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Abstract

In the shape analysis approach to computer vision problems, one treats shapes as points in an

infinite-dimensional Riemannian manifold, thereby facilitating algorithms for statistical

calculations such as geodesic distance between shapes and averaging of a collection of shapes. The

performance of these algorithms depends heavily on the choice of the Riemannian metric. In the

setting of plane curve shapes, attention has largely been focused on a two-parameter family of first

order Sobolev metrics, referred to as elastic metrics. They are particularly useful due to the

existence of simplifying coordinate transformations for particular parameter values, such as the

well-known square-root velocity transform. In this paper, we extend the transformations appearing

in the existing literature to a family of isometries, which take any elastic metric to the flat L2

metric. We also extend the transforms to treat piecewise linear curves and demonstrate the

existence of optimal matchings over the diffeomorphism group in this setting. We conclude the

paper with multiple examples of shape geodesics for open and closed curves. We also show the

benefits of our approach in a simple classification experiment.
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1. Introduction.

Shape is a fundamental physical property of objects and plays an important role in various

imaging tasks, including identification and tracking. As a result, statistical analysis of shape

plays a crucial role in many image-rich application domains such as computer vision,

medical imaging, biology, bioinformatics, geology, and biometrics. In statistical shape

analysis, shape is viewed as a random object, and one is concerned with developing methods
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to perform common statistical tasks, including registration, comparison, averaging,

summarization of variability, hypothesis testing, regression, and other inferential procedures.

Any statistical shape analysis approach requires an appropriate shape representation and an

associated metric that enables quantification of shape differences. Evidently, the quality of

statistical analyses of shape data is heavily dependent on these choices.

There is a rich literature on statistical analysis of shape, with the most prominent shape

representation being landmark-based. Landmarks constitute a finite collection of points that

are chosen either by the application expert (anatomical landmarks) or according to some

mathematical rule such as high absolute curvature (mathematical landmarks). Once the

points are selected, the remaining information regarding the object’s outline is discarded.

Under this representation, Kendall [25] defined shape as a property of an object that is

invariant to its rigid motions and global scaling; this approach is commonly referred to as

similarity shape analysis. Since then, there has been continuous development of statistical

tools to analyze similarity shapes represented by landmarks; see [17, 43] for a

comprehensive set of methods. These approaches combine ideas from differential geometry,

algebra, and multivariate statistics to establish rigorous estimation and inferential procedures

on the landmark shape space. The main benefit of these approaches is that the resulting

shape space is finite-dimensional, making statistical analysis “easier.” However, the obvious

drawback is that the finite collection of landmarks used to represent shapes of interest results

in significant loss of information.

Recently, there has been more emphasis on using a function-based representation of shape,

i.e., objects are represented via their boundaries as parameterized curves. Thus, in this case,

one must account for possible parameterization variability in addition to rigid motion and

global scaling. One set of methods removes this variability by normalizing all

parameterizations to arclength [26, 56]. However, such an approach is suboptimal in many

real scientific problems due to a lack of appropriate registration. A better approach is to

remove such variability in a pairwise manner using an appropriate metric. This is the idea

behind elastic shape analysis, where a family of elastic metrics is used for joint registration

and comparison. The resulting shape spaces are more complicated than their landmark

counterparts, but the benefits of such approaches are clear: (1) there is no need to select

landmarks, which can be a tedious and expensive process; (2) the curve representation is

able to encode all relevant shape information; and (3) the elastic metric quantifies intuitive

shape deformations. Elastic shape analysis is the focus of the current paper, and we provide

a formal mathematical setup for this approach in the following section.

1.1. Elastic shape analysis.

A fundamental ingredient in a theory of shape similarity for plane curves is a distance metric

on the space of curves S which is invariant under rigid transformations of the curves. For a

pair of plane curves C1 and C2, we therefore wish to assign a distance d(C1, C2) such that

d(ξ1 ⋆ C1, ξ2 ⋆ C2) = d(C1, C2) for any elements ξj of the Euclidean isometry group

