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Abstract

Background: Mendelian randomization (MR) analysis has become popular in inferring and

estimating the causality of an exposure on an outcome due to the success of genome wide

association studies. Many statistical approaches have been developed and each of these methods

require specific assumptions.

Results: In this article, we review the pros and cons of these methods. We use an example of

high-density lipoprotein cholesterol on coronary artery disease to illuminate the challenges in

Mendelian randomization investigation.

Conclusion: The current available MR approaches allow us to study causality among risk factors

and outcomes. However, novel approaches are desirable for overcoming multiple source

confounding of risk factors and an outcome in MR analysis.

Author summary:

Mendelian randomization analysis is a popular approach to studying the causality of exposures on

an outcome, and it shares similarities with randomized controlled trials. Since MR is based on

observational data, it requires assumptions that are difficult to validate. We review the current

developed MR approaches and the challenges in performing MR analysis and interpreting the

results.

Keywords

Mendelian randomization; causality; summary statistics; confounding; instrumental variable

INTRODUCTION

Randomized controlled trials (RCTs) are considered as the gold standard to establish a

causal relationship between an exposure and an outcome in epidemiology studies. Many

associations observed in epidemiological studies have failed to be replicated in RCTs, such

as fiber and colon cancer [1], vitamin E, cardiovascular disease and lung cancer [2,3], and

vitamin C and cardiovascular disease [4]. The failed replications in RCTs can be potentially
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attributed to confounding, reverse causation, and various biases [5,6]. Thus, RCTs are the

primary tool to establish a causation between a risk factor and an outcome, but they come

with a high cost. To circumvent the high cost in RCTs, Mendelian randomization (MR) has

become a widely used epidemiological approach to infer causality of an exposure to a

disease outcome [7–9]. This is benefitted from the rapid identifications of genetic variants

associated with complex traits in large genome wide associations (GWAS) [10]. Intuitively,

MR shares a similarity with RCTs (Fig. 1). In RCTs, the enrolled patients are randomly

assigned to a treatment or a control group to eliminate potential confounding associated with

both the treatment and the outcome. Therefore, causal effect can be estimated in an unbiased

fashion. In contrast, MR assigns subjects based on their carried alleles, which are inherited

from their parents. Since the alleles are transmitted from parents to offspring randomly,

individuals are therefore divided into different groups randomly based on their genotypes. If

the allele is associated with an exposure and the exposure causally affects the disease, we

will observe different disease frequencies among different genotype groups. Otherwise, such

an association will not be present if the exposure does not contribute to the disease.

Furthermore, this association is independent of environment confounding because the allele

predisposes to environment [8]. This idea was originally proposed by Katan [9] who focused

on testing for the association of a genotype and an outcome rather than estimating the effect

of an exposure to an outcome. Hence, the data on exposure in Katan’s approach is not

required given that the association between the genotype and the exposure has been

established. Recent development of MR focus on the causal effect estimation by using the

genetic markers as “instrumental variables (IVs)” [8,11]. With that many large GWASs

having already collected genomic data, the MR approach is an appealing method to estimate

the causal effect between an exposure and an outcome with much less cost than RCTs.

Early MR approach is based on having one genetic marker as an IV. To be a valid IV, the

genetic marker must satisfy the following three IV conditions [8]: (IV1) the genetic marker

is reliably associated with the exposure, (IV2) the genetic marker is associated with the

outcome only through the exposure, and (IV3) the genetic marker is independent of

unobserved confounders that affect the exposure and outcome after conditioning on

observed confounders. The IV2 condition is also referred to as the exclusion restriction, and

both IV2 and IV3 are difficult to be fully examined in reality [12]. VanderWeele et al. [12]

listed multiple exclusion restriction violations in MR analysis when a single genetic marker

is used for IV. The potential violations include: pleiotropic genetic instrument variable;

measurement error; time-dependent exposure; reverse causation; sample selection bias;

linkage disequilibrium between the genetic marker and a causal variant; and population

structure. All the above violations will create a pathway from the genetic marker to the

outcome that does not go through the exposure, therefore, bringing bias into the causal

estimation. An IV with pleiotropic effect is a major concern in a MR analysis. In the past

decade, GWASs have been successful in identifying genetic variants associated with

complex traits (https://www.genome.gov/gwastudies/). A recent study showed that 90% of

the identified variants are associated with multiple traits [13], a term that is characterized as

cross phenotype association [14]. This also suggests pleiotropic variants are widely spread

across traits. Such pleiotropic variants can be detected by analyzing multiple traits together

[15], but the method itself does not indicate which variant is a pleiotropic variant. Thus,
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methods of using multiple genetic variants for IVs in MR analysis have been rapidly

developed [16], and because the impact of some of the violations is alleviated when multiple

IVs are applied.

