each fly by drawing polygons over the mean 

maximum intensity projection of a chosen stack. For two-color imaging a composite of the 

two channels was used. For protocerebral bridge imaging, eighteen polygons were placed 

over the structure, one for each glomerulus. For ellipsoid body imaging, ellipses were drawn 

over the inner and outer circumference of the structure and the inner region equi-angularly 

divided into 16 regions.

The registered stacks were then Gaussian filtered with a 2×2 pixel size and a standard 

deviation of 0.5 pixels. The normalized change in fluorescence for each region was 

calculated as follows. The baseline fluorescence was taken as the mean of the lowest 10% 

fluorescence values over the experiment. All fluorescence values were then normalized by 

this value and then 1 was subtracted from them.

The recorded behavioral data was registered to the imaging stacks through the frame grab 

and photodiode signals (see third paragraph of open and closed-loop visual display above).

Population vector average (PVA)—The MATLAB-based Circular Statistics Toolbox 

(Berens, 2009) was used to calculate the population vector average (PVA) and the population 

vector average strength. The PVA is the circular mean (circ_mean) of the 16 ROIs while the 

PVA strength is their resultant vector length (circ_r).

Unwrapping heading and PVA signals—The heading and PVA signals were 

unwrapped by finding time points where the signal jumped by more than π or 2π/3, 

respectively. The signal was then shifted up or down by 2π at those points, as appropriate.
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Quantifying bump stability—We quantified the bump’s stability as follows. First, we 

plotted how much the bump’s angular orientation changed versus how much the fly’s 

heading direction changed at every time point in a 5 s sliding window (see Figure S1C–

E). To pick the time window for this analysis, we first plotted the median correlation 

between bump position and fly orientation within different time windows. We picked the 

time window for which the correlation values began to saturate for all the conditions that we 

analyzed (darkness and closed-loop; permissive and restrictive temperatures in control and 

Shi flies), but during which time the bump could still be tracked (for some Shi experiments, 

the bump became difficult to track for longer intervals at the restrictive temperature). We 

then fit a line to these points and calculated the slope. The slope was the gain between the 

fly’s turns and the bump’s movements. A gain of 1 implied that the bump perfectly tracked 

the fly’s heading direction.

AOTU Shi knockout analysis: Calcium activity and behavior—The offset between 

the bump position and the fly’s heading was calculated by taking the difference between the 

PVA and the heading. This offset was then binned into 17 linearly spaced bins between −π 
and π. The mean resultant vector length was calculated using the circ_r function described 

above. The behavior was binned and analyzed in the same way, though now the stripe 

position was used.

Electron microscopy skeleton rendering—Traced neurons were imported into 

Blender using Philipp Schlegel’s CATMAID-to-Blender plugin (https://github.com/

schlegelp/CATMAID-to-Blender) (Schlegel et al., 2016). Classes were then separated into 

layers; their synaptic inputs and outputs were removed; and they were given unique colors. 

The bevel depth (spline thickness) was increased and shaded using a Strahler analysis (alpha 

decreases as branch order increases away from root node). Finally, cameras were snapped 

to the neuron bounding dimensions, a hemi lamp was added, and the resulting images were 

rendered as 200% resolution png files.

Connectivity matrices and distributions—Analyses were carried out in python after 

importing the neurons using pymaid. For all neuropil-specific analyses, neurons were 

divided into distinct regions at points along the axon approximately halfway between each 

pair of neuropils. Connectivity matrices were generated in python using pyplot’s imshow 

function and the ‘Reds’ colormap.

In the following, we use uppercase letters (A, B) to refer to types of neurons, and lowercase 

letters (a, b) to refer to single neurons of type A/B. The fraction of input synapses to 

a neuron a that come from a given type of neurons B was calculated as the number of 

annotated synapses from B to a divided by the total number of annotated postsynaptic sites 

on a. The fraction of output synapses from a to B was calculated similarly.