ℝ2 ⋉ SO(2), acting in the natural way.
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Under the elastic shape analysis paradigm, the distance function described above arises from

a Riemannian metric. This extra structure has obvious benefits over treating S only as a

metric space; for example, it allows the potential to compute geodesic curve deformations

and to locally linearize via the logarithm map in order to do statistics in a tangent space. The

metric on the space of (unparameterized) curves S is obtained by treating it as a quotient

space, described as follows. Let I ⊂ ℝ denote some fixed interval, Imm I, ℝ2 ⊂ C∞ I, ℝ2

the open submanifold of smooth immersions, and Diff+(I) the Lie group of orientation-

preserving diffeomorphisms of I. This group acts on Imm I, ℝ2  by reparameterizations. We

then represent the space of curves as S ≈ Imm I, ℝ2 /Diff+(I); in other words, the space of

unparameterized curves is realized as the space of parameterized curves identified up to

reparameterizations. A choice g of Diff+(I)-invariant Riemannian metric on the relatively

simple space Imm I, ℝ2  descends to a well-defined metric on S. If the Riemannian metric is

also invariant under Euclidean similarities, then the geodesic distance with respect to this

metric induces our desired distance function d via the formula

d C1, C2 = inf
σ1, σ2 ∈  Diff +(I) × ℝ2 × SO(2)

distg σ1 ⋆ c1, σ2 ⋆ c2 .

In this formula, the cj are arbitrary choices of parameterizations of Cj, distg denotes geodesic

distance in Imm I, ℝ2  with respect to g, and ⋆ denotes the action of the group

Diff +(I) × ℝ2 ⋉ SO(2)  of shape-preserving transformations on Imm I, ℝ2 , defined as

follows. A triple σ = (γ, v, A) ∈ Diff+(I) × ℝ2 ⋉ SO(2)  acts on a curve c by reparameterizing

by γ, rotating c about c(0) by A, and translating the image of c by v.

The simplest choice of Riemannian metric is the reparameterization-invariant L2 metric

defined for c ∈ Imm I, ℝ2  and ℎ, k ∈ TcImm I, ℝ2 ≈ C∞ I, ℝ2  by the formula

gc
L2

(ℎ, k) = ∫I
ℎ, k  ds .

The notation g is used to distinguish this metric from the standard (non-reparameterization-

invariant) L2 metric which will appear later in the paper. The nonlinearity of this metric lies

in the measure with respect to arclength ds = |c′(t)| dt, which provides the desired Diff+(I)-
invariance. It is a surprising fact that geodesic distance on the shape space vanishes with

respect to gL2
 [34], and one must therefore consider more complicated metrics on the space

of immersions. Examples in the literature of such metrics include almost-local (weighted L2)

metrics [7, 8, 35] and higher order Sobolev-type metrics [6, 15, 35, 46]. An element of the

latter class of metrics is a natural generalization of the reparameterization-invariant L2

metric, defined by
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gcd (ℎ, k) = ∫I
a0
2 ℎ, k + a1

2 Dsℎ, Dsk + ⋯ + an2 Dsnℎ, Dsnk  ds,

where a = a0, a1, …, an  is a vector of weights on the terms, and we use Ds = 1
c′(t)

d
dt  for

derivative with respect to arclength. The higher order Sobolev metrics no longer suffer the

vanishing geodesic phenomenon and are, in fact, geodesically complete when a0, an > 0 for

n ⩾ 2 [12].

A particularly well-studied subfamily of first order (i.e., n = 1 in the above notation) Sobolev

metrics are the elastic metrics introduced in [37]. These form a two-parameter family of

metrics ga,b defined by setting a0 = 0 and further decomposing the first order term into

tangential and normal components. That is, for c ∈ Imm I, ℝ2 , let (T, N) denote the standard

moving frame consisting of the unit tangent and unit normal to c, respectively. For a, b ≠ 0

and ℎ, k ∈ TcImm I, ℝ2 , we define

gca, b(ℎ, k) = ∫
I

a2 Dsℎ, N Dsk, N + b2 Dsℎ, T Dsk, T  ds . (1.1)

This metric is invariant under reparameterizations and rigid motions, and so descends to a

well-defined metric on the shape space S. While these metrics do not enjoy the geodesic

completeness of their higher order counterparts, we will see below that they have a number

of useful theoretical properties and, in particular, that geodesic distance is nonvanishing.

This paper will focus exclusively on this family of elastic metrics.

1.2. Previous work on elastic metrics.

In order to compute the distance between curves in S, our procedure requires the

computation of geodesic distance with respect to the chosen metric. Early approaches to this

task accomplished this by explicitly solving the associated variational problems [47, 48, 53].

Focusing on the elastic metric g1,1/2, a common technique is to apply the square-root
velocity function (SRVF) transform, given by

Imm I, ℝ2 C∞ I, ℝ2 ,

c c′
c′ 1/2 .