In this review, I will discuss MR approaches using multiple genetic variants as IVs with

summary statistics. I will also discuss the pros and cons for these methods (Table 1).

STATISTICAL METHODS FOR MR APPROACHES USING SUMMARY

STATISTICS

IVW and MR-Egger

When individual level data is available, an MR analysis can be performed by using the

standard two-stage least squares (TSLS) [17]. The same idea can be extended to the data

where only summary statistics are available. We denote E and Y as the exposure and the

outcome described in Fig. 2, respectively. The goal of MR is to establish the causal

relationship from the exposure E to the outcome Y using independent genetic variants as the

IVs. We assume that the association of an IV and the exposure has already been reliably

established in GWAS. Because the genetic variants associated with the exposure are possibly

associated with the outcome through different paths (Fig. 2), we use the following general

models:

E = ∑
i = 1

n1
γiGi + ∑

i = 1

n2
γ1iGi′ + U + ε1, (1)

Y = βE + ∑
i = 1

n2
γ2iGi′ + U + ε2, (2)

where γi is the direct contribution of the variant Gi to the exposure E, γ1i and γ2i are the

direct contributions of variant Gi′ to traits E and Y, β is the causal effect of E to trait Y, U

represents confounding factors, and ε1 and ε2 are error terms, respectively. We use Gi and Gi′
to separately represent two kinds of genetic IVs, that the contribution of Gi (i = 1,...,n1) to

the outcome Y is mediated through the exposure E, and Gi′ has a pleiotropic effect for the

exposure and the outcome in independent paths (γ1i ≠ 0 and γ2i ≠ 0). In literature Gi and Gi′
are often referred to as a vertical and a horizontal pleiotropy (Fig. 2). In the case of

horizontal pleiotropy, there is a direct path from its genetic variant G to the outcome Y
besides through the exposure E, which causes a biased causal effect estimate in an MR

analysis.

Let γ i and γ1i be the estimated effect sizes of variants Gi and Gi′ on the exposure E from the

GWAS, respectively. Correspondingly, let Γi and Γ1i be the estimated effect sizes of variants

Gi and Gi′ on the outcome Y, respectively. From the Eqs. (1) and (2), we observe that

E Γ1i = βE γ i  for Gi, and E Γ1i = βE γ1i + γ2i for the variant Gi′.
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In general, we can estimate the causal effect and its variance from the exposure to the

outcome without differentiating Gi and Gi′ by the following equation [18]

β i = Γi
γ i

,

var β i =
var Γi

γ i
2 + Γi

2

γ i
4 var γ i − 2Γi

2

γ i
3 cov Γi, yi .

(3)

It is apparent that the causal estimate β i is unbiased based on Gi but biased based on Gi′. The

bias for Gi′ is induced by the nonzero effect γ2i, or horizontal pleiotropy. Because β i is

inversely proportional to γ i, smaller effect size of IV leads to a larger bias of the causal

effect estimation. The MR analysis based on a single IV has a poor statistical power and

potentially a large bias because

βIV W =
∑i = 1

n1 γ i
2β i/var Γi + ∑i = 1

n2 γ1i
2 β i/var Γi + ∑i = 1

n2 γ1i
2 β1i/var Γ1i

∑i = 1
n1 γ i

2/var Γi + ∑i = 1
n2 γ1i

2 /var Γ1i
. (4)

This βIV W  is referred to as an inverse-variance weighted (IVW) estimate, which is

calculated by assuming all the genetic variants are in linkage equilibrium. The IVW estimate

can be calculated from summary statistics, an advantage over TSLS that requires individual-

level data.

Bias of βIV W =
∑i = 1

n2 γ1i
2 γ2i/var Γ1i

∑i = 1
n1 γ1i

2 /var Γi + ∑i = 1
n2 γ1i

2 /var Γ1i
,

which comes from the average effect of the pleiotropic variants. If the pleiotropic effects

happen to cancel out, the bias term tends to zero. When the pleiotropic effect γ2i on the

outcome is independent of the effect γ1i on the exposure, or cov (γ2i,γ1i) = 0, the bias can

approximate to 0. This condition is referred to as the InSIDE (Instrument Strength

Independent of Direct Effect) assumption and can be viewed as a weaker version of the

exclusion restriction assumption [22]. Asymptotically, the InSIDE assumption will

guarantee the bias tends to zero. In reality, the InSIDE assumption can be difficult to satisfy.