Estimates of total connectivity distributions—Estimates of the total proportion of 

connectivity accounted for by the cell types considered in the present manuscript were 

based on light-level anatomy from Wolff et al. (2015). We assume that the central complex 

contains 16 P-EN1, P-EN2, and P-EG neurons, 54 E-PG neurons, 40 Δ7 neurons, and 100 

ring neurons.
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In the noduli, we assume that there is no compartmentalization and that neurons are 

distributed evenly between the left and right noduli. We treat the left and right noduli 

separately. We thus take the estimated connectivity from a neuron a to a neuron b in a 

nodulus to be the mean fraction of output synapses from a neuron a’ that go to a neuron 

b’, averaged over all pairs of A and B neurons, times the total number of presynaptic sites 

in neuron a. To estimate the number of post-synapses in b that come from a, we take the 

mean number of synapses in b’ that come from a’, averaged over all pairs, and multiply by 

the total input to b. For the total output from neuron a to any neuron of type B, we multiply 

the connectivity from neuron a to neuron b by the total number of neurons of type B in 

a nodulus. For the compartmentalized neuropils discussed below, we instead multiply the 

compartment-specific average connectivity by the total number of neurons of the relevant 

type in the compartment.

In the PB, we assume that connections between P-EN, E-PG and P-EG neurons only occur 

within a single glomerulus. We take the average connectivity between each pair of these 

types of neurons to be the average over all glomeruli for which we have data, assuming 1 

P-EN/P-EG neuron, 3 E-PG neurons, and 5 Δ7 neurons per glomerulus when calculating 

total connectivity. We assume that each Δ7 neuron gives output to two glomeruli where 

it does not receive any input and that the Δ7 input is uniformly distributed across the 

remaining glomeruli. This violates the known anatomy of the Δ7 neurons but provides 

a good approximation to average and total connectivities given the limited number of 

glomeruli from which we have data. When estimating Δ7-Δ7 connectivity, we do not 

consider any compartmentalization.

In the EB, we estimate connectivities to and from E-PG neurons at the level of wedges and 

connectivities between P-EG and P-EN neurons at the level of tiles. Each tile covers 45° 

of the EB. For tile neurons, we consider the total connectivity to be the sum of the total 

connectivity within the same tile and the connectivity to and from the two neighboring tiles. 

For E-PG neurons, we similarly consider connectivity within the same wedge and to the two 

neighboring wedges in the case of connectivity with wedge neurons, and tiles in the case 

of connectivity with tile neurons. For a given pair of neuron types and compartment or pair 

of compartments, connectivity is estimated as described for the noduli above. We assume 

ring neurons to be uniformly distributed throughout the EB and do not distinguish between 

different classes of ring neurons.

FIBSEM connectivity matrices and comparison to FAFB data—Connectivity data 

for the FIBSEM dataset was accessed using the neuprintr API (https://github.com/natverse/

neuprintr) (Bates et al., 2019). The ROIweight parameter (a count of the postsynaptic 

densities in a given ROI) was used to define the synapse counts in all FIBSEM connectivity 

matrices. Note that the FAFB labels for PB glomeruli are flipped relative to those for 

the FIBSEM connectome (for example, glomerulus R6 in the FAFB dataset would be 

glomerulus L6 in the FIBSEM dataset), so all FIBSEM neurons were manually relabeled (L 

and R were switched) for all figures and analyses to make the comparisons more relevant.

The FIBSEM dataset contains three E-PG neurons in L6 and R6 (whereas only two were 

identified and traced in the FAFB dataset), five each of the 5R4L, 6R3L, 2R7L, and 1R9R8L 
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Δ7 neurons (whereas two, two, one, and one of each, respectively were traced in the FAFB 

dataset), and three of the 7R2L Δ7 neurons (one was traced in the FAFB dataset). To directly 

compare connectivity across datasets, a random subset of 6R/6L E-PGs and Δ7s were chosen 

from the FIBSEM dataset to match the number of neurons in the FAFB dataset. For all other 

neurons (P-EN1s, P-EN2s, P-EGs, and 5R/5L E-PGs), the numbers in the FIBSEM and 

FAFB dataset were equivalent, so all neurons were selected. Connections between partners 

across datasets were then compared using two metrics. First, all instances where one dataset 

had connections that were absent in the other were noted. Second, where both datasets 

showed connections between neurons, the synapse counts were compared by calculating the 

normalized difference between counts across the two datasets: (# of FAFB synapses - # of 

FIBSEM synapses) / (# of FAFB synapses + # of FIBSEM synapses). In the NO, there are 

two P-EN1s and two P-EN2s each in glomeruli 6L and 6R. Thus, there are a total of 24 = 

16 possible permutations of the FIBSEM data that can be compared to the FAFB data. Each 

of these was considered to generate the violin plots shown in Figure S13E and S13F. In the 

EB and PB, the number of possible permutations is much larger (622,080,000 for the PB and 

20,736 for the EB). For these ROIS, 200 possible combinations were considered. For these 

combinations, for which there were more FIBSEM neurons than FAFB neurons, a subset 

of the FIBSEM neurons was randomly selected, and then, whenever there was more than 

one neuron that arborized within a given glomerulus, the FIBSEM neurons were randomly 

shuffled to compare to the FAFB data.

