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Abstract

The design of new functional polymers depends on the successful navigation of their structure

function landscapes. Advances in combinatorial polymer chemistry and machine learning provide 

exciting opportunities for the engineering of fit-for-purpose polymeric materials.

Polymeric materials with high-performance characteristics can be achieved by replicating 

monomeric units of often simple chemistry into functional macromolecules with desirable 

properties. Indeed, biology demonstrates the immense potential of this approach by using 

amino acids and sugars as the building blocks of diverse and hierarchical polymeric 

materials in the form of proteins and polysaccharides. Like proteins, synthetic polymers 

possess innumerable monomer combinations that may translate to favourable structure

function relationships. From an engineering perspective, the combinatorial complexity of 

polymeric materials manifests itself in the curse of dimensionality, making the rational 

design of high-performance features (for example, ionic conductivity, photoconversion 

efficiency, shape-memory response and self-healing) difficult. Alternatively, combinatorial 

polymer chemistry provides efficient and informed surveys of high-dimensional polymer 

design spaces.

The emergence of the fourth paradigm of science, that is, data-intensive scientific discovery, 

may open the door to new forays of combinatorial polymer chemistry in materials 

science. Indeed, artificial intelligence (AI) and machine learning (ML) are increasingly 

used in the physical sciences and engineering, as highlighted by the recent performance of 

DeepMind’s AlphaFold2 in the 2020 Critical Assessment of Protein Structure Prediction 

(CASP) competition. Using ML methods trained with data of over 170,000 known protein 

structures, AlphaFold2 demonstrated unprecedented accuracy in predicting single-chain 

protein folding, a grand challenge in structural biology. This achievement underlines the 

promise of ML in scientific applications and, in particular, for polymeric materials. After all, 

proteins are polymers made of amino acids, whose primary sequence ultimately determines 

their structure and therefore function.
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Converging ideas

The accessibility of benchtop and automated combinatorial polymer chemistry, advances in 

molecular modelling and the increasing availability of flexible machine learning software 

present new possibilities for data-driven exploration of structure-function relationships in 

polymers.

Combinatorial and automated polymer chemistry.

Starting in the 1990s, laboratory synthesizers have enabled the use of combinatorial and 

automated polymer chemistry in polymer research and material design1,2. However, the 

intolerance of polymerization reactions to ambient air (that is, oxygen and water) have long 

limited efficient and automated high-throughput experimentation owing to the requirement 

of sealed reaction vessels purged with inert atmosphere or freeze–pump–thaw cycling. 

Air-tolerant chemistries can address this limitation by allowing controlled living radical 

polymerizations to proceed in open air, including in well plates3. Therefore, combinatorial 

libraries can easily be prepared on the benchtop by simple addition of starting reagents in 

routine labware. Moreover, open platform liquid handling robotics can be applied for fully 

or semi-automated polymer synthesis, opening a new era of high-throughput combinatorial 

polymer chemistry4.

The evolution of molecular modelling.

Molecular modelling has long been a valuable tool in materials design, complementing 

experimental work by providing detailed theoretical characterizations to reveal mechanistic 

features and design principles. Recently, spurred by computing advances, algorithmic 

developments and the impetus of the Materials Genome Initiative, high-throughput 

calculations and virtual screening have emerged as cost-effective in silico design 

paradigms5. However, these approaches have mainly been applied for small-molecule 

drug compounds and inorganic materials thus far and less so for polymers. This is 

partly because density functional theory (DFT), the work-horse of high-throughput 

molecular theory, is impractical or ill-suited for characterizing polymers because they 

are often typified by large, disordered systems with properties that depend on weak 

interactions and conformational heterogeneity. Molecular dynamics (MD) modelling is 

typically more suitable but computationally challenging for macromolecular systems at 

atomistic resolution. However, coarse-grained (CG) modelling, which sacrifices chemical 

resolution for computational tractability, may provide a practical solution to the quandary of 

approaching theoretical polymer characterization at scales needed for ML6,7.

Data nexus of experimentation and modelling.

Combinatorial polymer chemistry is poised to harness ML by combining high-throughput 

experimentation and modelling. An example of how theory can lead experimentation 

was the identification of organic light-emitting diodes (LEDs) by hundreds of thousands 

of time-dependent DFT calculations and ML; however, experimental calibrations and 

human assessment were needed for the final selection of candidates8. ML-based polymer 

property prediction has been demonstrated using ML models trained on theoretical 

calculations, which show good correspondence to ML models benchmarked against 
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available experimental data9. If data-generation capabilities are mismatched between theory 

and experiment, transfer learning may provide a pathway toward high-fidelity ML models 

that combine datasets from disparate sources.