To solve this problem, Bowden et al. [22] adopted the idea of Egger’s test, which assesses

small study bias in meta-analysis in epidemiology studies, into the MR analysis. They

named this method as MR-Egger regression [23].

Without specifically distinguishing Gi and Gi′, we consider a linear regression of the Γi
coefficients on γ i coefficients for a set of IVs,

Γi = β0 + βγ i + εi, i = 1, 2, …, n, (5)
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where Γi and γ i represent the regression coefficients of the ith IV for the outcome and the

exposure, respectively. The error term εi follows a normal distribution: εi ∼ N 0, var Γi .

When regression model (5) constrains the intercept β0 = 0, the regression coefficient

estimate of β corresponds to the IVW estimate. Alternatively, when regression model (5)

includes the intercept term β0, the regression coefficient estimate of β corresponds to the

MR-Egger estimate. Testing β0 = 0 also assesses the presence of pleiotropic variants. The β0
itself is interpreted of the small variance explained by the IV. Therefore, using multiple IVs

has been popular. Multiple IVs may partially mitigate the bias because it is possible to

cancel the bias effect due to the nonzero effects of γ2i [8]. For multiple genetic variants, the

causal effect of the exposure on the outcome is estimated by a weighted meta-analysis

approach [19–21] given by as an estimate of the average pleiotropic effects [22]. When the

InSIDE assumption is satisfied with balanced pleiotropy, referring to γ2i in Eq. (2) taking

positive and negative values randomly, both IVW and MR-Egger approaches have unbiased

causal estimate. In the presence of directional pleiotropy, the MR-Egger estimate is still

consistent as long as the InSIDE assumption is satisfied, but IVW is not [22]. However, the

MR-Egger estimator has a larger standard error than the IVW estimator. Intuitively, this is

not surprising because an additional parameter is required for MR-egger, and the pleiotropic

IVs will increase the uncertainty in the regression analysis. When sample sizes of GWAS are

relatively small, MR-Egger estimator could be even worse [24].

Weighted median and mode-based estimate

An extension of the IVW is the weighted median estimator [25], which is less biased than

IVW but more powerful than MR-Egger. The weighted median estimator takes the media of

the β i of individual genetic variants in Eq. (3), either using equal weights or the inverse of

the variance of the ratio estimates by 
γi

2

var Γi
. The weighted median estimator has a consistent

causal estimator when less than 50% instrumental variables are invalid. Because the

weighted median estimate is calculated by a single IV (median) when the number of IVs is

odd and an average of two IVs when the number of IVs is even, more than 50% valid IVs is

a necessary condition. Unlike IVW, the weighted median estimator is robust to outliers

which depart from the true causal line.

Another extension is the weighted mode-based estimate (MBE) [26]. Let β i be the causal

effect estimate in Eq. (3). The standard weights for the MBE is:

wt = var βi
−1/ ∑

j = 1

n
var β j

−1 .

A simple MBE has w1 = w2 = ⋯ = wn = 1. We define the normal kernel density function as

f(x) = 1
b 2π ∑

j = 1

n
wjexp − 1

2
x − βi

b

2
,
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where b is the smoothing bandwidth parameter. The MBE causal effect estimate is

βM = max
x

f(x). The magnitude of parameter b reflects a bias-variance trade-off. A larger b

leads to a higher precision but also a larger bias. The bandwidth parameter is chosen

according to the modified Silverman’s bandwidth rule [27,28]. The MBE relies on the

assumption named the zero modal pleiotropy assumption (ZEMPA), that is, across all IVs,

the most frequent value of γ2i in Eq. (2) is 0. The MBE is less biased and has lower type I

error than the above mentioned methods under the null. The MBE is also less powerful in

detecting causal effect than the IVW and weighted median methods, but it is more powerful

than MR-Egger regression.