RNA Seq analysis, plotting—Reads were aligned to the Drosophila genome and 

transcriptome annotation using FlyBase (Thurmond et al., 2019). For each sample, raw 

read counts were normalized by the total number of reads per million mapped reads 

per sample to yield counts per million (CPM) measurements. Log10(CPM+1) values for 

the expression of different gene sets (receptors, neurotransmitters, etc.) were plotted as 

heatmaps using the pcolor function in matplotlib.pyplot using the default viridis color plate. 

For the statistical analysis of differential gene expression, the edgeR package (Robinson et 

al., 2010) in R was used on the raw count data, with the standard workflow; this consists of 

estimating the negative binomial fit of the mean-dispersion relationship through a weighted­

likelihood empirical Bayesian approach (estimateDisp function), and then calculating p­

values through a gene-wise negative binomal generalized linear model with quasi-likelihood 

tests (glmQLFit function).

E-PGs: Shi experiments—The PVA strength was calculated as outlined in the 

Population Vector Average (PVA) section, and the mean of PVA strength was then computed 

across the entire trial.

Δ7s and E-PGs: Two color calcium imaging analysis—For the registered bump 

activity plots shown in Figure 4I, the maximum of the red channel was found at each 

time point, and the activity profiles of the red and green time channels across ROIs were 

each circularly shifted by the same number of glomeruli so that red channel peak was 

positioned at glomerulus 4. These profiles were then sorted by rotational velocity, across 7 

bins between −π and π rad/s. The mean PVA was then found for these sorted profiles, and 

the difference between them calculated and plotted in Figure 4J.
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Δ7s and E-PGs: Shi experiments—A 5 s sliding window was moved over the PVA and 

heading data. If the PVA strength was over 0.075 within that window (meaning that a clear 

bump of activity was present), the PVA was plotted with respect to the heading, and the 

slope and correlation coefficient were calculated. These slopes were then placed into one of 

21 linearly spaced bins between −4 and 4. The median slope and the 25th to 75th percentile 

range were then calculated.

Fluorescence in Situ Hybridization data analysis—63x images were manually 

inspected for overlap between the GFP tagged cell bodies and the tagged neurotransmitter 

specific mRNA.

FLP-out ring neuron analysis—Five trials were run for each fly. The activity was then 

averaged over these trials. Open-loop responses were further averaged over all six clockwise 

or counterclockwise repetitions. The maximum or minimum activity was then found for 

these averaged signals.

Population ring neuron analysis—Regions of interest were manually drawn over the 

center ring and around between 2 to 4 visible glomeruli on each side in the BU. The signal 

in these ROIs was then averaged over the 5 trials.

P-EN2s and P-EGs: Two-color calcium imaging analysis—The PVA was 

calculated for both the P-EN2s and the P-EGs. Time points were then binned by rotational 

velocity (in one of eight equally spaced bins between −π and π rad/s). At times when the 

PVA strength was greater than 0.1, the difference between the P-EG and the P-EN2 PVA was 

calculated and the mean and standard deviation calculated over all points within a given bin. 

The full-width-at-half-maximum (FWHM) of the activity was similarly calculated at each 

point in time and binned by rotational velocity. The mean FWHM for each bin was then 

calculated. The mean and SD of the PVA difference in each bin was then divided by the 

corresponding mean FWHM to arrive at the plot in Figure 7H. For the plot in Figure 7I, each 

individual PVA difference was divided by the FWHM that fell within its rotational velocity 

bin and all of these width normalized values were then averaged.

Cross-correlation between the maximum red or green ΔF/F and the rotational or forward 

velocity was calculated using the corrcoef function in MATLAB (MathWorks Inc., Natick 

MA) for each time lag (Figure S9A–D).

