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Abstract
This review provides the feasible literature on drug discovery through ML tools and tech-
niques that are enforced in every phase of drug development to accelerate the research pro-
cess and deduce the risk and expenditure in clinical trials. Machine learning techniques 
improve the decision-making in pharmaceutical data across various applications like 
QSAR analysis, hit discoveries, de novo drug architectures to retrieve accurate outcomes. 
Target validation, prognostic biomarkers, digital pathology are considered under problem 
statements in this review. ML challenges must be applicable for the main cause of inad-
equacy in interpretability outcomes that may restrict the applications in drug discovery. 
In clinical trials, absolute and methodological data must be generated to tackle many puz-
zles in validating ML techniques, improving decision-making, promoting awareness in ML 
approaches, and deducing risk failures in drug discovery.
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1  Introduction

In computer science, Artificial intelligence (AI) additionally attributed as machine intelli-
gence because machines are trained or customized to perform activities like a human brain 
(Poole et al. 1998; Vinod and Anand 2021; Gopal 2018). Artificial Intelligence (AI) can 
be categorized here as the field is dealing with a wide range of utilization and layouts of 
numerous algorithms for interpreting and attaining knowledge from data. And the AI con-
cept is firmly related to many fields like pattern recognition, probability theory, statistics, 
machine learning, and numerous procedures like fuzzy models, neural networks which are 
collectively known as “Computational Intelligence” Vinod and Anand (2021), Engelbrecht 
(2007), Konar (2006), Duda et al. (2012), Webb (2003), Friedman et al. (2001). Multiple 
complicated usages engaged with AI strategies like classification, regression, predictions 
and also optimization techniques. Machine learning needs to be modified well in the uti-
lization of any kind of information i.e., initially, a particular model must be characterized 
along with parameters. So, machines can be gain proficiency in the model with accessible 
parameters through the utilization of trained data. Furthermore, the model can predict the 
data in the future for recovering information from data (Alpaydin 2020).

In this review, we are primarily focusing on qualities of AI approaches that are appro-
priate for drug development and discovery (Duch et  al. 2007). Recently various factors 
were developed due to greater enthusiasm for utilizing machine learning approaches in 
the pharmaceutical industry. Figure 1 shows that the various fields of Drug Discovery and 
advancements utilized through machine learning. Every phase was performed like a pipe-
line to represent therapeutic concepts. The respective phases represent unique iterations in 
time and cost expenditure. Here each phase is carried out to prove the effectiveness of the 
remedial treatment. The medical information was being mined and estimated accurately 
by using some ‘omics’ and ‘smart automation tools’. Enlarging these techniques into the 
biological field gives more opportunities as well as challenges in the pharmaceutical indus-
try. Since numerous pharmaceutical enterprises’ objective is to distinguish the persuasive 
clinical hypothesis. With the obtained results, practitioners or clinicians can develop the 

Fig. 1   Various fields in Drug 
discovery by using Machine 
Learning
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medications. For establishing any type of drug in pharmaceutical industries, the usage of 
machine learning approaches has checked out the performance. At this point, if included 
with unlimited storage, improvement appeared in datasets like size, types can provide 
premises to machine learning. In this way, it can access enormous data from pharmaceuti-
cal industries. Data types can have different configurations like textual data, images, assay 
information, biometrics, and furthermore high dimensional omics data (Mamoshina et al. 
2018).

Thus, the AI field has developed from theoretical knowledge to real-world data. Infor-
mation was widely improved for utilizing in PC hardware, for example, Graphical Process-
ing Units (GPU), which makes faster in processing (i.e., in computational techniques). 
Recently, the deep learning model is one of the machine learning algorithms (LeCun et al. 
2015), it develops the models for making more accomplishment in broad daylight chal-
lenges (Chen et al. 2018; Hinton 2018). For the past 2 years, the usage of ML algorithms 
has a great extension within pharmaceutical enterprises.

In the clinical field, developing a new drug for persistent disease primarily relied on 
new medications. As of late, various drugs are improvised for recognizing dynamic com-
ponents from traditional treatments such as penicillin. In chemical laboratories, it consists 
of natural substances, small molecules that aid in therapeutic medicine to detect substances 
such as cells or intact organisms. This procedure is called old-style pharmacology.

High throughput screening with multiple libraries has normally expanded because of 
the human genome has permitted cloning strategies and furthermore improving refining 
of proteins in huge quantities. Screening activity for large compounds through biological 
targets can be used to achieve a change in a disease called reverse pharmacology. Multiple 
hits can be generated from screening activity to provide cells and furthermore tests have 
been conducted in creatures for adequacy. In modern days, drug discovery has engaged 
with the performance of identifications on screening hits, optimization techniques can 
build the drug effectiveness, affinity, stability of metabolic. If all requirements are satis-
fied by the compound, a particular drug will be developed in clinical trials if the drug is 
successful. In process of drug development and discovery, it requires lead optimization, 
target identification and validation, hit discovery, clinical trials (Vohora and Singh 2018). 
In novel drug development, the cost expenditure can approximately 2.558 billion USD 
(DiMasi et al. 2016) and it is a tedious procedure in light of the fact that about 10–15 years 
have taken for selling in the market (Turner 2010). To accomplish a small number of mol-
ecules in drug development, many investors are putting a lot of cash in developing exact 
progress in clinical trials. And still, 13% precision rate is lagging with disappointment. 
So as to conquer this issue, clinicians have utilized the Computer-assisted Drug Design 
CADD technique (Hassan Baig et al. 2016). By utilizing this strategy in drug discovery, 
the artificial techniques not just provide the molecular properties (i.e., selectivity, distri-
bution, absorption, bioactivity, metabolism, side effects, and excretion in the theoretical 
levels) but also provides the lead compounds such as ideal attributes in silico. Also, attri-
tion cost in the preclinical state can be decreased through the utilization of multi-objective 
optimization techniques.

In drug discovery, computational intelligence provides various techniques for analyz-
ing, learning and furthermore clarifies how such pharmaceutical was identified with AI for 
finding numerous medications in a programmed and integrated format (Duch et al. 2007). 
Therefore, many pharmaceutical industries have shown greater enthusiasm for contributing 
to technologies, resources for retrieving accurate results in drug discovery. At last, this sur-
vey proposes AI techniques in the drug discovery area for targeting multiple applications in 
drug discovery and development by utilizing deep learning techniques. Along these lines, 
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the AI field provides expected outcomes in concern of computational intelligence in drug 
development and discovery (Table 1).

1.1 � Roadmap

The rest of the article is arranged in the following way: Sect. 2 describes the application of 
AI in Drug design. Then, the various machine learning methods towards Drug discovery 

Table 1   List of Major Abbreviations

ADMET Absorption, Distribution, Metabolism And ExcretionToxicology

AE AutoEncoder
AI Artificial Intellingence
ANN Artificial Neural Networks
AUC​ Area under the ROC Curve
CNN Convolution Neural Networks
CT Computed Tomography
DL Deep Learning
DNN Deep Neural Networks
DPI Drug Protein Interaction
GPCR G-Protein coupled receptors
GPU Graphical Processing Unit
HARF Heterogeneity Aware Random Forest
HTVS High-Throughput Virtual Screening
LDA Linear Discriminant Analysis
LR Logistic Regression
MAE Mean Absolute Error
ML Machine Learning
MLP Multi Layer Perceptron
MLR Multiple Linear Regression
MRI Magnetic Resonance Imaging
NBC Naive Bayesian Classification
NCE New Chemical Entities
PNN Probabilistic Neural Networks
PPI Protein to Protein Interaction
QSAR Quantitative Structure-Activity Relationship
RBN Radial Basis function Network
RF Random Forest
RMSE Root Mean Square Error
RNA Ribonucleic Acid
RNN Recurrent Neural Networks
ROC Receiver Operating Characteristic curve
SARS-CoV-2 Severe Acute Respiratory Syndrome CoronaVirus 2
SMILES Simplified Molecular Input Line Entry Specifications
SVM Support Vector Machines
VAE Variational AutoEncoders
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are discussed in Sect.  3. Various Drug design applications are discussed in Sect.  4. In 
Sect.  5, different Drug design problems have discussed. Finally, Sect.  6 presents the 
research challenges with few possible suggestions in Drug discovery using Machine learn-
ing, and Sect. 7 concludes the article and provided some future directions.

2 � Application of AI in drug design

This section discusses a few applications in AI which relate to drug study. The activity 
of protein structure is considered as the application in drug design. Many impurities have 
appeared in the human body due to protein dysfunctions. Structural drug design strategies 
are used to differentiate small molecules in protein targets. Protein structure in 3D format 
requires more money and time for predicting the 3D structure. And still, it faces the prob-
lem i.e., in making more exactness over de-novo prediction in 3D structure. By using deep 
learning and feature extraction tools, it is mandatory to predict the secondary structure 
(Spencer et al. 2014) and residing the protein contacts (Li et al. 2017). It precisely gains the 
information on the connection among structure and sequence from feature extraction. The 
further goal is to predict the 3D- protein structure by utilizing deep learning techniques for 
improving the accuracy. To retrieve information from drug design of protein-protein com-
puter structure, then it is mandatory to conduct investigations on PPI interface (Xue et al. 
2015).

Artificial Intelligence has been used in various applications like a prediction on 
drug–protein interactions, the discovery of drug efficacy, ensuring the safety biomarkers. 
The detailed discussion is given as follows

2.1 � Prediction on drug–protein interactions

The crucial step of drug development in silico is consisting of multiple biological sources 
for predicting drug–protein interactions. Here complications can be seen in large predic-
tions, which relied on the countless unknown interactions. Therefore, semi-supervised 
training techniques should be used to address these unlabelled and labeled date complica-
tions. Usually, only labeled data will produce better results. In addition, the semi-super-
vised technology integrates chemical structure, drug–protein interaction network data, and 
genome sequence data. Finally, in this article, drug–protein interactions of various data sets 
such as ions, enzymes, and nuclear receptors provided well predictable results (Xia et al. 
2010).

Drugs have an important priority in therapeutic activity, which is regulated by protein 
interactions. The drug–protein interaction database (DPI) focuses primarily on therapeu-
tic protein targets, while knowledge of non-targets has been limited and resolved. Thus, 
computational techniques can fill the knowledge gap for predicting protein targets for dis-
tributed drug molecules. In that study, the pool of 35 predictors had a major impact on 
the similarity between protein and drug targets. Drug structure, target sequence, and drug 
profile are three types of similarity developed from the results of 35 predictors. Finally, the 
significant content, relationships, and implications between database sources are of great 
importance for therapeutic activity (Wang and Kurgan 2020).

In drug repurposing, the unexpected detection of drug–protein interactions is essential. 
Thus, the dominant drug may be useful for repurposing, while drug side effects are una-
voidable and about 1,000 human proteins can cause critical side effects. The proteomic 
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scale method was used to predict side effects and protein goals. FINDSITEcomb is used to 
predict drug–protein interactions. The estimates showed greater disruption with a mean of 
329 human targets for each drug (Zhou et al. 2015).

2.2 � Discover of drug efficacy

Usually, a drug effect assessment looks at its biochemical activity. The effectiveness of 
the therapeutic activity has posed a challenge to be properly coupled with the biochemical 
activity. The collection of a large amount of data on the effects of cellular drugs was under-
taken to fill a gap that has been explored in the extensive content of cellular estimations 
and while this estimation is classified as a psychotropic drug. Here, the microarray data can 
be analyzed by applying random trees to the forest and classifying them, providing a profile 
for the efficiency of biomarker gene expression. Accuracy of 88.9% of the classification 
tree and 83.3% of the random forest model used this efficacy profile for a drug treatment 
analysis. Therefore, at the cellular assessment level, general genomic data are acceptable to 
reconcile the effects of new physiological drugs with clinical applications. Finally, in vitro 
signatures of gene expression data can identify the effectiveness of therapeutic activities 
that can help validate targeting and drug development (Gunther et al. 2003).

In drug development, increasing profitability by validating new drugs requires predict-
ing effectiveness and identifying targets. The proximity of medical illnesses helps to reduce 
the effectiveness of the treatment and also releases drugs that are effective in therapeutic 
activity. The study treated 78 diseases with 238 drugs to demonstrate the drug’s effective-
ness in therapeutic activity, as well as problems with gene efficacy and various disorders. 
Here the network-based system is used to develop a drug-disease proximate measure that 
assesses the interactions between the disease and the drug target. Therefore, the proximity 
of network-based systems makes it possible to predict associations for novel drug diseases, 
offering a wide range of possibilities for conflict detection and drug repurposing (Guney 
et al. 2016).

2.3 � Ensuring the safety biomarkers

In drug development, the use of biomarkers supports the provision of safety measures that 
critically determine the biological and analytical indicators of a particular biomarker. In 
this way, stakeholders can assess and manage whether claims are defended for a particular 
purpose and whether the desired standards are being met. For shareholders in the imple-
mentation of evaluating the experiment agreement, a stakeholder evaluation process is 
needed to adjust the unique characteristics of the biomarkers, as well as to determine how 
these innovations are analyzed, integrated, and interpreted, and how improved biomarkers 
and conventional comparators are measured (Sistare et al. 2010).