MR-Robust and MR-Lasso

In ordinary linear regression, one outlier can have a large impact to the regression coefficient

estimate. Robust regression methods [29] have been recently applied to perform MR

analysis. The current MR-Robust regression estimate by Rees et al. [30] is based on the

MM-estimation approach by Koller and Stahel [31], which keeps asymptotic efficiency of

the M-estimator and provides robustness against outliers. Lasso regression has been widely

applied in high dimensional data by shrinking regression coefficients toward zero through a

penalty term [32]. Recently, Lasso regression has been applied to MR analysis when

individual level data is available [33,34]. Rees et al. [30] extended the Lasso regression to

summary level data by modeling the pleiotropic effects γ2i in Eq. (2). MR-Lasso considers

minimizing the following objective function by including a separate intercept coefficient for

each genetic variant in the MR-Egger regression but with a Lasso-penalty term:

∑
i = 1

n
var Γi

−1 Γi − β0i − βγ0i
2 + λ ∑

i = 1

n
β0i . (6)

If β0i shrinks to 0 in Eq. (6), the genetic variant is considered as a valid IV. These genetic

variants with a zero β0i are carried forward to perform the IVW analysis to estimate the

causal effect β. The MR-Lasso shares some similarity with MR-PRESSO [18], which we

will introduce later. When number of invalid IVs increases, both MR-Robust and MR-Lasso

have inflated false positive rate and increased the bias of a causal effect estimate.

Mixture model MRmix

With substantial differences, Qi and Chatterjee developed a parametric mixture model

(MRmix) by assuming bivariate effect-size distribution of the IVs across pairs of traits [35].

MRmix is an estimating equation approach that requires the residuals, Γi − βγ i, to follow a

normal mixture model. The normal mixture model seems plausible when the genetic

instruments include mediation variants, horizontal pleiotropic variants, as well as the genetic

variants contributing to reverse causality. In order to achieve an unbiased causal estimate,

MRmix requires the ZEMPA assumption, which is also required by MBE approach. When

the sample size is large, MRmix usually shows a better trade-off between bias and variance

than the approaches mentioned before, even more than when 50% IVs are invalid [35].

Similar to MR-Egger, MRmix did not performed well when the number of IVs is small.
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MR-PRESSO

The MR-Lasso searches for potential outliers that may present pleiotropic effects [30].

Similarly, MR-PRESSO first identifies horizontal pleiotropic variants and then performs

IVW to estimate the causal effect by removing the pleiotropic variants [18]. MR-PRESSO

comprises of three steps: 1) testing whether horizontal pleiotropic variants are present

through a global test; 2) performing an outlier test to detect pleiotropic variants; 3)

comparing the causal estimates before and after removal of pleiotropic variants through a

distortion test. The global test is based on a leave-one out approach which consists of 4

steps: 1) for each variant i, IVW regression is performed to obtain the causal effect β−i after

excluding the variant i; 2) the residual square is calculated by) RSSobs(i) = Γi − β−iγ i
2 and

the global observed RSS is calculated by RSSobs = ∑i = 1
n RSSobs(i); 3) The expected

distribution of RSS under null hypothesis (no pleiotropic variants) is simulated by randomly

drawing γ i
random from a Gaussian distribution N γ i, var γ i  and Γi

random from a Gaussian

distribution N β−iγ i, var Γi , respectively. The expected RSS is

RSSexp = ∑i = 1
n RSSexp(i) = ∑i = 1

n Γi
random − β−iγ i

random 2
; 4) An empirical p-value is

computed by taking the proportion of expected RSS greater than the observed RSS among K

simulations in the third step. For the variant i, the p-value of the outlier test is calculated by

taking the proportion of the expected RSSexp(i) greater than the observed RSSobs(i) among

K simulations. Since MR-PRESSO estimates the causal effect after removing potential

pleiotropic variants, it is less biased than IVW. However, MR-PRESSO is also biased when

the InSIDE assumption fails. In addition, MR-PRESSO is computationally intensive because

a large number of simulations are necessary, especially when the number of IVs is

increasing.