P-EN2s and P-EGs: Kir experiments—The PVA strength of the signal was calculated 

at each time point and binned according to the rotational speed (in one of 11 equally space 

bins between 0 and π). The mean and standard deviation were then calculated over all points 

within a given bin.

The mean ΔF/F for the off-peak ROIs was calculated as follows: the maximum ΔF/F ROI 

was found, and that ROI and one on either side of it were excluded from the analysis. The 

mean of the remaining 13 ROIs was then found and binned and analyzed as above for the 

PVA Strength (Figure S9J, S9K)
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P-EN2 and E-PG: EB projections—The signals were registered to the red, E-PG peak 

and sorted by rotational velocity as outlined in the “Δ7s and E-PGs: Two color calcium 

imaging analysis” section.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: The fly neural compass as a ring attractor network
A–F: Function of the fly compass network schematized as a ring attractor in which the 

activity in each neuron is driven by excitatory angular velocity signals and inhibitory input 

from visual feature detectors. Darker shading indicates increased activity (the “bump”). The 

fly’s behavior and visual environment (shown in the cartoons on top) activate different 

subpopulations within the compass network.

A. In the dark, local excitation (depicted for compactness as self-excitation) between 

compass neurons (purple) and uniform inhibition through inhibitory neurons (green, inside) 

leads to the formation of a ‘bump’ of activity that represents the fly’s heading direction (here 

“north”).

B. Active compass neurons excite paired neurons that conjunctively tune to both heading 

and angular velocity. When the fly turns counterclockwise (CCW), the CCW angular 

velocity neurons (blue), in turn, excite compass neurons, shifting their activity clockwise 

(CW) (dark blue arrow, top).

C. Shifted excitation from CCW angular velocity neurons moves the activity bump CW 

around the ring of compass neurons (dark purple).

D. When the fly instead turns CW, the CW angular velocity neurons (red) shift the activity 

bump in the CCW direction (dark red arrow, top).

E. Visual cues excite inhibitory visual feature detector neurons (green, outer ring) that 

suppress activity at all but a subset of compass positions. Here, a stripe at 9 o’clock activates 

a single visual neuron, which inhibits compass neuron activity everywhere except around 12 

o’clock.
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F. When the visual cue (here a single stripe) moves, a new visual feature detector is excited. 

Here, a stripe at 7 o’clock excites a feature detector that permits compass neuron activity at 

10 o’clock.

G. A schematic of the fly central brain, focusing on a brain region called the central 

complex. The visual pathway into the central complex is shown with the orange arrows and 

progresses from the Anterior Optical Tubercle (AOTU) to the bulb (BU) and from the BU 

to the Ellipsoid Body (EB). Heading direction system neurons also arborize in the Gall, 

Protocerebral Bridge (PB), and Noduli (NO). The Fan-Shaped Body (FB) is the other central 

complex structure shown.

H. Calcium activity of different neuron types in the compass network was measured 

in a head-fixed preparation. (left) Genetically expressed calcium indicators were imaged 

using two-photon laser scanning microscopy while a fly walked freely on an air-suspended 

Styrofoam ball. The ball rotation was monitored to track the fly’s orientation. (right) Visual 

stimuli (here, a 15° wide vertical stripe) were projected onto a 240° cylindrical screen with 

3 projectors. Stimuli were either shown in open-loop (fly had no control of stimuli) or in 

one-dimensional closed-loop (the fly’s turns on the ball changed the angular position of the 

stimulus).

I. (left) Fluorescence signal from GCaMP6f (here, in the E-PG neurons) showing the activity 

bump in the EB (the EB is outlined with the dotted lines). (middle) The EB is divided 

into 16 equiangular sectors of interest corresponding, approximately, to E-PG arborization 

patterns. The change in fluorescence (ΔF/F) signal is then calculated in each of these 

regions. ΔF/F is, in turn, used to calculate the Population Vector Average (PVA) to estimate 

the bump position. (right) A snapshot of ΔF/F and the PVA at one moment in time.

J. (top) E-PG EB activity over time during an example trial. For the first 120 s, the fly is 

in darkness. For the final 150 s, the fly controls the angular position of a stripe in closed 

loop. The PVA is overlaid in purple. (bottom) The unwrapped PVA (purple), the heading 

in the dark (magenta), and the stripe position (blue) are shown. The bump tracks the fly’s 

movements with accumulating error in darkness (before dotted line), and with minimal error 

in visual closed loop with a stripe stimulus (after dotted line).
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Figure 2: Electron-microscopic reconstruction and expression profiles of cellular components of 
compass network
A. Cross-sections of the FAFB electron microscopic volume showing the PB (top) and the 

EB (bottom).