In the survey, we found that modern medicines are no safer than older drugs, even 
though with longer medical trial programs. These trails are placed on the market and 
impractical inspections are carried out which are not sufficient to be carried out system-
atically to ensure safety. Previous drug-related signals can help in improving drug safety 
as well as identify underlying biomarkers, making them more toxic. However, the safety 
markers can be different for different target systems. However, no other approach can pro-
vide assurance that medicines are very safe, but we can develop a common understanding 
of benefit and risk assessment by communicating with the public (Rolan et al. 2007).
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Various deep learning techniques are carried out here to predict the PPI interface and 
show fantastic results when contrasted with the SVM technique (Du et al. 2016). Thus, the 
PPI’s became more complex to utilize in biological techniques (Falchi et al. 2014; Scott 
et al. 2016). Each PPI can be a mixture of various residues (Cukuroglu et al. 2014). New 
PPI can act as a modern class for pharmaceutical targets where disparate for different tar-
gets i.e., ion channels, GPCRs (G-Protein coupled receptors), kinases (Higueruelo et  al. 
2013; Santos et al. 2017). iFitDock is a docking tool used for investigating a few hotspots 
in PPIs. Further, AI techniques have been utilized for distinguishing structures and hotspots 
in PPI interface (Fig. 2).

3 � Machine learning methods to drug discovery

AI innovation has a high priority in drug design through the enhancement of ML 
approaches and the collection of pharmacological data. AI does not rely upon any hypo-
thetical improvements, but it has more essence in transforming medical information into 
studies like reusable methods. In general, there are different approaches such as Random 
Forest, Naive Bayesian Classification (NBC), Multiple Linear Regression (MLR), Logis-
tic Regression (LR), Linear Discriminant Analysis (LDA), Probabilistic Neural Networks 
(PNN), Multi-Layer Perceptron (MLP), Support Vector Machine (SVM), etc are consid-
ered in the context of ML (Lavecchia and Di Giovanni 2013). In order to gain capability 
in feature extraction and feature generalization, AI advancements are specifically used as 
a deep learning technique towards drug design. Also, Fig. 3 shows respective applications 
which illustrate an outline of AI procedures utilized to respond to drug discovery queries 
in the review. A scope of classifier and regression strategies i.e. supervised learning tech-
niques utilized to respond addresses desire expectations in continuous or categorical data 
factors, also unsupervised methods utilized in creating a model which empowers the clus-
tering data.

Fig. 2   Applications of AI in Drug discovery depicts the Machine learning mechanisms
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Many designed features in traditional ML models are performed manually, but deep 
learning approaches will accelerate various features through available initialized data 
automatically because multi-layer feature extraction techniques are used to convert 
straightforward features into complex features. One advantage of using deep learning 
approaches was, presence of low quantity generalization blunders, so it recovers more 
exact results. CNN, RNN, Auto Encoder, DNN, and RBN are considered as differ-
ent deep learning techniques. Summary of deep learning algorithms can be identified 
(LeCun et al. 2015; Angermueller et al. 2016; Schmidhuber 2015) and provides detailed 
information about deep learning techniques which are available in Deep Learning litera-
ture (Goodfellow et al. 2016).

In drug discovery and development, many AI calculations are associated to analyse 
and predict the data. Here, few popular models like SVM, RF, and MLP discuss their 
effective use in drug discovery.

3.1 � Support vector machines

SVM model is a supervised learning algorithm basically utilized in predicting the class 
labelled data i.e., binary data. In SVM, x is considered as feature vector i.e., input to 
SVM model. At that point, x ∈ Rn where n is a dimension feature vector. Y acts as a 
class i.e., output for svm. Y ∈ {−1, 1} . Here, Binary values are considered as classifica-
tion task. Parameters in SVM u and b have considered for learning data in training set. 
In dataset, (x(i), Y (i)) are considered as ith sample. Y can be represented as follows:

A class Y can be written as Y (i))(UTX(i) + b) ⩾ 1 . Finally, SVM algorithm goal is to satisfy: 

1.	 In SVM, seperation between any two boundaries ought to be augmented i.e., the distance 
between two hyperplane uTx + b = −1 and uTx + b = 1 should be maximized. In this 
way, Distance = 2

||U||max
U . Finally, it have to solve maxU 2

||U||min
U 2

||U||
2.	 Complete x(i) samples need to classify effectively in the SVM i.e., 

Y (i))(UTX(i) + b) ⩾ 1∀ ∈ 1, 2, 3…N

Then, it produces quadratic optimization problem i.e. min||U||
U,b2

 . So that, 
Yi(UTXi + b) ⩾ 1,∀i ∈ 1, 2, 3,… ,N.

Y (i) =

{
if − 1 if UTX(i) + b ⩽ −1

if 1 if UTX(i) + b ⩾ 1

Fig. 3   Maximum-margin hyper-
plane and margins for an SVM 
trained with samples from two 
classes. Samples on the margin 
are called the support vectors
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The above equation was a hard-margin SVM, and we can avoid this problem through 
applying linearly separable method. Using the slack variable �(i) as constraints. In training 
data, each sample has its own slack variable. Then,

Now, it’s a soft margin SVM, where ‘C’ is considered as a penalty of the error term. 
Involving function � to allow more flexibility in mapping. So, it maps multiple features like 
original space to high dimensional space (Noble 2006). Then, the quadratic optimization 
problem updates Eq. 1 as the following:

The SVM widely used in drug discovery using its various kernels (Smola and Schölkopf 
2004). Various problems like Screen radiation protection and Gene Interaction using SVM-
RBF(Radial Basis Function) (Matsumoto et al. 2016; Guo et al. 2008), Assess target-ligand 
interactions using Regression-SVM (Li et  al. 2011), Identify drug target interaction by 
Biased SVM (Wang et al. 2017), Predicting drug sensitivity prediction by Ensemble SVM, 
and the Linear SVM used in Identify novel drug targets (Volkamer et al. 2012), Anti/non-
anticancer molecule classification (Kapoorb et al. 2020), Kinase mutaion activation (Patil 
et al. 2021).

The SVM approach (Huang et al. 2018) was used to quantify anti-cancer drugs based 
on cancer cell properties. To understand the relationship between cancer cell properties 
and drug resistance, 24 drugs were tested on cancer cell lines (Gupta et al. 2016). In the 
treatment of oral cancer, the SVM-RBF (Radial Basis Function) approach has been used 
to find therapeutic compounds from a large collection of public databases (Bundela et al. 
2015), the RBF is the popular kernel function used in various learning algorithms. The 
RBF kernel takes two samples S1 and S2, represented as feature vectors in some input 
space K(S1, S2) = exp(

||S1−S2||2
2�2

) where ||S1 − S2||2 is used to recognized as the squared 
Euclidean distance between two vectors and � is a free parameter. Here the RBF is used 
and hybridized as many variations with different parameter values.

In general, radiation therapy techniques help to protect against cancer. Therefore, the 
SVM method is used in virtual screening (Matsumoto et al. 2016) to protect the radiation 
function. Radiation therapy also has side effects on normal cells and tissues (Morita et al. 
2014). In this study, we found that the SVM approach worked better than other techniques. 
When the target protein is known, we can find a suitable compound for the target pro-
tein. However, the SVM technique is mainly used to predict the outcome of targeted drugs. 
SVM has used sites to link global descriptors, taking into account various properties such 
as compactness and size. These descriptors can determine drug scores for novel targets 
(Volkamer et al. 2012; Li et al. 2011).

In therapeutic activities, the use of SVM helps to find the active ingredient at various 
stages of the drug development process. In general, the active component of the connec-
tion is taken into account in the number of turns of the design process. The main goal is 
to find different lead series in the active compound to improve them in parallel in thera-
peutic activity (Warmuth et  al. 2003). In contrast to other artificial neural networks, 

(1)

min||U||
U, b 2

+ C

N∑

i=1

�(i)

i.e., Y (i)(UTX(i) + b) ⩾ 1 − �(i),∀i ∈ 1, 2, 3,… ,N

�(i) ⩾ 0,∀i ∈ 1, 2, 3,… ,N

Therefore,Y (i)(UT�X(i) + b) ⩾ 1 − �(i),∀i ∈ 1, 2, 3,… ,N
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SVM demonstrated the ability to test drug similarity predictions of a wide variety of 
compounds. Because of this set of descriptors, the SVM outperformed the task and also 
reported that the SVM model predicted better enzyme inhibitor quality for conventional 
QSAR (Zernov et al. 2003).

Right now, the SVM model is the best methodology for predicting organic and 
compound properties. Recently, the SVM model has been utilized in the drug discov-
ery region and turned out to be more famous in drug discovery applications like a pre-
diction on properties, compound classification (Maltarollo et  al. 2019). In designing 
new structures, the SVM approach was utilized for retrieving higher predicted results 
where depend on ligands (Hartenfeller and Schneider 2010). In the Activity process, 
to improve scoring capacity execution, the SVM approach was utilized for clarifying 
non-linear relationships of energy terms from eHiTS and binding data which shows a 
lot of improvement in scoring power and screening power (Kinnings et al. 2011; Zsol-
dos et al. 2007). SVM model was frequently utilized in virtual screening (Leelananda 
and Lindert 2016; Liew et al. 2009; Melville et al. 2009) and demonstrated best results 
(in the predicted ratio called hits) and furthermore false-hit rates are decreased concur-
rently (counterfeit hit rates in the predicted hits) (Ma et al. 2009). Creating meta-clas-
sifiers with SVM-based methodology can coordinate different methods for exploiting 
each complementarity and individual strengths (Maltarollo et al. 2019).

3.2 � Random forest

The Random Forest algorithm was a supervised algorithm. The name itself says, ”This 
is a way of creating a forest from various perspectives to make it random”. The signifi-
cant advantage of the Random Forest algorithm was, it can relevant for both regression 
and classification issues. In the procedure of regression and classification tasks, overfit-
ting can happen normally, so the outcome will be in a worse state. We can defeat the 
overfitting issue through the usage of random forests algorithm with the availability of 
multiple trees in the forest. Random forests can apply trained algorithmic techniques 
i.e., bagging. Training set comprises,

X = X1,X2,… ,Xn , Y = Y1, Y2,… , Yn . Then, random samples can alternately selected 
from training data for fitting random forest tree. 

1.	 Alternate samples with n trained examples from X, Y then Xa, Ya.
2.	 Classification tree fb must be trained on Xa, Ya data. Here, a = 12,… ,A.

After training the data, invisible samples x′ need to be predicted by averaging all indi-
vidual trees on x′:

In classification trees, majority voting can be considered. Finally, random forest model 
produces better results due to the absence of increment in bias, it reduces variance in the 
model. The equation for individual regression tree on x′ can be represented in standard 
deviation form i.e.,

f̂ =
1

A

A∑

a=1

fa(x
�)
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where ‘A’ is a free parameter. In view of the size, nature of the trained data, a large number 
of trees can be used (Ho 1995). Also, the random forest can be appropriate in medication 
for deciding the right segments of grouping in therapy, and; investigating patient records 
can be supportive in recognizing the infections (Polamuri 2017). In ligand-protein bind-
ing affinity, using random forests can improve the scoring function performance (Kinnings 
et al. 2011; Zsoldos et al. 2007). Representation of scientific models and chemical struc-
tures are the fundamental issues in QSAR model (Dudek et al. 2006). At that point when 
descriptors are chosen, it is necessary to establish the best mathematical model for correct 
fitting in structure-activity correlation. So as to improve fitting standards in mathematical 
model (A Dobchev et al. 2014; Ning and Karypis 2011), a random forest algorithm was 
utilized (Fig. 4).

The selection of molecular descriptors is seen as an important step in virtual screening 
to identify bioactive molecules during the drug development process. Because this choice 
of descriptors shows predictions with lower accuracy. Hence, the random forest technique 
was used to improve prediction and then select naturally trained molecular descriptors for 
kinase ligands, hormone receptors, enzymes, etc. (Cano et al. 2017).

In the pharmaceutical industry, when developing drugs, the question that arises natu-
rally is whether a prediction model trained with heterogeneous data is implemented as a 
similar prediction model. Then the heterogeneity data were compiled for forecasting and 
model training. In this study, heterogeneity was treated as a problem with the latent dis-
tribution, and the covariate-free allocation technique was distributed to be distributed 
by means of an ensemble leaf node model. In general, an ensemble-based random forest 
model has incorporated Heterogeneity Aware Random Forest (HARF) and assign specific 
weights to tree-based categories. Of course, the technique proposed by HARF gives better 
results than classical random forest, whereas drug feedback with the cancer disease types is 
something peculiar (Rahman et al. 2017).