Iterative Mendelian randomization and pleiotropy (IMRP)

It is easy to observe that E Γi = βE γ i  for the mediation variant Gi, and

E Γ1i = βE γ1i + γ2i for the pleiotropic variant Gi′. Note that the effect size of a pleiotropic

variant to the outcome has an additional term γ2i besides the effect through the exposure. If

we know the true β, we can test mediation against horizontal pleiotropy by testing the null

hypothesis Γ = βγ using a test statistic

TPleio = Γ − βγ
var(Γ − βγ)

,

where Γ and γ  are the estimated effect sizes of a variant on E and Y, respectively. The

statistic Tpleio asymptotically follows a standard normal distribution N(0,1) when mediation

is true. Under the alternative hypothesis that a variant has a pleiotropic effect, TPleio departs

from the mean of 0. The problem of this test is that the causal effect β is unknown. However,

this problem can be solved through an iterative approach by combining the pleiotropy test

and the MR analysis, which is named as iterative Mendelian randomization and pleiotropy

(IMRP) [24]:
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1. Performing MR-Egger analysis using all IVs to obtain the initial causal estimate

of β, named as β0.

2. For all the IVs, performing pleiotropy test Tpleio by substituting β with βk − 1 at

the kth iteration to determine which variant gi has a horizontal pleiotropic effect

at a predefined significance level α.

3. Performing IVW analysis to obtain βk after removing the variants found to be

significant in pleiotropy test at step 2;

4. Repeating the above steps 2 and 3 until there is no change in detected pleiotropic

variants.

At step 2 above, the pleiotropy test statistic for a genetic variant is modified as

TPleio = Γ − βγ
var(Γ − βγ)

,

where the denominator variance is approximated by

var(Γ − βγ) ≈ var(Γ) + β2var(γ) + γ2var(β)
−2βρ var(Γ)var(γ),

where ρ is the correlation coefficient of the exposure E and the outcome Y, which can be

estimated using GWAS summary statistics [15,36] or LD score regression [37]. Similarly to

MR-PRESSO, the global test: SSGT
2 = ∑i = 1

n Tpleio, i
2 , which approximately follows a

chisquare distribution with n degrees of freedom for n independent IVs, is used to test for

the presence of horizontal pleiotropic variants. A genetic variant with a Tpleio test p-value

less than 0.05/n, is considered as a variant having a horizontal pleiotropic effect. Thus IMRP

can perform both MR analysis and test horizontal pleiotropy simultaneously.

MR analysis often assumes that the IVs are in linkage equilibrium. At a single locus,

multiple variants may contribute to exposure and the outcome in different ways, as

illustrated in Fig. 3. Let Γ and γ  vectors representing the estimated effect sizes of outcome

and exposure from GWAS of M variants, respectively. Let Γ = Γ1, Γ2, …ΓM  and

γ = γ1, γ2, …, γM . The test statistics Tpleio can be extended to M variants by

Spleio = (Γ − βγ)T∑−1 (Γ − βγ), where ∑ is an M × M variance–covariance matrix [24]. If

working on the standardized E, Y, and genotype values, Spleio can be simplified to

Spleio =
N1N2

N1 + β2N2 − 2ρβ N1N2
(Γ − βγ)TR−1(Γ − βγ),

where R is the linkage disequilibrium (LD) matrix among the M variants. Under the null

hypothesis of mediation, Spleio follows a chi-square distribution with M degrees of freedom.
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A significant difference between IMRP and MR-PRESSO is that IMRP removes horizontal

pleiotropic variants step by step and re-estimates the causal effect accordingly, while MR-

PRESSO removes horizontal pleiotropic variants in one step. Since the causal effect estimate

is sensitive to outliers, an iterative method is less biased and can advantageously detect

pleiotropic variants [24]. Because usually less than 10 iterations are sufficient, iMRP is more

computationally efficient than other methods, such as MR-PRESSO, MRmix, MBE, MR-

Lasso or MR-Robust. iMRP shares the same computational efficiency as IVW but is almost

unbiased even if half of IVs are invalid [24]. iMRP can be easily extended to include

multiple variants on a locus, whether they are in LD or not, thereby testing for pleiotropy

and colocalization.

APPLICATIONS

In this review, it is not our intention to list all methods and software for performing MR

analysis. Rather, we introduced the basic concept and strategy for performing MR analysis.