B. An example synapse between an E-PG neuron (purple) and a P-EN1 neuron (red) in the 

EB. (top left) Electron microscopy cross-section from a region in the approximate location 

depicted by the box in Figure 2A (the actual location was from a slightly more posterior 

section). The inset shows a t-bar (red caret) and postsynaptic density (blue caret). (bottom 

left) Projected view of the 3D skeletons showing the synapse location between partners. 

(right) Complete skeletons of the two neurons showing the synapse location.

C. Schematic showing examples of neurons that are thought to play a role in the heading 

direction ring attractor. Neurons are color coded according to their putative roles in the 

attractor as shown in Figure 1A–F. Individual neurons are labeled according to where 

they arborize in the PB, following the numbering scheme here. Columnar neurons (E-PGs, 
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P-ENs, and P-EGs) link subregions of the EB and PB while tangential neurons (Δ7s and ring 

neurons) arborize throughout either the PB or EB.

D. Skeletons of the subset of neurons that were manually traced in the FAFB dataset. 

Synapses were manually annotated but are not shown. The light gray regions show the 

outlines of the central brain neuropil. The neurons are colored as in Figure 2C.

E. Connectivity matrix for the traced neurons in the EB.

F–H. RNA sequencing was performed on the cell classes identified in Figure 2C. Genes 

related to transmitters are shown here. Three types of sequencing pipelines were used: bulk 

(F), low cell (G), and single cell (H) (See STAR Methods).

F. Bulk cell sequencing of E-PG, P-EG, and Δ7 neurons along with whole brain samples. l1 

and l2 refer to distinct genetic lines while r1 and r2 refer to distinct technical replicates.

G. Low cell sequencing was performed on the ring neurons and on whole brain samples. The 

mean signal across biological replicates (7 for the ring neuron line and 8 for the whole brain 

material) is shown here.

H. Single cell sequencing was performed on the P-EN1 and P-EN2 genetic lines, which 

contained additional cell types. The mean signal across the samples is shown here.
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Figure 3: Local excitation from E-PGs is required to stabilize the E-PG activity bump
A. Local excitation reinforces the persistence of a bump of activity (dark purple).

B. Schematic depicting a subset of the E-PG neurons corresponding to those traced in the 

FAFB volume (Figure 3C). Gray shading shows areas of PB and EB in which the neurons 

were traced.

C. Putative excitatory (purple, E-PGs) neurons were traced and their synapses onto one 

another annotated.

D. Connectivity matrix within the ellipsoid body (EB). The E-PGs within a wedge are 

densely interconnected. Some E-PGs also make a few synapses onto their counterparts from 

neighboring wedges.

E. Expression of genes linked to receptors as compiled from RNA sequencing of the E-PGs 

and whole brain tissue (see STAR Methods). mRNA expression of nAChRs is highlighted, 

as is expression of the GluClα subunit.

F. Calcium activity in the ellipsoid body of the E-PGs as recorded with GCaMP6f for 

a fly expressing shits in the E-PGs (SS00096). The fly is walking in darkness. At room 

temperature (top), a bump of activity is clearly visible. At the restrictive temperature 

(bottom), when synaptic vesicle reuptake is blocked within the E-PGs, the bump is no longer 

visible. Instead, E-PGs across the entire ellipsoid body flash off and on.

G. The PVA strength as a function of temperature across 10 flies. Restrictive temperature 

trials are shown in red, while permissive temperature trials are shown in blue. The PVA 

strength is the mean resultant vector length across the 16 ROIs that span the ellipsoid body 

(see Figure 1I). A PVA strength of 1 indicates that all of the activity is in one ROI, while a 

PVA strength of 0 indicates that the activity is spread equally across all ROIs. The average 

PVA strength for a given trial is shown.
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Figure 4: Long-range inhibition from Δ7s is required to stabilize the E-PG activity bump
A. Long-range inhibition helps maintain a single bump of activity (dark purple).

B. Schematic depicting a subset of the E-PG and Δ7 neurons corresponding to those traced 

(Figure 4C). Gray shading shows areas of PB and EB in which the neurons were traced. 