Immune network technology is to determine new compounds from drug molecules. 
Using examples of sulfonamide properties, sulfonamides are divided into various prognos-
tic effects over a period of time. Using a random forest approach, we selected molecular 

𝜎 =

�∑A

a=1
(fa(x

�) − f̂ )2

A − 1

Fig. 4   The random forest visually generated a data point decision tree to extract estimations for each sample 
to determine the best outcomes through voting
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descriptors to achieve better accuracy than the simulation results for compounds designed 
for the drug (Samigulina and Zarina 2017).

3.3 � Multilayer perception

The Multilayer perception model is also known as a feed-forward neural network. MLP 
provides an outcome based on a set of input sources. For training any sort of information, 
the backpropagation approach is utilized. This model is similar to a directed graph because 
of the essence of multiple layers as input nodes and output nodes are associated with some 
weights (Pal et al. 1992). After processing the data, the perceptron can fluctuate each con-
nected weight in the network. In this way, the presence of error in actual output can be 
compared with the expected output. Consider node }j� in output as degree of error in last 
data point i.e., nth ej(n) = aj(n) − Yj(n) Where a → targetvalue , Y → the variable developed 
from the perception. Based on some corrections, weights in each node can be adjusted 
through decreasing error in the output i.e.,

Also, every weight can be varied through the gradient descent approach i.e.,

where, � → learning rate and weights can be converted into a response without any oscilla-
tions. Yi → previous neuron result.

Depending on }V �
j
 field, derivative can be calculated. Then, simplified derivative in out-

put node can be

Here � cannot be varied itself. Because changing each and every weight in hidden layer 
becomes difficult; Also, it provides

where }k� is represented as the last node in the output layer. In case, changing any weights 
in a hidden layer, the activation function can be varied the weights in the output layer. 
Figure 5 performs specific computations to distinguish few features in input data. It learns 
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optimal weights consequently and afterward input features will be increased with available 
weights to decide specific neuron was terminated or not. In this way, Multilayer percep-
tron uses backpropagation strategy with the activation function (Rosenblatt 1961). In this 
review, a multi-layer perceptron was utilized for predicting action between the drugs. This 
model has one advantage i.e., it does not require any structural information on compounds 
because of the fact that it uses experimental data for predicting the accuracy (Stokes et al. 
2020). Additionally, MLP was utilized to generate a de-novo drug design. This model 
having the capability to generate different compounds automatically with some advanced 
properties (Gómez-Bombarelli et al. 2018).

In general, MLP can be used very easily and very quickly, but fulfilling its duties in 
training is very difficult, and MLP also does not offer any guarantee of global minimum 
performance (Gertrudes et al. 2012).

The secondary structure of proteins offers a greater advantage in determining protein 
function, drug design. In that study, the MLP approach showed greater interest in classifi-
cation success. However, in the experimental area, determining the secondary structure is 
more difficult and expensive. Finally, the results from the trained data were reported as a 
positive success compared to the classification (Yavuz et al. 2018).

3.4 � Deep learning

Deep learning is a part of machine learning, having the capability to extract a greater level 
of features through utilization of multiple layers from input data (Deng and Dong 2014). 
Deep learning is an immense field that is creating massive premiums nowadays. Recently, 
deep learning techniques have been used in many research fields and have achieved higher 
profitability in business strikes. But what exactly is deep learning? In general, deep learn-
ing is the same neural network architecture that consists of several layers, and data can be 
transformed between these layers. It’s still a significant popular expression, but the innova-
tion behind it is genuine and very refined. So, models in deep learning can be developed 
through a strategy called greedy layer-by-layer (Bengio et al. 2007). Figure 6 contrasts the 
powerful deep learning approaches with pooling layers and figure outs the critical issues 
and devise the most appropriate solution even problem was in a complex situation. In this 
review, deep learning algorithms have presented numerous models like DNN, CNN, RNN, 
Autoencoder in drug discovery areas. The pooling layer is another structure that hinders 
the neural networks. The capacity of the pooling layer is to reduce the spatial size of the 
representation to reduce boundary measurement and system computations and work inde-
pendently on each feature map (channel). The motivation behind why max-pooling layers 
work so well in various networks is that it enables the system to recognize the features very 
effectively after down-testing an input structure and it reduces the over-fitting.

DNN architecture was evolved from an extension of Artificial Neural Network (ANN), 
contains multiple layers between input and output nodes (Bengio 2009). The DNN archi-
tecture traces the outcomes in a mathematical model either it can be a non-linear or linear 
relationship. Here, each mathematical model expected as a layer, also multiple layers were 
available in complex DNN, so that network is named as ‘deep’. Deep learning models are 
introduced in QSAR modeling to retrieve feature extractions and capabilities in chemical 
characters automatically. Dahl et.al had inspired by Kaggle’s results and improved investi-
gations on multi-task DNN. The results of multi-task DNN have demonstrated incredible 
execution in learning general features of sharing parameters (Dahl et al. 2014).
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Development of candidate drugs plays major desirable property in oral delivery. Mol-
ecules in intestinal permeability can be assessed by computational technology through 
affording rapid and reasonable ways. Multiple studies focused on intestinal intake of 
chemical composites for predicting the peptide sequence data. ML techniques like artifi-
cial neural networks have been adopted for predicting the intestinal permeabilities of pep-
tides. The intestinal permeable of peptides consists of positive controlled data obtained 
through the peroral phage technique and random sequence data can be prepared through 
negative controlled data. Multiple statistical indicators like specificity, sensitivity, ROC 
score, enrichment curves, etc., are validated to produce appropriate predictions. And the 
statistical results declared that models have good quality and can segregate in between ran-
dom sequences and permeable with great levels of confidence. Finally, the ANN models 
demonstrated greater prediction than unpredictable one. So, this model can applicable for 
intestinal permeable peptide selection to generate peptidomimetics (Jung et al. 2007).

Multi-task neural networks integrated into a platform called ‘DeepChem’, it helps the 
multi-task neural network to perform in drug development process (Ramsundar et  al. 
2017). Along with this, networks have assessed performance in the multi-task deep net-
works was robust. Finally, the performance of deep learning algorithms in QSAR models 
upgraded the prediction performance. Also, DNN played out a significant role in further 
research of hit-to-hit lead optimization.

CNN is a subclass of DNN, ordinarily utilized for analyzing the visual images (Val-
ueva et al. 2020). CNN also called shift-invariant ANN because frequently rely on weights. 
CNN is a regularized version of a multi-layer perceptron. The concept of multi-layer per-
ceptron characterizes fully connected networks, where each neuron in the first layer is asso-
ciated with the following layer. By using of a fully connected algorithm, a network can 
conquer the overfitting problem. The CNN algorithm examines the clinical field so that, 
every neuron in a human cell appears like the visual cortex (Venkatesan and Li 2017). In 
ligand-protein interaction, many researchers utilized CNN model for predicting affinity in 

Fig. 6   Deep Learning Architectures
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protein-ligand (LeCun et al. 2015; Leelananda and Lindert 2016). The affinity prediction 
indicated the best correlation in the dataset (Jiménez et al. 2018). In protein-ligand interac-
tion, the CNN algorithm predicted binding affinities which can further increase scoring 
function but predictive capabilities must upgrade simultaneously.

RNN algorithm is an area of the artificial neural network, connections can occur 
between the input node and the output node. In this way, a directed graph can be created 
in the network along with a temporal sequence. Likewise, the RNN network utilizes the 
internal memory to perform grouping in input variables (Dupond 2019). It also exhibits 
dynamic performance Miljanovic (2012) because the RNN algorithm struggled for two 
networks at a time with the general structure. Each network may contain various impulses 
i.e., finite and infinite impulses.

Determining the functionality of protein structure will play a vital role in secondary 
and tertiary structures. Previously, numerous algorithms relates to folding prediction have 
improved to encode in the protein sequence experiment to develop protein structures. So, 
Visibelli has found � − helixes signals on a large dataset. To locate specific occurrences 
in amino acids to characterize the specifications in secondary structure for deciding the 
helical moieties boundaries. The � − helixes occurrences are predicted through various ML 
models for validating the hypothesis equipped with an attention mechanism. This mecha-
nism can interpret the weights of each input, model’s decision for prediction. At last, the 
similar subsequences show the experimental outcomes, where input code-driven in second-
ary structure information (Visibelli et al. 2020).

Day by day, it has been turning out to be a challenge in improving affordable and effec-
tive treatments to humans without any prescience in drug target information. The deeDT-
net is one of the deep learning techniques that were embedded with 15 variations of phe-
notypic, chemicals, cellular profiles, genomics utilized to accelerate drug repurposing and 
target identification. Due to the presence of high accuracy, deepDTnet has been approved 
by U.S. Food and Drug Administration with the identification of novel targets to familiar 
drugs. Through experimental results, topotecan was an approved inhibitor that can directly 
be utilized for human retinoic-acid receptors to diminish transitional void in drug develop-
ment (Zeng et al. 2020).

In virtual screening, RNN utilized to cause new molecular libraries, so it got support-
ive in finding anticancer agents through molecular fingerprints (Kadurin et  al. 2017). In 
producing the de novo drug design, the prediction must be conducted on biological perfor-
mance. In this way, the RNN algorithm was utilized for generating molecules (Olivecrona 
et  al. 2017). In the ChEMBL dataset, molecules could be gathered. For sampling, gen-
erated molecules must be trained by the RNN algorithm through conditional probability. 
Various classifiers performed data sampling however RNN with reinforcement learning has 
given 95% accuracy in scoring function (Mnih et al. 2015).

’Deep Interact’ was an integrative domain-based approach is utilized to predict PPI’s 
through Deep Neural Network. Assortment of multiple PPIs is extended out from (KUPS) 
Kansas University Proteomics Service and (DIP) Database of Interacting Proteins. It’s 
highly fundamental to discover and analyze the cellular components in the specificity of 
interactions and explicit molecular protein complexes. The significant goal is to develop 
enormous scope high-throughput experiments through silico approach to improve the 
uncovering levels in PPI. From a dataset known as Saccharomyces cervisiae, 34,100 PPIs 
have been validated to return promising results with a sensitivity of 86.85%, an accuracy 
of 98.31%, a specificity of 98.51%, and an accuracy of 92.67%. At last, the Deep Interact 
approach concluded to be better performed over existing ML approaches in PPI prediction 
(Patel et al. 2017).
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Autoencoder is a class of artificial neural network, it retrieves information through 
unsupervised learning (Kramer 1991). Autoencoder objective is to represent the encod-
ing data format in dimensionality reduction for maintaining a strategic distance from the 
‘noise’ signal in the network. Along with this, the autoencoder must explore input data and 
then copied to the output layer. Autoencoder has two areas i.e., Encoder and Decoder; and 
one hidden layer. Here, the hidden layer is considered as code. Encoder transfers input data 
to the hidden layer. The decoder can retrieve information for reproducing the signal output. 
Autoencoders was most appropriate in dimensionality reduction and learning the data from 
generative models (Kingma and Welling 2013; Larsen et al. 2015).

Considering encoder as � and decoder as � , such that � ∶ Y → E , � ∶ E → Y

In first hidden layer, encoder considered input as y ∈ Rd = Y  and maps to h ∈ Rp = E . 
h = �(Wy + b) Here, }h� considered as code, }W � as weight matrix, }b� as bias vector, � 
acts as activation function. Basically, biases and weights are randomly utilized and updated 
through backpropagation technique. Then, decoder maps }h� to }y� with same structure of 
}y� ∶ , Y � = ��(W �h + b�)

Decoder consists �′,W ′, b′ coefficients may vary in encoder i.e., �,W, b coefficients. 
Mainly autoencoders were trained to decrease reconstruction errors (loss).

Here, feature space }E� consists of less dimensionality than input space }Y � . Also �(y) is a 
compressed format for input ‘y’. At whatever point, hidden layers are more prominent than 
or equivalent to the input layer, it offers the adequate capability to learn identity function, 
finally, it was useless. In Autoencoders, test results despite everything to learn numerous 
valuable features from training set (Kingma and Welling 2019). In drug discovery, autoen-
coders utilized as unique architecture to deliver molecules through conducting experiments 
right into vermin (Zhavoronkov et  al. 2019). In designing of de-novo drug design, deep 
learning model i.e., autoencoder have utilized for generating the molecules. So, the autoen-
coder approach was employed with various classifiers like multilayer perceptron for gener-
ating new compounds automatically with appropriate properties (Gómez-Bombarelli et al. 
2018). In many situations, the drug produces invalid SMILES syntax, so as to defeat this 
issue, grammar variational autoencoder was utilized for developing SMILES syntax with 
more effectiveness (Pu et al. 2017) (Fig. 7).