In practice, inferring causality is extremely challenging because of many unmeasured

confounders, reverse causality, and weak instrument bias. Burgess et al. recently published

guidelines for performing MR in practice [38]. Multiple analytical steps have been

suggested and these steps are categorized into: motivation and scope, data sources, choice of

genetic variants, variant harmonization, primary analysis, supplementary and sensitivity

analyses, data presentation, and interpretation [38]. These guidelines are useful for correctly

inferring causality and unbiasedly estimating the causal effect of an exposure to an outcome,

given more and more practices of MR analyses have been performed in this post genome

wide association era. For example, it is clearly different to infer potential causality versus to

estimate the causal effect, with the former focusing on hypothesis test and the latter focusing

on the size of the causal effect. In the original MR analysis by Katan [9], testing for

association of a genetic variant and an outcome will be sufficient to infer the causality, as

long as the genetic variant is a valid IV. Such analysis does not require genotype data for the

exposure, but statistical power for testing the association between the variant and the

outcome is critical. In comparison, the intervention effect of an exposure to an outcome can

be estimated from MR analysis, which is usually achieved by a randomized clinical trial. In

this case, it will be important to know how well the genetic variant can proxy the true causal

variant, whether the genetic variant has heterogeneous effects on exposure to outcome, for

example due to gene-gene interactions, and whether the associations with exposure and

outcome are obtained from the same population [38,39]. Mendelian randomization can be

performed in either one sample with individual level data for both exposure and outcome or

two samples with summary statistics for the exposure and the outcome in separate datasets.

Although one sample with individual level data allows for flexible modeling and the

exposure and outcome to be measured from the same individuals, the sample size is often

small, leading to low statistical power. In comparison, two samples with summary statistics

can often reach large sample sizes, but its dangers include potential different populations for

the exposure and outcome, and different demographic information, which will make

interpretation difficulty and invalidate causal inferences [40,41]. In GWAS meta-analysis,

allele flips can cause loss of statistical power when meta-analyzing multiple datasets [42,43].

The same problem can occur in a two sample MR analysis when variant harmonization is a
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necessary step. In general, multiple analysis methods should be performed because these

methods are valid under different assumptions, which have been reviewed before. As

suggested by the guidelines [38], both IVW based methods and robust methods should be

applied with additional sensitivity analysis. The iMRP method [24] can assess

colocalization, which will help to identify more plausible genetic IVs for MR analysis. In

addition, the interpretation of findings from MR analysis should always be cautious because

of multiple untestable assumptions, as is illuminated in the guidelines [38,44].

Perhaps, which genetic variants should be included in a MR analysis might be the most

important decision [38]. In MR analysis, only mediation genetic variants can satisfy the

three IV conditions as valid instrumental variables [45]. In fact, there is a debate about

whether MR can reliably identify causality between two traits given the widespread of

pleiotropy or colocalization [46,47]. The variants with pleiotropic effects violate the IV2

condition for valid IVs. Detecting horizontal pleiotropy is challenging, as demonstrated that

the recent HOPS approach has an inflated type I error [48], which may reduce the power of

MR analysis compared with IMRP and MR-PRESSO.

AN MR ANALYSIS OF THE CAUSALITY OF HIGH-DENSITY LIPOPROTEIN

CHOLESTEROL (HDL-C) ON CORONARY ARTERY DISEASE (CAD)

Many large-scale population studies have reported an inverse relationship between HDL-C

and CAD [49,50]. A well cited MR analysis using 15 genetic variants as IVs suggested that

there is no causal relationship between HDL-C and myocardial infarction [51], which was

consistent with the evidence from a clinical trial study [52]. However, the MR study using

more genetic variants by Holmes et al. [53] suggested uncertainty in a causal role for HDL-

C on CVD risk. We downloaded the GWAS summary statistics of Global Lipids Genetics

Consortium (cholesterol traits) (http://csg.sph.umich.edu/abecasis/public/lipids2013/) and

CARDIoGRAMplusC4D Consortium (coronary artery disease) (http://

www.cardiogramplusc4d.org/data-downloads/). We obtained 143 genome wide significant

independent variants (p-value < 5 × 10−8) associated with HDL-C after pruning (r2 < 0.1)

using the software Plink [54] on a 500 kb window size. We performed the MR analysis by

assuming the path diagram in Fig. 4A, representing no confounders. Table 2 presents the

causal estimates and p-values for the different MR methods, including IVW, MR-Egger,

median, MBE, MRmix, MR_PRESSO and IMRP. In general, IVW, simple median, and

MR_PRESSO had the largest protected causal effect estimates followed by IMRP and

weighted median. MRmix and MBE had the smallest protected causal estimates.

Interestingly, MR-Egger had a positive causal estimate, but it was not significant. We also

observed that MR-Egger and MRmix had the largest standard errors, which suggested these

approaches may lose statistical power. IVW, simple median, MR_PRESSO and IMRP also

suggested significant causal effect of HDL-C on CAD, but the rest of the methods did not.