Note that Δ7s were also partially traced in other PB glomeruli to enable identification. Note 

that —in contrast to the schematized inhibition in A— Δ7 neurons do not synapse onto the 

E-PG neurons that they themselves receive input from.

C. Putative excitatory (purple, E-PGs) and inhibitory (green, Δ7s) neurons were traced and 

their synapses onto one another in the PB annotated.

D. Connectivity matrix within the protocerebral bridge (PB) for the E-PGs and Δ7s. The 

Δ7s synapse onto the subset of E-PGs within one glomerulus in the PB (5R→5R, 6R→6R, 

upper left quadrant) and receive broad input from the E-PGs away from that region (last 

column, lower right quadrant). The Δ7s synapse onto one another (upper right quadrant).
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E. A single Δ7 neuron reconstruction (green) from the FIBSEM hemibrain connectome. 

Blue (postsynaptic) and orange (presynaptic) dots highlight synapses. Note that presynaptic 

specializations are localized to PB glomeruli separated by seven intermediate glomeruli (in 

this case, 5R and 4L).

F. Fluorescent in situ hybridization (FISH) of vGlut showed consistent overlap between 

GFP labeled Δ7s (white) and vGlut positive cells (red) (3/3 brains for the SS30295 genetic 

line and 2/2 brains for the SS02238 genetic line). (right) Glutamate release can lead to 

hyperpolarization of a downstream partner through GluCl channels.

G. Two-color calcium imaging was performed on the E-PGs (magenta) and the Δ7s (green) 

to record the simultaneous activity of the two populations. Here, GCaMP6f was expressed in 

the Δ7s and jRGECOla was expressed in the E-PGs.

H. The PB activity of both populations over time for the fly shown in I. The right and 

left PB were each divided into eight regions of interest (ROI), each corresponding to one 

glomerulus. The change in fluorescence intensity, ΔF/F, was then calculated for each ROI 

over time.

I. At each point in time, the red and green activity profiles were circularly shifted by the 

same number of ROIs in order to consistently place the peak of red activity at ROI #4. The 

mean registered activity in the right half of the PB across all time points when the fly in H 

was rotating at between 2π/3 and π/2 rad/s is shown.

J. The PVA difference between E-PG and Δ7 activity as a function of rotational velocity, 

vRot. Data from 10 flies is shown, with both the right and left PB included. In 5 flies, 

GCaMP6f was expressed in the Δ7s and jRGECO1a was expressed in the E-PGs, while 5 

flies had the reverse indicator expression pairing.

K. E-PG calcium activity in the ellipsoid body recorded with GCaMP6f in flies expressing 

shits in the Δ7s (line 55G08) at permissive (top) and restrictive temperatures (bottom). The 

fly was presented with a stripe in closed loop over the course of the trial, and its position 

over time is indicated by the blue line.

L. In control flies, E-PG PVA strength at the permissive temperature (blue dots) and at the 

restrictive temperature (red dots) does not differ significantly (p = 0.98, paired t-test).

M. E-PG PVA strength is reduced at the restrictive temperature when vesicle reuptake is 

blocked at Δ7 synapses (p = 2.8E-6, paired t-test).

N. For 5 s sliding windows (see STAR Methods), the fly’s position (heading) is plotted 

vs. the bump position (PVA). Blue dots indicate trials at the permissive temperature and 

red dots indicate trials at the restrictive temperature. Heading vs. PVA for 10 representative 

windows from an example control fly at the permissive (top) and restrictive (30 °C,bottom) 

temperatures. Each dotted line is a linear fit to the points within one window

O. Heading vs. PVA for an example fly expressing shits in the Δ7s at the permissive (blue 

dots, top) and restrictive (red dots, bottom) temperatures.

P. The slope of the points in 5 s sliding windows. The two plots shown here are for flies 

expressing GCaMP6f in the E-PGs and shits in empty Gal4 controls. The top plot shows 

a histogram of the slopes across two room temperature trials. The bottom plot shows a 

histogram of the slopes across three high temperature trials. The 25th and 75th percentiles 

are indicated above.