4 � Drug design applications

The review of drug discovery is further categorized on the basis of task performing of ML 
and their applications like target identification, hit discovery, hit to lead, lead optimization 
techniques are discussed out. The drug design techniques rely on the databases which are 
inturn developed based on the different ML algorithms. The precise training, validation, 
and application of ML algorithms in the drug discovery era provide an enthusiastic out-
come by easing the complicated error-prone protocols. The ML techniques are introduced 
in most of the drug design processes to reduce the time as well as manual interference. The 
best example is QSAR, in which the huge data collection and training of datasets are con-
sidered as rate-limiting steps in defining the ligand-based virtual screening protocols and 

�,� ∶ arg
�,�

min
||Y − (�o�)Y||2

L(y, y�) = ||y − y�||2 = ||y − ��(W �(�(Wy + b)) + b�||2
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are now replaced by Denovo design techniques. The relationship between drug discovery 
steps and algorithms is presented in Fig 8.

4.1 � Homology modeling/prediction of protein folding

The folding of secondary structure like � − sheets and � − helices , which is formed by 
the interaction of side-chain amino acid residues are very critical to regulating the smooth 
functioning of three-dimensional proteins. An accurate protein folding along with its pre-
rogative active ligand site can be experimentally obtained by X-ray crystallography, NMR-
spectroscopy, and Cryogenic electron microscopic techniques (Cryo-EM).

Fig. 7   Basic flowchart of an AutoEncoder with an example NCE

Fig. 8   Primary, secondary, tertiary and quaternary structures of the protein highlighted with active site resi-
dues. The AmpC beta-lactamase (PDB:6DPZ) as case example is taken and depicted in the above figures
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Information about the primary amino acid sequences of proteins/enzymes/receptors, 
both dissolved / insoluble, is stored on the UNIPROT server along with their targets and 
cellular functions. Based on medicinal chemistry or pharmacological or biochemical stud-
ies, the main role of proteins is identified, and this information is also the basic unit for 
developing the protein folding prediction studies by software or experimental studies. 
Whereas, the protein folding predictions in the provided aminoacid (UNIPROT) sequence 
were compared with its experimentally derived PDB homologues which became a hopeful 
technique to refine the new protein models computationally and is also termed as ”homol-
ogy modeling”. The homology modeling or comparative modeling is analyzed by the sev-
eral algorithms which need to be implemented in either software modules (PRIME) or web 
servers (EXPASY, SWISS-MODEL) will definitely make a decision to predict the second-
ary structure folding with high accuracy within provided templates. However, the fine-tun-
ing for the obtained homology models or template-based models are again scrutinized by 
Ramachandran analysis which can be sorted out by commercial modules (PRIME) or web 
servers (QMEAN, PROCHEK). For further understanding, the homology of CHIKV nsP2 
protease is described here (Fig.  9) which is obtained based on experimentally predicted 
VEEV nsP2 protease template by using insilico techniques. The inisilico tool utilizes the 
computational databases to dig the information about the homology templates and pro-
vides the best closest match as considering for more practical bioinformatics and medici-
nal chemistry applications. Figure 8 depicted the alignment of secondary structures such 
as �-helices, �-pleated sheets, and loop representations present in tertiary complexes. The 
surface view also useful for recognizing the hotspots present on the protein to bind with 
incoming ligands/substrates. The sequence alignment mode also shows the mutations or 
differences in their primary sequences, it can be employed in different chemo-informatics 

Fig. 9   a Overlap of 3TRK with 2HWK; b surface view of 2HWK; c, d off-surface/ribbon diagram of finest 
3TRK model; and e homology validation parameter obtained from SWISS-MODEL
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approaches to identify the mutations similar kinds of viruses or any other pathogenic dis-
orders. The significance of chemo-informatics is playing a crucial role and prevailing as 
an emerging tool in the current SARS-COV2 pandemic towards the identification of new 
drug-like molecules (Fig. 10).

In addition, selecting the best homologous model obtained from the above process is 
another major task that can be performed with SVQMA (Support-vector-machine Protein 
single-model Quality Assessment ) servers or ProQ3 or ERRAT, which are operated by the 
Deep-learning methods. After going through the above steps, the best 3D protein template 
can be used for any basic drug chemistry study to identify hits that are part of a structure-
based virtual screening protocol.

To provide insight for homology modeling, the Q5XXP4 fasta sequence belongs to 
CHIKV nsP2 protease domain has been employed as a template by overlapping its closest 
VEEV nsP2 protease solved protein (PDB:2HWK) as reference model using the SWISS-
MODEL web server and the results are presented in Fig. 11. for understanding the above-
specified concepts. Further, the active site residue position analysis of the finest developed 
model has been done and is found to have similar to VEEV nsP2 protease residues as 
shown in Fig.  10. The SWISS-MODEL also provides the information about percentage 
similarity along with structure alignment, the Fig. 10 shown the overlap of similar active 
site residues consists of catalytic site (catalytic diad Cys and His). It also represents the 
conformational changes present in the new template which also considered as an essential 
parameter for drug interaction studies

Fig. 10   The overlap of active site residue of the CHIKV (homology model) (red sticks) and VEEV nsP2 
protease (green sticks)
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4.2 � Target identification

The target identification for NCE’s is an extreme task due to lack of knowledge on their 
off-targets such as enzymes, ion channels, proteins, or receptors. The binding site recogni-
tion for the NCE’s is another key task for computational/bioinformatics experiments where 
more than one active site has existed in the protein. In the above cases, the predefined most 
popular web servers (FTMap), as well as specific modules such as ”Sitemap” developed 
with the help of algorithms, can define the preferential binding site to speed up the drug 
discovery process. A few other online programs like GHECOM, POCASA, Pocketome, 
SURFNET, ConCavity, LIGSITE, Q-SiteFinder, Fpocket, and PASS predicts the feasible 
binding sites located within the provided protein templates. Whereas, the metaPocket 2.0 
program utilizes the above platforms to afford the most reliable ligand binding sites present 
on templates. Further, AI models like FD/DCA can also predict the druggable sites in the 
provided biological macromolecules. Recently, the DeepDTnet as a new target identifier 
in drug repurposing has been tested. The DeepDTnet strategy is developed by amalgamat-
ing the multi-disease cellular targets, pathogenic genes (genomics), and drugs (chemical 
spaces) being utilized for their treatment.

4.2.1 � Prediction of protein folding

Patients who experienced illnesses can be recognized through protein dysfunctions. Here, 
active molecules can recognize through a structure-based drug design approach. Time and 
cost consumption should be required for 3D structural processing, and it is also important 

Fig. 11   Illustrating drug discovery design techniques and topics with AI models
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to be aware of what algorithms are used to predict the 3D structure of proteins. Because 
of the essence of the large amount of protein sequence data, it creates a problematic issue 
in making 3D structure accuracy for de-novo prediction. For retrieving feature extraction 
capabilities, deep learning approaches must apply prediction in backbone torsion angle (Li 
et al. 2017), secondary structure (Spencer et al. 2014), and protein residue contacts (Wang 
et al. 2017). At long last, the goal was to predict the 3D protein structure. Also, deep learn-
ing techniques have elaborated this field for improving 3D protein structure.

4.2.2 � Prediction of protein–protein structure

PPI’s are essential for biological processes and infections (Falchi et al. 2014; Scott et al. 
2016). PPI can be characterized as ‘it performs similar to networks for mathematical rep-
resentation of physical contacts between cell proteins. Composed contacts between bind-
ing regions in proteins have specific biological importance. Also, it obtains the experimen-
tal and bioinformatics strategies from PPI’s database (Li and Lai 2007; Szklarczyk et al. 
2015). PPI interface is also referred to as a collection of multiple residues (Cukuroglu 
et al. 2014). In this way, it turns into a new class for drug targets that are different from 
mainstream pharmaceutical targets like ion channels, coupled receptors, G-protein, etc 
(Higueruelo et al. 2013; Santos et al. 2017). At that point, a new class will extend the target 
space for improving small molecule drugs (Shin et al. 2017). When contrasted with tradi-
tional drug targets, target PPI’s reduces harmful impacts because of increment in biological 
selectivity of regulatory impacts (Valkov et al. 2011). It is mandatory to learn fundamental 
ideas of the PPI interface on the protein-protein structure. Because of the less accessibility 
of PPI’s data, it contributes many computational techniques for predicting PPI’s interface 
(Xue et  al. 2015). Those techniques are dependent on a template which makes it simple 
for PPI interface protection (Zhang et al. 2010). For example, a website name “eFindSite” 
(Maheshwari and Brylinski 2016) utilized for predicting PPI interfaces which consist of 
templates, residues, and sequence-related features for improving SVM, NBC techniques. If 
the chance of two interactive protein structures is vacant then it makes it easy for predicting 
the PPI interface (Vakser 2014) where it mainly relies on complementarity rules of pro-
tein-protein docking (Chen et al. 2003) and SymmDock strategies (Schneidman-Duhovny 
et  al. 2005). When two unbound proteins are integrated and converged as one protein, 
then a difficulty emerges for predicting the conformational change. When an equivalent 
accent sequence needs to be derived, deep learning models are used to predict PPI and 
better improvement is achieved compared to machine learning models such as SVM (Du 
et al. 2016). Searching for druggable sites for interface in the buried zone (in the range of 
1500-3000 A2) (Scott et al. 2016) was mandatory. Considering druggable sites as hotspots 
because of providing an enormous amount of binding free energy to convince the medical 
chemists (Cukuroglu et al. 2014).

Bai et  al. (2016), utilized two techniques i.e., fragment docking and direct coupling 
analysis for detecting druggable PPI sites. Fragment docking named “iFitDock”, utilized 
for checking druggable hot spots(problem areas) in the PPI interface. Further improvement 
for candidate binding locales needs to integrate similar small hot spots. At last, based on 
the evolutionary conservative level, the scoring function must be located to provide the 
finest protein-protein binding spots. The PPI interface objective was to improve computa-
tional methodologies for locating the best hot spots and significant structure of small mod-
ulator targets in the PPI interface.
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4.3 � Prophecy of protein–protein interactions

The Protein-Protein Interactions (PPI) is one of the major biological phenomena 
through which the basic units of the body (cell) transports the signals, ions, substrates, 
and energy production components that need to improve the pharmacological responses 
needed by the body. In another circumstance, the PPI plays a critical role in the patho-
genesis of the disease such as various types of cancer, especially colorectal carcinoma. 
The development of colorectal carcinoma in humans is purely dependent on lifestyle 
as well as hereditary means. However, the pathogenesis of the colorectal carcinoma 
is linked with the formation of malignant Adenomatous Polyposis Coli (APC) and its 
migration in the entire colorectal portion in the body is majorly occurs due to the inter-
action of APC protein with Asef (guanine nucleotide exchange factor) and � − catenin 
with TCF4 component peptide are located in the pathogenic carcinoma cells. The exam-
ple APC-Asef, �-catenin-TCF4 PPI has been illustrated in Fig. 12.

In recent years, the PPI-based drug discovery programs are experimentally produced 
a hopeful pharmacological substance, in terms of cancer pathogenesis, APC-Asef PPI 
inhibitors are the best example which are delivered the basic peptides as an initial point 
to switch on the medicinal chemistry oriented drug design projects. The importance of 
PPIs in understanding host pathogenic protein interactions is another extreme task that 
excites most vaccination programs. Battling against SARS-CoV2 infection is a key para-
digm in the current scenario where the scientific community targets a protein spike from 
SARS-CoV2 that preferentially binds to the human angiotensin converting enzyme-2 
(hACE2) to enter into the alveoli mainstream of lungs and cause severe obstruction in 
respiratory syndrome. However, the time and cost for experimental prediction of PPI 
are considered as rate limiting barriers. In this regard, the different databases hosted the 
web servers (few are publicly available) framed by targeting PPI which are prevailing as 
preliminary PPI identification tools to accelerate the medicinal chemistry research.

Fig. 12   a, b Protein-protein interactions of APC-Asef (yellow surface/cartoon-APC & cyan surface/car-
toon-Asef); and c, d PPI of �-catenin/TCF4 in surface & cartoon forms (yellow surface cartoon- �-catenin 
& cyan surface/cartoon-TCF4)
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4.4 � Hit discovery

The Hit discovery process is advanced in success which has been taken in drug discovery. 
In this procedure, small molecules are considered as hits for target binding to identify the 
best-altered functions. The detection of hit by diverse algorithms is currently prevailing as 
a robust technique in the current drug discovery paradigm. An application of multivari-
ate parameters (K-nearest neighbors (K-NN) and support vector machine(SVM)) on high-
content screening (HCS) analysis in one such method produced a variety of hits against 
neurological complications.

4.4.1 � Drug repurposing

DeepDTnet’s training parameters outperform other existing target identification techniques 
and rely on a minimum quantity of FDA-approved drugs (732 drugs) to produce beneficial 
therapeutic effects (human retinoic acid receptor orphan receptor gamma t-ROR-� t) of the 
existing topoisomerase inhibitor Topotecan (TPT). The deepDTnet strategy also transfers 
several FDA drugs with different chemical scaffolds against GPCR with new targeted phar-
macological actions. (See in Figs. 13, 14, 15). The deepDTnet algorithm is considered to 
be much more advantageous than NetLapRLS and KBMF2K methods as well as Naive 
Bayes, SVM, KNN, and Random Forest algorithms.