The theoretical power of the SRVF is the remarkable fact that the pullback of the standard

L2 metric on the target space is the elastic metric g1,1/2 [24], whence geodesics with respect

to g1,1/2 in Imm I, ℝ2  can be computed explicitly by pushing forward to the flat target space,

computing geodesics there, then pulling the result back. Due to this convenient property, the

SRVF transform has been studied extensively from a theoretical perspective [11, 31, 44, 49]
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and has seen a wide variety of applications, including classification of plant leaf shapes [30],

statistical analysis of protein structures [45], and biomedical imaging of anatomical features

in the brain [2]. A similarly simple transform is introduced in [55], where a plane curve c is

taken to the curve c′, with the square root taken pointwise by considering c′ to be a path in

the complex plane; in this case, the map pulls back the L2 metric to g1/2,1/2. A more

complicated family of transforms Ra,b is defined in [5] for 2b ⩾ a > 0, and it is shown that

the pullback by Ra,b of the L2 metric on its target is ga,b. A different framework for

understanding general elastic metrics, with a more explicit focus on the various Lie group

actions, is provided in [54]. There has also been substantial effort put toward numerical

computations for geodesics in spaces of curves with respect to these metrics (and more

general Sobolev-type metrics); see, e.g., [4, 3].

In this paper, we define a two-parameter family of transforms Fa, b :  Imm I, ℝ2 C∞ I, ℝ2

which is valid for all choices of a, b > 0. Our main result (Theorem 2.3) is that Fa,b pulls

back the L2 metric to the elastic metric ga,b. Moreover, we show that Fa,b subsumes the

SRVF transform, the complex square-root transform, and the Ra,b-transforms.

1.3. Other formalisms in shape analysis.

Before moving on to our study of elastic metrics, we briefly remark on some other

approaches to shape analysis which are similar in spirit in that they define metrics on various

shape spaces. The shape analysis literature is quite extensive and varied, and we make no

claims that our description is exhaustive.

As was pointed out above, the choice of metric on shape space depends on the shape

representation. A natural way to represent a shape (an embedded curve, surface or

otherwise) is as a set of points, either abstractly as a continuous object or computationally as

an unstructured point cloud of samples (in line with landmark shape analysis already

described above). Under this representation, there are several metrics which can be used to

compare shapes. Classical metrics which are still in use are the Hausdorff distance (between

compact subsets of a metric space) and Fréchet distance (specifically between plane curves).

One could consider an embedded shape as a metric space in its own right (using the

restriction of the ambient metric) so that Gromov–Hausdorff distance applies as a shape

metric [10]. Choosing a probability measure on a shape (e.g., the empirical measure on a

finite sampling of the shape) further turns the shape into a metric measure space, so that

Gromov–Wasserstein distance provides another shape metric [33]. The Gromov–Hausdorff

and Gromov–Wasserstein distances are naturally invariant under rigid motions but are

computationally expensive. Unstructured point cloud shape representations can also be

compared using techniques from topological data analysis, which enjoy stability with

respect to Gromov–Hausdorff distance [16]. These methods are all flexible enough to handle

very general classes of shapes, but when shapes come from a fixed class (such as plane

curves) they forget that extra structure and only see metric information.

Another shape analysis formalism which is particularly popular in computational anatomy is

the Large Deformation Diffeomorphic Metric Mapping framework (see, e.g., [19, 14]),

which compares shapes (embedded submanifolds) by looking for an optimal
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diffeomorphism of the entire ambient space taking one shape to another. This method comes

with its own challenges of rigid motion shape registration and higher computational

complexity, but it is intuitively appealing and flexible enough to handle a variety of different

shape representations. For example, these ideas can be used to directly compare images

without the need to segment shapes [36]. Similarly, ideas from optimal transport can be used

to compare images by treating them as probability distributions [21]. Optimal transport

methods have also proven useful for comparing anatomical surfaces as embedded

submanifolds [9].

The rest of the paper will focus exclusively on an elastic shape analysis framework which is

specifically designed for comparing plane curves (although we note that this framework has

itself been generalized to treat many other classes of shapes, such as embedded surfaces [23]

and neuronal trees [18]). The best choice of framework for shape analysis is largely

application-specific, depending on requirements for computational efficiency or robustness

to noise and on the particular structure of the available shape data.

1.4. Outline of the paper.

In section 2, we define the transform Fa,b and prove our main result. We also consider the

important submanifold of closed plane curves, and more precisely compare our transform to

those described in the previous subsection. Section 3 describes how various shape-

preserving group actions behave in Fa,b-coordinates. In section 4, we describe the explicit

geodesics in the curve spaces. Numerical implementation is formally treated in section 5,

where the transform is extended to treat piecewise linear (PL) curves. In particular, we show

that optimal registrations over the diffeomorphism group are realized by PL

reparameterizations in this setting. Finally, we provide numerical examples1 in section 6 and

suggest future directions in section 7.