Q. As in Figure 4P, but now for flies expressing shits in the Δ7s.
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R. The range of slopes between the 25th and 75th percentiles, as obtained from the 

histogram of slopes, for the flies expressing shits in empty Gal4 (ctrl) and the Δ7s. (left) 

The percentile range when the flies are in the dark. (right) The percentile range when the 

flies are tracking a closed loop stripe. Trials at the permissive temperature are in blue; trials 

at the restrictive temperature are in red. From left to right, p = 0.83, 4.8E-4, 0.78, and 9.7E-3 

(paired t-test).

S. The median slope for the control flies in the dark (left) and with a stripe (right) for the 

room temperature trials (blue) and high temperature trials (red). From left to right, p = 0.61, 

3.5E-4, 0.55, and 0.13 (paired t-test).
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Figure 5: Recurrent loop between E-PGs and P-EN1s that updates bump position during turns is 
angularly shifted in the EB
A. Neurons that conjointly encode the fly’s angular velocity and heading (red, light blue) 

move the bump (purple) around the ring (see Figure 1B).

B. Schematic displaying the anatomically-shifted recurrent loop between sample E-PGs and 

P-EN1s. EB wedges and PB glomeruli selected for E-PG and P-EN1 reconstruction (Figure 

4C) are in gray.

C. E-PG and P-EN1 neurons were manually traced and their synapses onto each other 

annotated.

D. Connectivity matrix between the E-PGs and the P-EN1s in the PB. The E-PGs synapse 

onto the P-EN1s that arborize in the same glomerulus (lower right quadrant).

E. Connectivity matrix between the E-PGs and the P-EN 1s in the EB. The shifted P-EN 1s 

synapse onto the E-PGs (top left quadrant, e.g. P-EN1 6R→E-PG 5L). Note that the E-PGs 

also synapse onto the P-EN1s in the EB (bottom right quadrant).

F. The total number of synapses from P-EN1s onto individual E-PGs. Although some 

individual E-PGs receive inputs from single P-EN1s and others from two P-EN1s, the total 

number of synapses is approximately maintained (p = 0.30, two sample t-test, n = 12 

samples for two P-EN1s, n = 8 samples for one P-EN1s).

G. mRNA expression of voltage-gated channels in the E-PGs.

H. Connectivity matrix between P-EN 1s in the NO. Note that P-EN 1s from the same side 

of the PB are heavily interconnected in the NO.
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Figure 6: Mutually inhibitory R4d ring neurons synapse onto the E-PGs, tethering the bump to 
visual cues
A. Visual inputs (light green) map the visual scene onto the compass bump (dark purple) 

(see Figure 1E, 1F for details).

B. Schematic displaying ring neurons making synaptic contacts onto E-PGs in the EB. EB 

wedges and PB glomeruli selected for E-PG reconstruction (Figure 6C) are in gray.

C. R4d neurons (light green) were traced and their synapses onto each other and onto E-PG 

neurons (purple) were annotated.

D. Connectivity matrix between the E-PGs, P-EN1s, and ring neurons in the EB. This data is 

reproduced from Figure 2E.

E. Connectivity matrix between ring neurons in the EB. This data is reproduced from Figure 

2E.

F. mRNA expression of receptor-linked genes for the ring neurons and whole brain tissue. 

Subscripts r1–r7 refer to biological replicates, each of which uses the same genetic line to 

target the R4d ring neurons.

G. (top) An example of E-PG EB activity over time for control flies at the restrictive 

temperature. The PVA is overlaid in purple. (bottom) Unwrapped PVA, heading in the dark, 
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and stripe position over time. For the first 120 s, the fly is in darkness (heading shown in 

pink). For the final 150 s, the fly sees a stripe in closed loop (stripe position shown in light 

blue).

H.An example of E-PG EB activity for flies expressing shits in the TuBu neurons at the 

restrictive temperature. Compare E-PG bump locking to visual cue movement when the fly 

is walking in closed loop with a stripe against that seen at permissive temperature (Figure 

6G).

I. The offset between PVA and heading is calculated at each time point for the trials shown 

in Figure 6G and 6H, binned, and plotted here.