“Repurpose” refers “reprocess/reused/recycle”. Drug Repurposing is characterized 
as ‘locating new indications for drugs (Ashburn and Thor 2004; Lotfi Shahreza et  al. 
2018) which are as of now in the existence stage’. Because it reduces time and hazardous 

Fig. 13   The FDA approved drugs under drug-target repurposing applications derived by deepDTnet
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Fig. 14   The FDA approved drugs under drug-target repurposing applications derived by deepDTnet 
(contd.)

Fig. 15   Basic overview of molecular docking sampling and scoring flowchart
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circumstances in drug discovery (Ashburn and Thor 2004). A significant reason for uti-
lizing the drug repurposing concept in drug discovery, because it exceptionally support-
ive to have multiple targets (Susan et al. 2017) in each drug which corresponds to various 
impacts. In this way, it provides high diversity in drug-disease relationships. Example: Few 
drugs extend its life expectancy such as “Metformin” which is an approved medicine to 
deal with diseases like “type 2 Diabetes”. In repurpose, essential elements are “drugs and 
diseases” (Cabreiro et al. 2013, De Haes et al. 2014, Martin-Montalvo et al. 2013) utilized. 
Drug targets and disease genes are other elements utilized in drug repurposing.

In order to show the interactions that have occurred in element (Lotfi Shahreza et  al. 
2018), this can be performed through the network investigations based on diversity inter-
actions. Nine sorts of networks arranged in drug design concept i.e., Gene regulatory 
networks, target-disease networks, drug-adverse networks, metabolic networks, protein-
protein networks, drug-drug networks, drug-disease networks, disease-disease networks, 
drug-target networks (Lotfi Shahreza et al. 2018). In general, the network’s model principle 
was, indistinguishable drugs have similar targets/effects (Yamanishi et al. 2008). If data is 
less or fragmented, in that situation drug repurposing is necessary. For repurposing, inte-
grating the entire multiple networks to create extraordinary (heterogeneous) networks. At 
last, consolidate the drug repurposing with drug target prediction to generate drug target 
(Wang et al. 2014). So, drug target assists with treating the sicknesses. To generate new tar-
gets and indications, then utilize the network diffusion algorithm and dimensionality reduc-
tion approach (Luo et al. 2017).

4.4.2 � Virtual screening

It is an AI strategy utilized in the drug discovery process for locating small molecules to 
distinguish bind structures for a drug target. In drug development, virtual screening also 
utilized software as well as algorithms to recognize hits from private chemical collections 
for retrieving unique hits inefficient way. After identification of new hits, a further step 
needs to purify compounds with unfavorable scaffolds (framework) (Lavecchia and Di 
Giovanni 2013). And furthermore incorporates hardly includes few strategies like docking-
based, similarity searching (Willett 2006), pharmacore-based (Willett 2006), and machine 
learning methods (Leelananda and Lindert 2016). Based on the above techniques, clas-
sification has taken two strategies i.e., structure-based and ligand-based virtual screening.

When 3D-protein structure was accessible then molecular docking process can be 
widely utilized (Chen 2015). Many applications related to docking-based virtual screen-
ing have built (Talele et al. 2010) effectively without any impacts. May some obstacles are 
present in this strategy such as the scoring function. A scoring function cannot estimate 
binding affinities (bond/relationship) with accuracy because insufficient arrangements and 
entropy impacts (Huang and Zou 2010) have taken protein flexibility which makes it more 
complicated (Chen 2015). Finally, many docking models considered binding affinities and 
refuses remained like docking score, distance-time (Copeland 2010; Xing et  al. 2017). 
When compared to docking-based virtual screening, the ligand-based virtual screening 
cannot confide to the 3D-protein structure. Its goal is to design bioactivity domains from 
molecular features (Lavecchia and Di Giovanni 2013).

In this concept, the aim is to persistently improve yields and to decrease false hit rates 
(Leelananda and Lindert 2016; Liew et al. 2009; Melville et al. 2009). To accomplish this 
objective, the SVM technique was frequently utilized in virtual screening (Ma et al. 2009). 
DL strategies have been applied to retrieve great classification capacity, low generalization 
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error (LeCun et  al. 2015; Thomas et  al. 2014) and powerful feature extraction ability. 
Example: In virtual screening, sparse distribution method wastes a lot of time in searching 
process (Ma et al. 2009; Segler et al. 2018). So as to conquer this issue, molecule librar-
ies must be provided along with unique training molecules (Thomas et  al. 2014) among 
the Simplified Molecular Input Line Entry Specifications (SMILES) and natural language 
relies on long short-term memory network architecture. ML techniques like DNN and gra-
dient boosting trees provided the molecular libraries by RNN. Adversarial autoencoder 
models the molecular fingerprints to locate potential anti-cancer agents (Kadurin et  al. 
2017).

4.5 � High throughput virtual screening and scoring in molecular docking 
techniques

Routine techniques used after target identification are high through virtual screening 
(HTVS) and molecular docking techniques embedded in free energy perturbations, sam-
pling, and scoring algorithms. The knowledge of active site for the protein/receptor where 
ligand would bind to mimic/antagonize the physiological role which is an essential task to 
initiate the HTVS protocol. Similarly, the ligand-based virtual screening (LBVS) consid-
ered as another basic method relies on the Physico-chemical properties of chemical data-
bases (Fig. 15).

4.5.1 � Activity scoring

In virtual scoring, the scoring function is a fundamental component in molecular docking 
for assessing binding affinities towards target (Huang and Zou 2010). In machine learn-
ing, mapping ability features can yield great accomplishment to extract physical, geomet-
ric, and chemical features (Khamis et al. (2015)) to retrieve scores. Based on scores, data-
driven black box models which are considered to predict interactions in binding affinities 
and furthermore avoiding few concepts in docking like physical function are very hard to 
study (Ain et al. 2015). Random Forest and SVM concepts identified with AI utilization 
for better performance in the scoring function. For instance, an SVM model can be utilized 
instead of a linear additive method related to the energy terms concept. Since an SVM can 
characterize the relationship between experimental binding affinities and own energy terms 
i.e., can be extracted from docking program eHiTS. Thus, data gives better execution in 
scoring power and screening power (Kinnings et al. 2011; Zsoldos et al. 2007).

Numerous researchers initiated in utilizing the CNN model in image processing (LeCun 
et al. 2015) field because CNN demonstrated better performance and protein-ligand inter-
actions providing numerous features to CNN for predicting protein-ligand affinities. In the 
estimation of protein-ligand affinities, Jimenez et al. worked on the 3D visual representa-
tion of CNN model and binding affinities (Jiménez et al. 2018) which have indicated bet-
ter correlation behavior in data sets. And essentially, deep learning represents its genuine 
intensity to increase abstract features from primitive features, since it’s necessary to rep-
resent fundamental features for a compound-protein structure like molecule types, parti-
cle separation (LeCun et al. 2015) etc. A structure Deep VS, reliant on CNN model, got 
familiar with abstract features from fundamental features to provide docking programs like 
GLIDE SP (Friesner et al. 2004) and ICM (Abagyan et al. 1994). Thus, the point in activity 
scoring was, choosing few features among protein-ligand interaction for predicting binding 
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affinities with help of the CNN model, so it increases information scoring function but it 
upgrades the predictive capabilities.

4.6 � Hit to lead

It is also referred to as lead generation in the beginning phases of drug discovery. It locates 
small molecules referred to as hits from the High Throughput Screen (HTS) through defi-
cient optimization to locate promising lead compounds. The practical interface of hit-to-
lead optimization approach integrated with chemical synthesis as well as mapping algo-
rithm ”design layer”/Random Forest regression applied to create new biologically active 
chemical spaces through the utilization of existed kinase inhibitor library (Desai et  al. 
2013) (Fig. 16).

4.6.1 � QSAR

QSAR analysis was used in the hit-to-lead optimization process to find potential lead 
compounds from the hit analogs with the prediction of bioactivity analogs (Esposito et al. 
2004). And primarily utilized in mathematical concepts to study quantitative mapping with 
physicochemical or structural objects and biological activities. QSAR analysis taken apart 
in foundation of mathematical models, selection and making the progression of molecular 
descriptions, evaluation and interpretation methods, utilization techniques (Myint and Xie 
2010). Here, mathematical models and chemical structure representations are considered 
issues in QSAR demonstration. When descriptors are chosen, then locating mathematical 
models is necessary to fit relationships in the structure-activity technique. In the year 1964, 
Hansch equation was suggested by Hansch et al. For clarifying the 2D structure-activity 
relationship, utilize the parameters like physicochemical descriptors and linear regression 
models for presenting QSAR study as another section (Hansch and Fujita 1964).

In the same year, Free-Wilson model suggested by Free et al. He formulated the bioac-
tivity description and chemical structure relationships have hypothesis concept to contrib-
ute substituent in compound activities (Free and Wilson 1964). Contrasted with the Hansch 
method, the Free-Wilson method can encode the chemical structures since it predicts legiti-
mately from the chemical structure without any physiochemical parameters. Random For-
est and SVM are machine learning procedures, used in mathematical models (A Dobchev 
et al. 2014; Dudek et al. 2006; Ning and Karypis 2011).

Likewise, QSAR modeling utilized deep learning techniques to retrieve capabilities 
in chemical strings and automatically extracts the features. Merck Molecular Activity 

Fig. 16   Abl kinase inhibitor obtained from Hit-to-lead optimization protocol linked with ML algorithms
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challenge was held in 2012 and a team called George Dahl’s won the challenge in ensem-
ble methods like gaussian progress regression, multi-task DNN, and gradient boosting 
machine (Ma et al. 2015). Kaggle inspired the results in multi-task DNN. Along with this, 
Dahl et al. proceeded to work on the multi-task DNN concept and shown excellent perfor-
mance in single-task neural systems.

Due to multi-task strategy, neural networks learn features from different parameters 
however tasks can be similar (Dahl et al. 2014). Ramsundar et al. (2017) utilized multi-
task neural structures in drug development to assess the performance and finally, excel-
lent results appeared in the random forests algorithm. Since multi-task neural structures 
consolidated towards platform called Deeepchem. Subramanian utilized canvas descriptors 
for employing DNN. Prediction in binding affinities needs to reinforce the regression and 
classification model to gain results in human �-secretase-1 inhibitors (Subramanian et al. 
2016). Usage of DNN model gives great results in validation set i.e., classification capabil-
ity gives 0.82 accuracy, it exhibits regression ability R2 with 0.74, MAE (Mean Absolute 
Error) is 0.52. DNN model utilizes the 2D descriptors and indicated better results when 
compared with force-field-based strategies because of the utilization of partial capability 
models in deep learning. At last, QSAR models rely upon deep learning techniques which 
allots the better results in the future prediction role of hit-to-lead optimization research.

4.6.2 � De novo drug architecture

De novo Drug Architecture progressed unique chemical structures by adjusting or balanc-
ing the target interest (Hartenfeller and Schneider 2010). To introduce a new molecule 
from scratch using a popular De novo model called the fragment-based approach. If at 
this point there are impracticalities and complexities in the molecular structure (Schneider 
et al. 2017), the risk arises in the development of the structure and becomes difficult in the 
assessment of bioactivity. Deep learning models utilized powerful knowledge and genera-
tive capabilities to introduce a new structure with appropriate properties (Mullard 2017).

In the De novo drug design process, the deep learning models acts as autoencoder to 
generate an appropriate format for new chemical entities (NCE’s). Therefore, an embed-
ment of autoencoder with multilayer perceptron classifier is also a value-added technique 
in the generation of NCE’s with predefined physicochemical properties. The syntax of the 
drug/chemical structure is produced in SMILES format which might be difficult to under-
stand in many circumstances and grammar variational autoencoder (VAE) overcomes this 
problem to accelerate the process (Fig. 17).

Deep reinforcement learning technique extended by Olivecrona et al. for predicting 
biological activities to develop new molecules by adjusting RNN model (Olivecrona 
et al. 2017). To obtain SMILES syntax, RNN model to be trained; where molecules can 

Fig. 17   Smiles/SLN notation of 
antiviral compound
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collect from chemBL. In reinforcement learning, agents act through actions in activities 
under certain conditions. At this point, if the agent gets a positive reward, the actions 
made by the agent’s trend can be renewed (Mnih et al. 2015). To acquire a high reward 
for activity scoring, then utilize the SVM technique to enhance few approaches rely-
ing upon ligands concept in the training set. Generate few molecules against dopamine 
receptor 2-type for employing deep reinforcement learning model with RNN model. 
Along with this, it observed predictions have taken over 95% for structures in the bioac-
tive region through the scoring capacity of SVM. By utilizing deep learning techniques, 
unique molecules can be created through the auto-encoders technique. To generate new 
molecules automatically with appropriate properties then, Gomez-Bombarelli et  al. 
(2018) integrated multilayer perceptron (MLP) and variational autoencoder (VAE).