2. The Fa,b-transform.

2.1. Shape spaces of open curves.

The space of plane curve shapes is obtained via a quotient construction, starting with the

space of immersions

Imm I, ℝ2 = c ∈ C∞ I, ℝ2 c′(t) ≠ 0∀t ∈ I ,

where, without loss of generality, I = [0, 1] is fixed. To simplify calculations, we make the

identification Imm I, ℝ2 ≈ Imm(I, ℂ). We note here that our choice of C∞ regularity is

primarily a matter of convenience and that our results hold essentially without modification

for C1 curves. Decreasing regularity below C1 does cause some theoretical issues, and these

are treated in section 5. Throughout the paper, we use the Whitney-C∞ topology on

C∞ I, ℝ2 , which turns the space into a tame Fréchet space. With this topology, Imm(I, ℂ) is

1Our code is available for download from the GitHub repository https://github.com/trneedham/Planar-Elastic-Metrics.
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an open submanifold of the vector space C∞ I, ℝ2 . For details about topology and calculus

in the tame Fréchet category, see the standard references [22, 27].

There are various shape-preserving Lie group actions which we will quotient by ℝ2 acting

by translations, ℝ > 0 acting by scaling, SO(2) acting by rotations, and Diff+(I) acting by

reparameterizations. The easiest action to deal with is translations, as there is an obvious

isomorphism with the space of curves based at zero,

Imm(I, ℂ)/ℝ2 = Imm(I, ℂ)/Tra ≈ c ∈ C∞(I, ℂ) ∣ c′(t) ≠ 0∀t ∈ I,  c(0) = 0 .

We take this identification as a convention in order to simplify notation. Most of our explicit

calculations will take place in this space, which we refer to as the preshape space of curves.

Our goal is to understand the following quotient space with the full set of shape similarities

modded out:

Imm(I, ℂ)/ ℝ2 ⋉ ℝ ⩾ 0 × SO(2) × Diff+(I) = Imm(I, ℂ)/  Tra, Sca, Rot, Rep .

We refer to this quotient space as the shape space of curves and denote it by S. Intermediate

spaces such as Imm(I, ℂ)/ Tra, Rot  will appear frequently, and we will treat them separately

as they arise.

2.2. The Fa,b-transform on preshape space.

For any a, b > 0, we define the Fa,b-transform by the formula

Fa, b: Imm(I, ℂ)/Tra C∞ I, ℂ* ,

c 2b c′ 1/2 c′
c′

a
2b .

We use the notation ℂ* = ℂ\ 0 . In the formula, all arithmetic operations are taken pointwise

on complex numbers. One should immediately notice that, due to the presence of complex

exponentiation, Fa,b is not well-defined in general. Indeed, writing c′ in polar coordinates r
exp(iθ), the continuous argument function θ is only unique up to a global addition of an

integer multiple of 2π. The values of Fa,b are then given by

2br1/2exp i(θ + 2kπ) a
2b = 2br1/2exp iθ a

2b ⋅ exp ia
bkπ

for k ∈ ℤ. Therefore Fa,b is technically defined as a multivalued function with image set

Fa, b(c) = q ⋅ exp ia
bkπ ∣ k ∈ ℤ , (2.1)

where q = 2br1/2 exp(iθa/2b) for some arbitrary choice of smooth polar coordinate

representation c′ = r exp(iθ). In this form, it is easy to see that Fa,b is a bijection if and only
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if a
2b = 1. If a

2b  is an integer not equal to one, then Fa,b is well-defined but many-to-one. If a
2b

is not an integer, then Fa,b is multivalued, taking finitely many values if and only if a
2b  is

rational.

For the sake of concreteness, we can locally define Fa,b more precisely as follows. Let

c0 ∈ Imm(I, ℂ)/Tra and choose a polar coordinate representation of its derivative

c0′ = r0exp iθ0  so that θ0 is continuous on I. The magnitude function r0 is unique and such a

choice of θ0 is unique up to addition of an integer multiple of 2π. Moreover, any

parameterized curve c which is sufficiently C∞-close to c0 has a polar representation c′ = r
exp(iθ) so that θ0 and θ are C∞-close (with respect to any metric generating the Whitney

topology). The Fa,b-transform is then defined locally near c0 by

Fa, b(c) = 2br1/2exp iθ a
2b . (2.2)

The polar coordinate representation (2.2) shows that Fa,b can be represented locally as a

well-defined continuous map of Fréchet spaces. In fact, the map is locally smooth. Recall

that a map on open subsets of Fréchet spaces U V is called smooth if its composition with

any smooth path ℝ U results in a smooth map ℝ V (the usual definition of the

derivative of a path still makes sense in the Fréchet category) [22]. One can easily check that

this property holds for the local representation of Fa,b. We note that this allows us to take

directional derivatives of Fa,b in the usual way. Finally, we observe that the transform Fa,b is

locally bijective with inverse given by the locally smooth map

Fa, b
−1(q)(t) = 1

4b2∫0

t
|q(τ) |2 q(τ)

q(τ)

2b
a  dτ, (2.3)

which we can make locally well-defined by once again passing to a polar representation. It

follows that Fa,b is a local diffeomorphism of Fréchet spaces.