Small steps to going big

Complex laboratory automation and exhaustive calculations often require enormous capital 

and human resources. However, the application of new data-centric tools can be achieved by 

implementing small but significant steps, enabling the widespread use of these tools in all 

polymer science laboratories.

The robo-chemist.

The robo-chemist could become a new colleague in many polymer science laboratories. 

Fully automated robotics driven by AI will undoubtedly have a major impact on material 

discovery and design. With the emergence of air-tolerant polymer chemistry3, a high 

number of new polymer designs within a combinatorial library (tens of polymers per 

library) can be produced by simple manual pipetting in well plates. Low-cost instruments 

with user-friendly interfaces can automate simple tasks (for example, reagent additions, 

plate-to-plate transfers and serial dilutions), enabling the production of even more polymer 

designs within a library without requiring much training or programming skills (hundreds 

of polymers per library). Such systems allow low-to-medium-throughput polymer chemistry, 

which is also amenable to data-driven techniques. Robotic systems can dramatically improve 

high-throughput workflows both in terms of scale (thousands of polymers per library) and 

complexity. Ultimately, experimentalists should rationally approach these options according 

to realistic needs, leaving room for future upgrades. For example, some low-cost instruments 

can easily be incorporated into future fully automated workflows through open-source 

application programming interfaces (APIs).

Learning with less.

Polymer datasets derived by experiment or simulation remain relatively small by ML 

standards; however, dataset size may not be a limiting factor for sequence-based design 

of polymers. For example, accurate ML models describing polymer conformation have been 

trained from only a few hundred randomly chosen but distinct polymers6. In addition, active 

learning approaches are a promising route toward judicious dataset construction. Here, 

ML models are iteratively trained with data points that are optimally selected according 

to an acquisition function. This strategy led to successful identification of oligopeptides 

that self-assemble into nanoaggregates from only 186 CG simu lations7. Although these 

examples are in the con text of modelling, the numbers are well within the capabilities of 

experimental combinatorial polymer libraries.

Organizing disorder.

Critical to the success of AlphaFold2 was the existence of the protein data bank 

(PDB). Despite the construction of several polymer databases (for example, Polymer 

Genome, CHEMnetBASE-Polymers, Polymer Property Predictor and Database), polymer 

characterization data are generally not accessible in standardized and downloadable formats 
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for data mining and ML. Moreover, available data are potentially obfuscated by a variety of 

variables (for example, molecular weight, processing history and characterization protocol) 

and mostly correspond to simple homopolymers. The question remains whether it is 

feasible, or necessary, to create orderly databases of combinatorial polymer chemistry for 

diverse applications. Many ML applications for polymers will likely use in-house generated 

data, which may be informally shared amongst research teams and deposited in repositories, 

such as the Materials Data Facility. Nevertheless, discussions on data organization and 

representing polymers, such as through BigSMILES language10, must continue. Relatedly, 

open-access datasets for monomeric units, akin to the QM9 dataset for small-molecule 

research, would greatly benefit polymer ML development.

Opportunities in polymer data science

Translating the chemical landscape of monomer combinations as polymers into distinct 

structure-function relationships remains challenging. The emergence of AI and ML, in 

tandem with advances in combinatorial chemistry, may provide a route toward the 

data-enabled design of polymeric materials. In the future, we imagine the use of AI

driven robotics to plan and optimize entire experiments (Fig. 1). Advances in systematic 

polymer modelling will encourage tightly integrated workflows that make use of in 

silico and experimental characterizations, guided and selected by efficient active learning 

paradigms. These tools, driven by human innovation, will enable the autonomous design 

and engineering of new polymer materials with optimized application-specific properties in 

fashion.
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Fig. 1 |. Robotic systems for autonomous structure-function testing in combinatorial polymer 
libraries.
Automated robotic systems driven by artificial intelligence (AI) and modelling enable 

design–build–test–learn workflows for a series of chemically distinct systems. New 

and historic data, generated experimentally and/or in silico, are used to train machine 

learning (ML) models that allow the prediction of application-specific properties across the 

combinatorial chemical space. The developed ML models facilitate the identification of new, 

optimal polymer chemistries based on active learning paradigms, which are subsequently 

synthesized and tested, entering another round of the autonomous cycle.
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