The IMRP analysis also identified 10 pleiotropic variants for HDL-C and CAD.

It is known that HDL-C and triglycerides (TG) are correlated. The correlation between the

summary statistics of HDL-C and TC was −0.235. It is then possible that a genetic

instrumental variable (G) has a pleiotropic effect on HDL-C and TG, therefore, conditional

Zhu Page 10

Quant Biol. Author manuscript; available in PMC 2021 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://csg.sph.umich.edu/abecasis/public/lipids2013/
http://www.cardiogramplusc4d.org/data-downloads/
http://www.cardiogramplusc4d.org/data-downloads/


on HDL-C, G can still affect CAD by the mediation of TG (Fig. 4B). The mediation of TG

also led to a loss of statistical power to detect pleiotropic variants for HDL-C and CAD.

Thus, we performed IMRP for HDL-C and TG to identify pleiotropic variants for these two

correlated traits. We were able to identify 60 pleiotropic variants among the 143 IVs. After

dropping these 60 variants, the OR of HDL-C on CAD estimated by IMRP was reduced to

0.94 (p = 0.043), suggesting that the initial significant causal effect of HDL-C on CAD was

biased because of the correlated trait TG. This example also suggests the importance to

examine the traits correlated with both the exposure and outcome.

FUTURE RESEARCH

We reviewed statistical approaches for performing a Mendelian Randomization analysis

using summary statistics from genome wide associations. The application of HDL-C on

CAD clearly suggested that there is no uniformly best approach. There is always a trade-off

between bias and efficiency. Among the methods, MR-PRESSO and IMRP are able to both

perform the MR analysis and detect pleiotropic variants, and IMRP is computationally 3

order faster than MR-PRESSO and is less biased [24]. MBE and MRmix are less biased, but

they also lose statistical power. Although MR is easy to conduct due to increased availability

of genome data, the challenges remain. First, one challenge is the identification of valid IVs,

i.e., the genetic variants have no horizontal pleiotropic between exposure and outcome.

Because of the modest contribution of a genetic variant to a trait, statistical power in

detecting pleiotropy can be low and requires a large sample size. New statistical approaches

will be welcomed for detecting horizontal pleiotropy. Second, most of the current MR

approaches assess the causal effect of one exposure on one outcome. Traits are often

correlated with shared genetic contributions [55]. The correlated traits can easily lead to

confounding in MR analysis, which can create multiple independent paths from a genetic IV

to an outcome without pathing through the exposure, as we observed in the MR analysis of

HDL-C and CAD. Multivariate MR with multiple exposures and one outcome was less

developed and the current multivariate MR is unable to deal with unknown pleiotropy [56],

but has advantages to solve the problems of multiple correlated exposures. Third, a single

genetic variant has little prediction power. To improve the power, polygenic risk score (PRS)

has been used for predicting disease and inferring putative causal relationships among traits

[57]. However its false positive rate is also inflated when inferring causality [58]. A PRS has

less concern caused by weak instruments. Further methodological development is necessary

to unbiasedly estimate and correctly interpret the causal effect estimation through a PRS.

Fourth, large GWAS also demonstrated gene-environment/life style interactions contributing

to phenotype variation, and these summary statistics are available [59,60]. It will be

beneficial to develop MR approaches that can be applied to summary statistics from GWAS

of gene-environment interaction studies, which can potentially provide better causal effect

estimations. Lastly, current large GWASs have mainly been conducted in European ancestry

populations. The sample sizes in other ancestry populations are much less, resulting less

identifications of genetic variants. Utilizing the GWAS information from European ancestry

populations to perform MR analysis in other ancestry populations needs innovative

statistical approaches. In conclusion, current genomic advances provide an unprecedented
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opportunity to study casual relationships among risk factors and diseases via MR analysis,

and the results will lay a foundation for future, well designed randomized control trials.
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Figure 1. Comparison between RCT and MR designs.
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Figure 2. A causal path diagram for multiple instrumental variables.
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Figure 3. The relationships of genetic variants, exposure and outcome.
(A) Mediation: the causal variant lies on the causal path to Y. (B) Horizontal pleiotropy: the

causal variant affects both E and Y. (C) Colocalization: two different causal variants at one

locus affect E and Y. The red star represents the causal variant and S represents genetic

markers.
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Figure 4. The two path diagrams for HDL-C and CAD.
(A) There is no separate path through TG. (B) There is a separate path through TG.
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