In PPI prediction, numerous tackles have taken placed due to (i) spending low 
expenditure in protein information, (ii) lack of known PPI to learn about the explicit 
virus, (iii) inefficient strategies due to sequence dissimilarity in viral families. The de-
novo methodology motivation is to predict innovative PPI virus with its host. De-novo 
was a sequence-based negative examining framework that learns the diverse viruses in 
PPI to predict the innovative one, where the shared host proteins can exploit. For assess-
ing generalization, de-novo has endeavored to test the PPI’s with various domains. At 
last, the De novo approach retrieved 81% accuracy in reducing the noisy negative asso-
ciations and 86% accuracy in the viral protein prediction that utilized in the training 
period respectively. De-novo strategy accomplished more comparable in intra-species 
and single virus-host prediction cases. In this way, it turns to be difficult to predict the 
PPI for a contaminated person and optimal accuracy is obtained when carrying out tests 
for the human-bacteria interactions (Eid et al. 2016).

To develop biological and chemical prospects, multi-objective optimization tech-
nique and AI has given promising outcomes through entrusting an automated De-novo 
compound structure like a human-creative mechanism. In this study, innovative percep-
tion pair, which relies on multi-objective technology, is to apply the RNN algorithm to 
automate unique molecules with a de-novo structure build on common properties found 
among constant physicochem properties for leading trade-offs. In this view, multiple 
chemical libraries related to de-novo structure targeting acetylcholinesterase and neu-
raminidase. For assessing chemical feasibility, validity, drug-likeness, and diversity 
content were employed through numerous quality metrics. In the de-novo generative 
molecules, molecular docking has taken place for the evaluation of posing and scoring 
through X-ray cognate ligands with similar molecular counterparts. At last, multi-objec-
tive optimization and AI are provided to use easily for customizable design techniques 
which especially effective for lead advancement and generation (Domenico et al. 2020).

For the most part, the network consists of 3 segments i.e., encoder, decoder, and pre-
dictor. Encoder plays a significant role in changing strings called discrete SMILES into 
latent (inactive) space, where vectors are considered as constants. The decoder role was 
considering vectors back to the past string stage i.e., discrete SMILES. In the predic-
tor stage, Multi-Layer Perceptron (MLP) approach is used for predicting the molecules. 
For retrieving a high prediction ratio in constant vectors, then utilize the gradient-
based technique. To locate new molecules rapidly with appropriate properties, then uti-
lize 2 techniques i.e., Bayesian inference and gradient-based approach. By using both 
approaches, a significant advantage was delivering a high predictive ratio consequently, 
where humans can comprehend the chemical structure. It does not correlate to chemical 
structure when SMILES syntax is invalid. To maintain a strategic distance from such 
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difficulties, make the result source more constrained; Pu et al. used variational autoen-
coder (VAE) for characterizing SMILES syntax (Pu et al. 2017).

For creating molecular fingerprints, Kadurin et al. have utilized the AAE model, were 
later referred as druGAN. While using the AAE technique, it demonstrated excellent per-
formance in the VAE model in areas of generation ability, error in reconstruction area, 
further extraction ability (Kadurin et  al. 2017). Coley et  al. (2018) suggested locating 
whether the generated molecule was synthetically accessed or not. Depending upon the 
reaction database, the neural network was trained because of the availability of excellent 
approximation capabilities for retrieving synthetic complexity metrics. The fundamental 
explanation behind synthetic reaction is to increase the reactant complexities i.e., the score 
in product complexity must be greater than reactant (Andras 2017). Coley strived numer-
ous attempts to build scoring function through encoding chemicals response into product 
pair and reactant pair for clarifying correlation inequalities between product and reactant 
complexities. To become familiar with any scoring capacity at that point, neural networks 
need to be trained where Coley utilized reactant and product pairs in a scope of 22 million. 
Along with this, the outcome determined with huge complexities in the synthesis process. 
At long last, generative models not just clarify drug activities in inverse synthetic plan-
ning yet additionally discloses synthetic complexities due to disposing of the non-realistic 
molecules.

4.7 � Lead optimization

The lead optimization is an essential step of the drug discovery process in which the best 
medicinally active fragment hits are considered leads to extend the medicinal chemistry 
projects. The main aim of the lead optimization is to eliminate the side effects/notorious 
effects of the existing active analogues by a minimal structural modification to yield a bet-
ter and safer scaffold. One such example is the optimization of Autotaxin inhibitors such 
as GLPG1690 clinical agent which is advanced in human clinical trials to combat pulmo-
nary fibrosis. Another example is to increase the potency by tailor-made approaches to pro-
vide better active analogue. Here, the various properties of ADME/T like Chemical and 
physical properties, Absorption, distribution, metabolism and excretion, Toxicity, and the 
ADME/T multi-task neural networks are discussed in the following sections.

4.7.1 � Chemical and physical properties

In the drug discovery pipeline, physical and chemical properties have been utilized to 
reduce significant failures. At that point, deep learning models are utilized lead optimi-
zation techniques to improve unique methodologies (Lusci et  al. 2013). Duvenaud et  al. 
(2015) extracted data from molecular graph directly by adopting the CNN-ANN concept 
to perform prediction i.e., (MAE is 0.53+0.07) due to relied upon interpretability concept. 
Coley et  al. inspired Duvenaud’s work and begun working for better results in molecu-
lar aqueous concepts. And furthermore used the tensor-based convolutional technique and 
gave better outcomes as MAE (0.424+0.005).

It’s necessary to clarify molecular graph attribution since tensor-based techniques need 
to integrate features like a bond, atom levels. For predicting molecular aqueous solution, 
Coley’s employed an enormous number of atom level information compared to Duve-
naud’s model (Coley et  al. 2017). Establishing a great correlation between Caco-2 per-
meability coefficients and oral drug absorption (P app) for predicting the candidate drug 
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(P app) (Artursson and Karlsson 1991; Hubatsch et  al. 2007) in the estimation of phar-
macokinetic properties. To fabricate prediction templates with 30 descriptors (Wang et al. 
2016) at that point, Wang et al. composed 1,272 components for permeability information 
of Caco-2 including models like SVM regression, boosting. In the testing set, the boosting 
model demonstrated the best outcomes with great expectation capability. It follows QSAR 
principles from OECD (Organization for Economic Co-operation and Development). So as 
to persuade reliability and rationality, then follow the sequence of OECD standards.

4.7.2 � Absorption, distribution, metabolism and excretion

Entering medicines or drugs into veins of the human body under some activity site known 
as drug absorption. For examining the degree of absorptions utilize the bioavailability 
parameter. Numerous clinical departments clarified optimization of absorption properties 
with a prediction of bioavailability molecules (Tian et al. 2011). In the usage of the MLR 
model, Tian et al. employed 1,014 molecules for bioavailability prediction through molecu-
lar assets and structural fingerprints. By utilizing the genetic function technique, excellent 
results appeared in predictive performance as RMSE = 0.2355 and correlation coefficient 
is 0.71 respectively. Conveying drugs or medicine into the human body i.e., intracellular 
and interstitial fluids along with few drug absorption (Sim 2015) properties called as drug 
distribution. Drug distribution at steady state (VDss) is a proportion of dosage from vivo 
stage into plasma reaction. The steady phase in drug distribution is the significant index 
for evaluating the drug distribution process. Thus, VDss must be predicted; Lombardo 
and Jing have created PLS and Random Forest techniques along with 1,096 molecules 
(Lombardo and Jing 2016). Here, board members are not satisfied with prediction results 
because 50% of molecules are accessible in twofold error. VDss may influence by the pres-
ence of obscure factors. To defeat this issue, intently taken as a challenge for VDss value 
in molecular structural data. If a drug or drug enters the human body under the conditions 
applied, the drug itself tries to produce the current toxic metabolite in order to successfully 
structure the metabolism. To ensure the strength of the metabolic structure, use structural 
optimization techniques to encourage the metabolism to make predictions with high accu-
racy. Many AI strategies adopted a huge amount of drug metabolism information to pre-
dict unique metabolic enzymes like UDP-glucuronosyltransferases (UGT’s), cytochrome 
P450s, etc. Furthermore, neural networks trained in UGT metabolism at Xenosite (Matlock 
et al. 2015; Zaretzki et al. 2013) platform for predicting the UGT metabolism (Dang et al. 
2016). Eliminating dosage from drugs and also metabolites from the human body referred 
to as drug excretion. Drug metabolites are wiped out from the human body either with the 
usage of water (i.e., some drugs can be soluble in water) or it directly eliminated through 
the absence of metabolism. For retrieving excellent results in unique mechanisms, Lom-
bardo et al. utilized the PCA technique with an expectation pace of 84% (Lombardo et al. 
2014) accuracy.

4.7.3 � Toxicity and the ADME/T multi‑task neural networks

In clinical and preclinical damage accomplishment was reduced the adequacy of about 
33% of significant molecules in drug localization, optimizing the significant molecules 
reducing risk hazards by predicting toxicity (Guengerich 2010). Prediction can perform 
through techniques called structural alerts and rule-based expert knowledge for toxicity 
profiles like kidney and liver. Here, deep learning models are required to produce better 
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results in toxicity prediction. Along these, Xu et  al. created a prediction model named 
acute-oral toxicity, for predicting results on molecular graph encoding CNN (MGE-CNN). 
Predicted outcomes indicated as better when compared with SVM model (Youjun et  al. 
2017). Therefore, the MGE-CNN model succussed because of feature extraction, model 
development, molecular encoding is similar in training for neural networks. The advantage 
was, the issue can alter through molecular fingerprints because of accessibility of flexibil-
ity in the MGE-CNN model. For acquiring great fragments relates to structural alerts, Xu 
et al. utilized toxic features for fingerprints which characterizes TOX Alerts (Sushko et al. 
2012). If parameters were comparative, then it’s necessary to correlate with trained multi-
task neural networks and performance demonstrated better results contrasted with single 
task neural networks (Mayr et al. 2016) because of sharing parameters and more supportive 
towards multiple tasks for retrieving similar features. At last, some information is provided 
to the human body when drug absorption, distribution, metabolism, and excretion has han-
dled and prediction improved through performing multi-tasking neural networks. Here, sin-
gle-task and multi was tasks contrasted by Kearnes et al. with ADME/T experimental data, 
and outcome demonstrated better performance in multi-task model (Kearnes et al. 2016).

4.8 � ML in e‑Resources for drug discovery

The AI and ML algorithms prevailed as the main computational scoring functions for eval-
uation when a predicted value was added as a parameter, which is involved in the basic 
drug discovery paradigm (Stork et al. 2020), it illustrated in 18. The detailed applications 
of the ML algorithms specified in the e-resource are described in the following sections 
(Fig. 18).

4.8.1 � ML in Pan‑assay interference screening (PAINS)

The precise information about hits can be obtained from primary or secondary biologi-
cal screening assays of purchasable/commercially available databases which were the most 
important parameters before starting medicinal chemistry projects. Thus, elimination of the 
compounds has been exhibited its presence in different cellular biological assays consid-
ered as pan-assay derived hits could reduce the cost and time of the medicinal chemists. 
The pan assay information can be accessed from the PAINS database on request. There-
fore, the Hit Dexter 2.0 web server has been launched compiled from Pubchem library 
and screening assays. The Hit Dexter 2.0 could be initially utilized to know the biological 

Fig. 18   ML in e-Resources of 
drug discovery platform
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properties of the newly designed compound and thus anyone can easily eliminate the pan-
assay interfering compound at the initial stage itself (Stork et al. 2019).

4.8.2 � ML in drug metabolite and metabolic site prediction

The identification of metabolic site for any kind of drug or new chemical entity is very 
essential before its administration into the human body. The prediction of drug metabolism 
can be done by animal models (preclinical studies) which was a rate-limiting step as well 
as costly and it is mandatory to retrieve therapeutic approval of new chemical entities. The 
site of metabolism can be predicted by several modules among ”ADMET Predictor” of 
SimulationsPlus tools have gained attention and is pure works on the models compiled by 
the artificial intelligence algorithms. The FAME3 is one of the online servers which pre-
dicts the region for the given drug/compound which undergoes metabolism validated data-
bases gathering phase-1/phase-2 metabolic parameters associated with several databases 
validated by comparing with Matthews correlation coefficient (MCC) (Stork et al. 2020). It 
is also important to have an overview of the chemical modification of drugs/NCE’s which 
are undergone the metabolism and thus can be used in calculating dosage regimen, dosage 
frequency, toxicity, and other beneficial side effects. The online services such as GLORY/
GLORYx provides the precise information about the possibilities of new metabolite and 
their relevant formation data with respect to mitochondrial cytochromeP450 enzyme and 
conjugations (de Bruyn Kops et al. 2019).