J. The circular variance for the offset distribution across flies in the dark and when a 

closed-loop stripe is present (p = 4.9E-3, 0.23 (paired t-test)). Mean of the circular variance 

is not significantly different between the control and TuBu flies in the dark (p = 0.69, 

two-sample t-test across genotypes). Circular variance between the control and TuBu flies 

is however significantly different in the presence of a stripe in closed loop (p = 2.9E-4, 

two-sample t-test across genotypes).
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Figure 7: P-EG and P-EN2 neurons together create a second recurrent loop with E-PGs
A. P-EN2 neurons (orange and light blue), like P-EN1s (Figure 4), conjointly encode the 

fly’s heading and angular velocity, creating an angularly shifted recurrent loop with E-PGs 

(purple).

B. Schematic of P-EG and P-EN2 arborizations in the central brain. EB wedges and PB 

glomeruli selected for E-PG, P-EG and P-EN2 reconstruction (Figure 6C) are in gray.

C. Reconstructed E-PG, P-EG, Δ7 and P-EN2 neurons. Synapses were labelled between 

these neurons in the NO and Gall and in selected parts of the EB and PB (Figure 6B).

D. Connectivity matrix between the E-PGs and Δ7s and the P-EN2s and P-EGs in the PB. 

The E-PGs form a large number of synapses onto the P-EGs (lower right quadrant).

E. Connectivity matrix between the E-PGs, P-EN2s, and P-EGs in the EB. The P-EGs only 

synapse onto the P-EN2s (top middle).
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F. Connectivity matrix between the P-EN2s and P-EN1s in the NO. Note that the P-EN 1s 

and P-EN2s are interconnected in each nodulus.

G. Two color calcium imaging of P-EG (magenta, labeled with jRGECO1a) and P-EN2 

(green, labeled with GCaMP6f) activity in the EB for a fly in the dark.

H. The PVAs of P-EG and P-EN2 bumps of activity are shown along with the fly’s heading 

in the dark (black trace) and the closed-loop stripe position when visible (blue trace).

I. Mean PVA difference across rotational velocities for the fly shown in Figure 7G, 7H. The 

upper and lower quartile range is shown in the shaded region.

J. Mean PVA difference across all velocities across flies in the dark or with a closed-loop 

stripe.

K. (top) Calcium activity in the E-PGs in the EB for a fly in the dark when the P-EN2 

neurons express Kir. (bottom) The fly’s heading over the duration of the trial.

L. The mean PVA strength of the calcium activity in the EB as a function of the fly’s 

rotational velocity for the fly shown in H. The standard deviation is shown in the shaded 

region.

M. The PVA strength for 10 flies (5 for each genetic line) expressing Kir in the P-EN2s 

(dotted lines) relative to the control flies (solid lines) as a function of the fly’s rotational 

velocity.
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Figure 8: The fly ring attractor network is broadly consistent with theory, but also features 
unpredicted components and motifs
A. Weight matrix for previous theoretical ring attractor model (Turner-Evans et al., 2017) for 

the fly compass (see STAR Methods).

B. Connectivity matrix extrapolated from data presented in this work. The synapse counts 

from the EB and PB are averaged and extrapolated to all untraced neurons of every class. 

Excitatory connections are shown in red and inhibitory connections are shown in blue.

C. Inhibition within the fly ring attractor appears to stem from multiple neuron classes, 

including the Δ7s and ring neurons. The Δ7s provide more structured, long-range inhibition 

of E-PG and P-EN neurons with different heading tuning in the PB (middle row; expanded 

view in box at top left), and different classes of ring neurons provide more uniform 

inhibition of E-PGs in the EB (bottom row; expanded view in box at top right).

D. Recurrent excitation between neurons with similar heading tuning (‘local excitation’ in 

the context of ring attractor models) takes many forms. E-PGs from a specific wedge in the 

EB synapse onto P-ENs and P-EGs in the PB (schematized in bottom row and expanded into 

box at upper left). P-ENs project back onto the E-PGs in the EB synapsing onto E-PGs from 

neighboring tiles (shift shown in bottom row; expanded view in box at upper right). P-EGs 

also project back without a shift to the EB, where they synapse onto the P-EN2s (upper 

right). E-PGs also synapse onto P-ENs within the EB (upper right).
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E. Visual input neurons (simplified receptive fields indicated by red excitatory and blue 

inhibitory subfields in middle row) synapse onto one another in the EB (bottom row; 

expanded view in box at top). This mutual inhibition between visually responsive ring 

neurons may enable winner-take-all dynamics between visual cues, and/or gain control that 

maintains the same level of inhibition in the circuit in the presence of single or multiple 

visual cues.
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