Skip to main content
. 2021 Aug 11;55(3):1947–1999. doi: 10.1007/s10462-021-10058-4

Table 2.

Different ML methods related to various tasks in Drug discovery

Method Element/features Task Refs.
MACCS Molecular fingerprints Locating anti-cancer molecules Kadurin et al. (2017)
CNN Molecular graph Identifying graph convolutional fingerprints Duvenaud et al. (2015), Coley et al. (2017)
CNN Subsequent graph- based features HE-stained tissues To predict the disease response in lymphocytes Saltz et al. (2018), Corredor et al. (2019)
CNN 2D chemical structure image Biological Activity/toxicity Pu et al. (2017)
RNN Molecular Graph Generating molecules with predicted biological activity Olivecrona et al. (2017)
RNN SMILES To predict molecular properties Pu et al. (2017)
RNN Molecular fingerprints and protein sequence Compound protein interaction Wang et al. (2016)
RNN SMILES Generating novel molecules Olivecrona et al. (2017)
RNAi 501 cancer cell lines To identify molecular markers for predicting cancer dependencies Tsherniak et al. (2017)
DNN Atom pair descriptor and donor-acceptor pair descriptor To predict molecular bioactivity Ma et al. (2015)
DNN Molecular descriptors and protein features Drug target interactions Wang et al. (2014)
M-DNN Molecular descriptor To predict the chemical descriptors Mayr et al. (2016)
Univariate Cox regression Gene expression signatures It identifies the predicted high-risk subgroup of victims Zhan et al. (2006)
Gradient boosted regression trees Genome-wide polygenic scores To identify high-risks of breast cancer, coronary artery type 2 diabetes diseases in patients. Khera et al. (2018)
VAEs RNA sequencing dataset Differentiating hidden cancer subpopulations with effectively Sabrina et al. (2019)
Auto Encoder Fingerprints Virtual screening Kadurin et al. (2017)