4.8.3 � ML in skin sensitivity parameter prediction

The prediction of skin sensitivity is one of the essential criteria for assessing safety param-
eters of the new drugs/compounds and it is patient to patient specifications. In this regard, 
the AI models such as Random Forest based MACCS (RF_MACCS) and support vec-
tor machine (SVM) based PaDEL (SVM_PaDEL) algorithms trained with approximately 
1400 ligands linked with local lympho node assay (LLNA) information (Stork et al. 2020; 
Vranic et al. 2019).

4.8.4 � ML in natural product identification

The ML trained with 265000 natural product isolates and synthetic libraries validated by 
MCC is being used as a basic predictive model NP Scout online server will reveal the prob-
able identity of the newly discovered analogs. The application of NP Scout in the predic-
tion of sources for the query molecule might provide information about their natural prod-
uct sources and could become a part of natural product-based drug discovery (An et  al. 
2019).

5 � Drug discovery problems

In drug development and discovery, numerous clinicians and specialists confronted chal-
lenges towards target validation, computational pathology data, identification of prognostic 
biomarkers in clinical preliminaries.
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5.1 � Target validation

By regulating the molecular target activity, drugs can be developed through the utili-
zation of ultimate methodologies in drug discovery for altering the infection state. By 
inaugurating a program in drug development, target identification requires a therapeutic 
hypothesis for modulating target regulation in the outcome of the infection state. When 
available evidence is identified for that target, it can be considered as target identifica-
tion. Based on fundamental decisions, in vivo and ex vivo models are utilized to vali-
date the target disease. In target validation, outcomes can be retrieved through clinical 
preliminaries, yet it’s necessary to concentrate on target validation efforts for successful 
projects. The diseases incorporate metabolomic, transcriptomic, proteomic profiles that 
are available in-patient clinical material. With the clinical database, the capability of re-
utilizing data through public databases provides the primitive target identification and 
target validation. For predicting target identification, it requires appropriate strategies 
for yielding legitimate statistical models.

ML approaches are used in target identification because of the increment of data-
driven target identification experiments. In target identification, recognizing causal con-
federation among disease and target is the initial step. Target disease modulates either 
naturally or artificially (experimental). By using ML approaches, prediction can be 
taken placed on known properties of targets, causalities, driven targets. ML techniques 
can apply from various perspectives in the target identification field. For predicting 
genes with dysphoria, a decision-tree classifier need to be trained on a protein-protein 
localization network (Costa et al. 2010). So, distinguished few key parameters in deci-
sion-tree inspection i.e., extracellular path, transcription factors, metabolic paths. John 
et al. improved a classifier model called SVM with genomic details for classifying pro-
teins towards non-drug and drug spots in ovarian and breast cancer (Jeon et al. 2014). 
mRNA expression, network topology, protein-protein interaction, DNA copy numbers 
are the key segments in classification and recognized 122 cancer targets globally. Tar-
gets identified as 462, 266, and 355 related to pancreatic, breast, and ovarian tumors. 
Peptide inhibitors were validated through the prediction of two targets. Outcomes in 
the cell culture approach were identified as more prominent anti-proliferative effects. 
Although, in pancreatic tumors, usage of inhibitors shown twice greater inhibition on 
cells.

To distinguish transcriptional changes in Huntington’s disease, Ament et  al. devel-
oped a model called mouse transcription factor site with transcriptome information 
(Ament et al. 2018). By utilizing LASSO and regression models in mouse striatum, a 
genome-scale has been created for 718 transcription factors. Transcriptional factor mod-
ules are recognized to provide treatment in the early phases of Huntington’s disease. In 
tissue-related anti-aging treatments, Mamoshina et  al. (2018) identified molecular tar-
gets for comparing gene-expression signature with old and new muscles. When con-
trasted with supervised machine learning models, SVM exposed feature selection and 
linear kernels are generally appropriate for identifying biomarkers. Predicted targets 
can be developed through ML i.e., blind drugs can furtherly be utilized for therapeutic 
assumptions. For identifying affiliations like gene-disease, drug-disease, target-drugs, 
then apply NLP kernel strategies in Medline concept (Bravo et al. 2015). Many super-
vised learning techniques rely upon EU-ADR [European Union Adverse Drug Reaction] 
database for disease genes identification in the Medline concept. NLP technique is used 
in the extraction of biological entity events (Kim et al. 2017).
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For identifying therapeutic treatment through novel targets, ML is the best extension for 
understanding biological aspects. The splicing signal model is an example had in curing Alz-
heimer’s disease. DL splicing signal model is utilized to predict alternate signal (Leung et al. 
2014). Binding the integrative splicing signals (Jha et  al. 2017) like RNA sequencing data 
and CLIP-seq splicing data indicated knock-down results. To identify variations in Alzheimer 
disease (Vaquero-Garcia et  al. 2016), then code models like complex variants and de-novo 
designs must integrate for prediction. ML can predict cancer-related drug impacts (Iorio et al. 
2016). So that, ML investigated how DNA-methylation, somatic mutation data, genome-wide 
data impacts the drug feedback. To identify molecular features, then utilize logical models, 
ANOVA, and machine learning models like random forests for predicting the drug response.

Gene expression, DNA methylation are recognized as the best predictive data types in can-
cer regions. Data utilized from RNAi screens to locate molecular features from 501 cancer 
lines, so it predicts 769 genes from cancer cells (Tsherniak et al. 2017). 171 chemicals are nec-
essary to locate in genetic affiliations because targetable vulnerabilities revealed as oncotypes 
don’t influence cancer therapy (McMillan et  al. 2018). The models used in predictive data 
types how therapy in cancer-intrinsic medicine. Many queries emerge for developers i.e., how 
specific drugs are developed for the given target. For identifying targets in small molecular 
design, proteins suggested integrating with small molecules for delivering drugs. In this way, 
a random forest algorithm must train on genomic attributes like physicochemical and cavi-
ties of 1,187 compounds in non-drug adhesive sites against 99 protein collection (Nayal and 
Honig 2006). Additionally, length and configuration are considered significant features in sur-
face cavities. For predicting drug targets, distinctive physicochemical properties from protein 
sequences applied SVM’s (Li and Lai 2007; Bakheet and Doig 2009) DL model (Bakheet and 
Doig 2009). Proteins occupy explicit locations in PPI network to associate exceptionally (Jeon 
et al. 2014; Costa et al. 2010; Kandoi et al. 2015). ML algorithms utilized newly developed 
targets to predict blind drugs for reducing search space, but drug target requires more endorse-
ments. Predicting the clinical trial success in drug targets is a complicated goal for target vali-
dation and identification. Along ML approaches, omics information utilized 332 drug targets, 
so it can come up short or accomplishment in the third phase of clinical trials through multi-
variate compound selection (Rouillard et al. 2018).

Gene-expression data is identified as successful prediction across tissue layers with high 
variance and less RNA mean expression in clinical trials. In this way, the drug target was 
confirmed that specific disease expression can influence tissue region (Kumar et  al. 2016). 
For predicting de-novo therapeutic drug targets, (Koscielny et al. 2017) ML classifiers should 
train from open platform (Ferrero et al. 2017). Significant indications are key data types such 
as genetic data, gene expression for predicting therapeutic drug targets. In such cases, ML 
approaches constrained because of data absence and sparse data are fundamental purposes 
behind failure in drug development programs. Practically, to initiate any drug in the market, it 
considers the length of time period due to more advancement in technology, new models like 
biologics (antibodies were included) can accessible and small molecular drug design may not 
same as today. Additional constraints are developed to predict medicine because it can fail or 
succeed with accessible metadata in public space.

5.2 � Prognostic biomarkers

Using the ML approach, biomarker discovery is used to improve clinical trial performance 
by differentiating drugs and understanding drug mechanisms for reasonable patients (Li 
et al. 2015; van Gool et al. 2017; Kraus 2018). It consumes a lot of time and cost in the 
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final stages of clinical trials. To defeat this issue, necessary to apply, build and validate 
predicted models in the early stages of clinical trials. Usage of ML algorithms allows pre-
dicting translational biomarkers in preclinical data assortment. After data validation, cor-
responding biomarkers and models must investigate the patient indications and lastly pro-
pose the medication. In literature, several papers provided information relates to predictive 
models and biomarkers, and last, few were utilized in clinical trials. Various factors like 
model rebuilding, designing, data accessing, data quality and software, model selection 
are necessary for a clinical setting. The principal issue was, ML approaches assess com-
munity endeavors for developing regression and classification models. Many years ago, 
in US FDA (Food and Drug Administration) led (MAQC II) MicroArray Quality Control 
evaluated ML algorithms for predicting gene expression data (Shi et al. 2010) in the final 
stage of clinical trials. In this project, 6 microarray data collections were analyzed by 36 
independent groups to develop predictive models for classifying in the end stage of clini-
cal sites. For modelling appropriate approaches in a clinical trial, information incorporates 
data quality, skilled scientists, control processes. Multiple myeloma is a poor prediction 
in patients and cut-off within 24 months due to partially applied. Here, the regression-
based approach is appropriate for prediction because multiple myeloma and gene expres-
sion are continuous variables. By utilizing Cox regression models, it confirmed to predict 
(Zhan et  al. 2006) patient risk factors through gene expression signature. In this review, 
the advantage was, utilizing regression models (Shaughnessy et al. 2007; Zhan et al. 2008; 
Decaux et al. 2008; Mulligan et al. 2007) can be highlighted due to the absence of prede-
fined classes that can perform prediction in clinical trials. To evaluate regression models, 
NCI (National Cancer Institute) challenge is to build drug predictive models (Costello et al. 
2014). Each group must utilize the best model with key parameters in training data col-
lection (i.e., treating 35 breast tumor cells with 31 drugs) and models ought to be veri-
fied through similar blind testing data collection (i.e., treating 18 breast tumor cells with 
similar 31 drugs). For generating more predictive techniques, six sorts of data profiles are 
considered i.e., RNA sequencing, RNA microarray, reverse protein phase array, SNP (Sin-
gle Nucleotide Polymorphism) array, DNA methylation status, exome sequencing for 44 
groups are utilized for applying multiple regression models like sparse linear regression, 
kernel methods, regression trees, principal component methods. In MAQC II results, indi-
vidual groups performed well and other groups utilized similar models. In differentiating, 
few groups maintained technical details like feature selection, quality control, data reduc-
tion, tuning ML parameters, splitting strategy, and biological data like gene expression data 
to improve the predictive model. Numerous drugs are convenient in the development of the 
predictive model when compared to other strategies.

Challenge of NCI-DREAM needs to maintain a data collection and outcomes for evalu-
ating, improving group factor analyses in validation (Bunte et  al. 2016), Random forest 
framework (Rahman et al. 2017) and other approaches (Huang et al. (2017); Hejase and 
Chan (2015)). Predictive ML models were published in several papers where biomarkers 
play a significant role in drug development and discovery. A conference was conducted 
in utilizing the tumor cell screen data to create drug sensitivity models (i.e., sorafenib and 
erlotinib) (Li et al. 2015). In BATTLE clinical trials (Kim et al. 2011), improved models 
ought to apply to patients for finalizing whether these approaches are drug-specific and 
predictive. In this case, study, utilizing ML models helps in recognizing key parameters in 
drug sensitivity sites across tumors in tissue cells. PD1 (Programmed cell Death 1) inhibi-
tor endorsed by FDA in 2017, at that situation, genetic biomarkers utilized s pembroli-
zumab as inhibitors for tumors. It was the first endorsement made by FDA that relates to 
genetic biomarkers other than tumor type (Boyiadzis et al. 2018), which can highlight the 
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biomarker disclosure. Recently, predictive biomarkers indicated improvement in ML other 
than different oncology data types. For improving drug responses in patients, ML algo-
rithms ought to apply multi-omics data (Tasaki et al. 2018). And gradient regression tree is 
utilized for improving polygenic risk scores in predicting clinical trials (Paré et al. 2017). 
Tested outcomes in UK Biobank explained the presentation of SNP model is indicated 
polygenic variance as 46.9% for height, 32.7% for BMI. For distinguishing high complexes 
in individuals such as cardiac arrests, breast cancers, inflammatory bowel cancers, at that 
point, genome-wide scored data must develop (Khera et al. 2018).

RNA sequencing for single-cell innovation is widely utilized in advanced biomarker 
discoveries and gene clustering. This technique is utilized to locate lineages of trace devel-
opment, determining cell states, novel cell varieties. Here, reducing estimations in gene 
expression from thousand cells into the low-dimensional regions was the unresolved issue. 
For reducing high-dimensional into low dimensional form, Ding et al introduced probabil-
istic generative structure in gene expression of single-cell data accompanied by unpredict-
able estimations (Ding et al. 2018). Here, a probabilistic model is widely utilized to exam-
ine RNA sequencing for four single cells data. Along with, it develops 2D structure in the 
multi-dimensional regions for distinguishing cell patterns in RNA sequencing single-cell 
data. Transformation of RNA sequencing single-cell data into the encoded feature of latent 
space, VAE’s (Variational autoencoders) utilized for determining subpopulations in hid-
den tumour (Sabrina et al. 2019). Encoded features assessed few relationships in gene cell 
subpopulations. This strategy contains a data pre-processing technique since it relies upon 
unsupervised learning. RNA sequencing of single-cell data utilized the VASC model for 
data visualization (Wang and Jin 2018).

When testing was conducted on 20 informational sets, results indicated more superior 
to VASC model other than SIMLR (Wang et al. 2017) and ZIFA (Pierson and Yau 2015) 
reduction models. By utilizing ML approaches, feature selection received huge advance-
ments in biomarker discovery. For extracting appropriate structures in clusters (Tan et al. 
2016), many specialists have claimed unsupervised deep learning methods. To locate 
explicit structures in VAE encoded features, then the VAE technique must compete with 
TCGA (The Cancer Genome Atlas) data in RNA sequencing (Way and Greene 2017). To 
upgrade identifications in carcinoma disease, Beck et  al. (2011) explained data integra-
tion techniques, image analysis with gene expression data to identify the squamous cells 
in lungs. And CNN model showed better execution in predicting the cardiac failures i.e., 
(AUC=0.97) from endomyocardial biopsy data other than (AUC=0.73 and 0.75) trained 
samples (Nirschl et al. 2018). From the above examples, the usage of ML approaches has 
shown success in biomarker discovery and still, numerous issues need to be rectified. A 
few issues considered as; one classifier must understandable by end-users for clinical adop-
tions. Another key issue was, every approach needs to validate the multi-institutional, 
multi-site data sets for determining the generalizability approach. Many community par-
ties tended to key issues and providing a quick advancement like model extraction and 
interpretations in biological sites (Finnegan and Song 2017), key optimization and training 
algorithms (Angermueller et al. 2016), model reproducib0ility (Hutson 2018).

5.3 � Digital pathology

The word pathology refers to a realistic field, each pathologist clarified what can see from a 
glass slide through visual assessment. A lot of information is produced through glass slides 
for example, which cell type is arranged in tissue layer and spatial context. In this way, it 
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is generally imperative to examine relationships between immune cells and immune-oncol-
ogy cancers. In clinical trials, before choosing a patient to test with thousands of com-
pounds, pharmaceutical industries must realize how the particular drug can treat patient 
cells and tissues in the body. Because of rapid advancements in clinical trials, locating 
biomarkers became more significant for victims i.e., who can ready to react to the therapy. 
Fast improvement in digital pathology can discover new biomarkers with more reasonable, 
precise, and high-throughput behavior for reducing time in drug development, and also vic-
tims can access therapy very fast. Prior to applying deep learning models, many algorithms 
related to image analysis propelled me to collaborate with pathologists. For classifying tis-
sue layers, numerous computer scientists are required to handcraft graphical features in 
computers.

The objective of digital pathology study is to recognize etymological descriptors largely 
utilized in hematoxylin and easin (H&E) structures. Here, Nuclear morphometry is an 
implementation in the digital study for explaining relationships between prognosis (Vel-
tri et al. 2000) and features created by PCs. From the spatial context, Beck et al. (2011) 
identified tissues in stroma cancer and stroma survival features in breast cancer. Recently, 
the Nuclear orientation structure was explained by LU et al. (2017) for clarifying survival 
features in oral cancers and breast cancers (Cheng et al. 2018). In many conditions, anti-
bodies utilized immunohistochemical stains for targeting image proteins. With the absence 
of deep learning tools, morphology can detect tissues in sophisticated data. Investigation 
of immuno-oncology permits ML approaches for generating high throughput features to 
explain thousands of cells associated with a spatial context, and impossible tasks given 
for pathologists. Usage of DL methods shows improvement more precisely for tissue and 
cell detection in cancer environments. Many different features are explained spatial con-
text associations for cells and tissues through scale estimations. Understanding hetero-
geneity concept in breast-cancer population to utilize lymphocytes in biomarkers (Mani 
et al. 2016). The cell-cell relationship was examined and delivered outcomes through cell 
locations like CD8+, PD1+ and cell densities for distinguishing carcinoma Merkel cell to 
respond in pembrolizumab (Giraldo et al. 2017). For leading a trial, utilized the number 
of tissues for each stain. If thousands of features are examined, then cell-cell interaction 
increases in each stain. In this circumstance, ML models and feature selections must be 
incorporated to predict the therapeutic response.

The CNN model is well applicable for digital pathology works since a single biopsy was 
utilized to train feasible pixels. So, DL models automatically learn structured features from 
various classification tasks (Janowczyk and Madabhushi 2016). Here model was, M-CNN 
(Multi-scale CNN) considered as a supervised learning technique for phenotyping images 
with high-content cells (Godinez et  al. 2017), where it restricts a few models with their 
customized steps. Converting image pixel values to phenotype images, then the M-CNN 
approach demonstrated more accuracy at classification levels. For creating objectives in 
image analysis, numerous DL methods utilized in tubules (Romo-Bucheli et al. 2016), lym-
phocytes (Saltz et  al. 2018; Corredor et  al. 2019), mitotic activity (Romo-Bucheli et  al. 
2016), cancer tumours (Sharma et al. 2017; Korbar et al. 2017; Bychkov et al. 2018; Cruz-
Roa et al. 2017) situated in lung and breast cancers. In digital pathology, DL models pro-
vide information related to other methodologies. Utilization of deep learning models can 
stimulate data acquisition (Cohen et al. 2018) of MRI (Magnetic Resonance Imaging) or it 
diminishes dosage for radiation in CT (Computed Tomography) image process (Chen et al. 
2017). The quality of images improved a lot in noise signal ratio, spatial resolution; so, 
applications like victim stratification, disease prediction, image qualification have corre-
spondingly improved. The deep learning framework is another study (Coudray et al. 2018) 
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which determines to predict the usage of mutated genes called lung cancers from hema-
toxylin & eosin (H & E)-stained images.

In image analysis, numerous deep learning procedures are required to perform explicit 
tasks; So, integration of image analysis and deep learning algorithms can be accommo-
dated for problem-solving. In numerous issues, usage of DL techniques can outperform the 
results, however, it was not an image analysis tool because of lack of flexibility. Likewise, 
many scientific experts are accessible for any classification tasks. However, it consumes a 
lot of money to generate. To defeat this challenge (Turkki et al. 2016) immunohistochem-
istry staining would utilize to mitigate this problem. Due to community tasks, it provides 
more data for pathologists to build annotations for many use-cases. The transparency 
issue is another challenge to digital pathology. Black-box is a known methodology in deep 
learning strategies. In classification tasks, decision-making is unclear. For understanding 
numerous mechanisms in drug development, interpretable outcomes can be accommodat-
ing in locating potential biomarkers and drug targets for predictive response in therapy. 
Additionally, trust should be improved in generating assembled features with interpretabil-
ity. In clinical trials, the large sample size required to apply DL techniques legitimately for 
predictive response in therapy is a further challenge. The DL requires countless sample 
examples in clinical trials. Sometimes, integrating data in clinical trials can be possible 
however the existence of bias can make the outcomes difficult for interpretation. Corredor 
et al. (2019) and Saltz et al. (2018) explained numerous models related to image analysis 
and DL models for predictive response in therapy, at that point CNN model used to iden-
tify features in sub-sequent graph and lymphocytes situated in H&E-stained cells. In the 
future, DL consists of more capabilities to replace nuclear detection and traditional seg-
mentation algorithms for providing spatial context features (Table 2).

6 � Challenges

Many challenges are there in Drug discovery, most of the challenges can be solved by 
using Machine Learning Techniques. Here, some of the challenges are being given with 
possible suggestions. 

1.	 Numerous ML strategies produced precise results, despite the fact that a couple of 
parameters and structures lead to trouble during the training period. Especially when 
data is insufficient during the training period, the particular algorithm cannot fulfill the 
accuracy and local optimum.

	   To defeat this issue, a deep belief architecture, which is an unsupervised pre-trained 
model needs to be implemented for improving parameters, so the results can be created 
with more effectiveness Ghasemi et al. (2018)).

2.	 The transparency issue is another challenge in drug discovery. Because decision-making 
is unclear in different classification models. In drug development, numerous mecha-
nisms need to comprehend for interpreting the outcomes. So, it makes more supportive 
in locating new drug targets and multiple assembled features need to improve trust in 
interpretability Vamathevan et al. (2019)).

	   In drug development, numerous mechanisms like SVM, MLR, RF, and Deep learn-
ing techniques can be implemented to comprehend for interpreting the outcomes. So, 
it makes more supportive in locating new drug targets and multiple assembled features 
for developing trust in interpretability.
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2.	 Integrated data can accessible from many references, especially from the ‘omics’ region. 
It’s turning out to be more challenging in day-by-day, because not only expanding the 
data as well as this data type contains profoundly heterogeneity in pharmaceutical com-
panies (Searls 2005).

	   Public databases are available like ZINC, BindingDB, PUBCHEM, Drugbank, and 
REAL chemical databases, developers need to create a pipeline architecture to integrate 
these heterogeneous data sources. However, the Data warehousing tools which work 
based on ETL (Extract Transform and Load) are Integrated Genomic Database, Adapt-
able Clinical Trail Database, DataFoundry, SWISS-PROT, SCoP, and dbEST. Genome 
Information Management System, BIOMOLQUEST, PDB, SWISS-PORT, ENZIME 
and CATH data (Cornell et al. 2001; Bukhman and Skolnick 2001).

4.	 Additionally, Homogeneous data can generate integration challenges, commencing with 
testing and logical issues, cross-platform normalization, and statistical issues can expand 
enormous heterogeneity information (Searls 2005).

	   So, ML with Big data analytic can be utilized for integrating homogenous data 
sources. Some Ontology-based integration tools are available like Ontology Web Lan-
guage, Extensive Markup Language (XML), RDF Schema or Resource Description 
Language (RDF), Unified Medical Language System, etc (A Seoane et al. 2013). Some 
weblink based integration tools available like Sequence Retrieval System (Etzold et al. 
1996, ChEMBL (Gaulton et al. 2012, NCBI Entrez, PubChem, Integr8, DisaseCard and 
EMBL-EBI search and Sequence analysis (A Seoane et al. 2013; Madeira et al. 2019). 
Some visualization tools are also available like Microsoft Power BI, IBM Cognos, Tab-
leau, Zoho Analytics, Sisense, SAS Business Intelligence, etc. Because integration and 
visualization tools help in identifying bottlenecks and potential problems before which 
affects important processes (Soukup and Davidson 2002).

5.	 In pharmaceutical companies, research was stretched out from huge molecules to indi-
viduals, and generally relied upon integration of heterogenous data which sustain its 
own challenges in varying contexts and scales (Searls 2005).

	   A high level of artificial intelligence needs to be obtained for managing various 
sources and must be improved with a better understanding of the gathered data. So that, 
modern data connectors are suggested to centralize the dissimilar data and at last, these 
data connectors help in allotting original data.

7 � Conclusion and future directions

The AI technology is utilized in pharmaceutical industries including ML algorithms 
and deep learning techniques in daily life. ML techniques in drug development regions 
and health service centers have encountered numerous conflicts, especially in image 
analysis and omics data. In medical science, ML models predict the trained data in a 
known framework i.e., the compound structure can perform alternative tools like PPT 
inhibitors, macrocycles with traditional algorithms. Additionally, deep learning models 
can be considered the chemical structures and QSAR models from pharmaceutical data 
which was pertinent for molecules with appropriate properties, because to the forward 
success rate in clinical trials. AI technology has taken a forward step in entering into 
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computer-aided drug development to retrieve the powerful capabilities in data mining. 
Some issues still existed i.e., 

1.	 The performance of deep learning methods can directly influence the innovation of data 
mining because multiple deep neural networks are effectively trained on a large volume 
of data. The main aim is to tackle the transfer learning automatic problem.

2.	 “Black-Box” model became confused in deep learning concepts. The Local Interpretable 
Model-Explanations (LIME) is an example of a counterfactual probe. LIME was utilized 
to unlock the black-box model (Voosen 2017). Here, restricted data was mandatory to 
explain through deep learning models (Tishby and Zaslavsky 2015). However, revealing 
data by deep learning techniques perform only in the initial stages.

3.	 Many parameters are adjusted during the training period of neural networks but some 
theoretical and practical frameworks are out of reach to optimize these models.

7.1 � Future directions

Web innovation was integrated with medical science to improve predictive power in deci-
sion-making and deep learning algorithms about biomarkers, side effects in therapies, 
therapeutic benefits. In clinical trials, success is achieved through the utilization of par-
ticular applications. So, motivation is performed for future investment in pharmaceutical 
companies. In the future, drug discovery and development, looking forward to covering 
all aspects by AI technology. Automated AI needs to coordinate theoretical results such as 
chemistry information, omics data, and medical data for emerging. Also, we are anticipat-
ing that more confirmations should be rebuilt for the medication revelation campaign.
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