Remark 2.1. Formula (2.2) involves a choice of image of Fa,b. Fortunately, all other choices

of image differ from this one by a rotation, and we will see in Theorem 3.2 that this implies

that Fa,b descends to a well-defined map on quotient spaces of curves modulo rotation.

Remark 2.2. One issue that can arise in the elastic shape analysis approach to shape

matching is that curves which are close in Hausdorff distance can be far apart in geodesic

distance (see Figure 1). This may be undesirable, depending on the application. One can

overcome this issue by restricting analysis to simple curves or by using ad hoc methods to

account for such differences.

2.3. Pullback metric.

Let gL2
 denote the standard L2 metric on the space C∞(I, ℂ), defined at basepoint

q ∈ C∞(I, ℂ) on variations w, z ∈ TqC∞(I, ℂ) ≈ C∞(I, ℂ) by the formula
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gqL
2
(w, z) = Re∫I

wz dt .

This is a flat (i.e., sectional curvatures are identically zero) metric on the vector space

C∞(I, ℂ) which restricts to a flat metric on the open submanifold C∞ I, ℂ* .

Theorem 2.3. The L2 metric gL2
 on C∞ I, ℂ*  pulls back to the elastic metric ga,b on

Imm(I, ℂ) under the transform Fa,b.

Proof. Let c ∈ Imm(I, ℂ) and let h be a tangent vector to c. We first note that, expressing the

unit normal N to c as iDsc and the Euclidean inner product as the real part of (z, w) zw,

the elastic metric ga,b can be written as

gca, b(ℎ, k) = ∫
I

a2 Dsℎ, N Dsk, N + b2 Dsℎ, T Dsk, T  ds

= ∫
I

a2Re 1
c′ ℎ′ ⋅ − i c′

c′ Re 1
c′ k′ ⋅ − i c′

c′ +b2Re 1
c′ ℎ′ ⋅ c′

c′ Re 1
c′ k′ ⋅ c′

c′

c′ dt = ∫
I

1
c′ 3 a2Im c′ℎ′ Im c′k′ + b2Re c′ℎ′ Re c′k′  dt .

(2.4)

Next we compute a directional derivative of Fa,b at c. Here we use the idea that Fa,b is a well-

defined map in a small C∞ neighborhood of c to do the computation without having to deal

with the map being potentially multiple-valued. Using the formula

d
dϵ ϵ = 0 c′ + ϵℎ′ = Re c′ℎ′

c′ ,

we have

DFa, b(c)(ℎ) = d
dϵ ϵ = 02b c′ + ϵℎ′ 1/2 c′ + ϵℎ′

c′ + ϵℎ′

a
2b

= c′
c′

a
2b b c′ −1/2Re c′ℎ′

c′ + a c′ 1/2 c′
c′

c′ ℎ′ − c′Re c′ℎ′ / c′
c′ 2

= c′
c′

a
2b c′ − 3

2 bRe c′ℎ′ − iaIm c′ℎ′ ,

where our formula for the directional derivative at c ∈ Imm(I, ℂ) is justified because the

space of immersions is an open submanifold of the vector space C∞(I, ℂ). Then the pullback

metric is given by

Fa, b* gL2
c
(ℎ, k) = ∫I

Re DFa, b(c)(ℎ) ⋅ DFa, b(c)(k)dt

= ∫I
c′ −3Re  bRe  c′ℎ′ − iaIm c′ℎ′ ⋅ bRe  c′k′ + iaIm c′k′  dt,
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which easily simplifies to (2.4). ■

We will show in section 2.5 that this theorem is a direct generalization of results appearing

in [5, 24, 55].

2.4. The preshape space of closed curves.

We now consider the preshape space of closed loops Imm S1, ℂ /Tra (i.e., the space of

“object outlines”). By identifying S1 with the quotient [0, 1]/(0 ~ 1), we can consider the

preshape space of closed curves to be a submanifold of the preshape space of open curves of

infinite codimension. Under this identification, the Fa,b-transform can be restricted to

Imm S1, ℂ /Tra and the image of the restricted map will lie in C∞ I, ℂ* . We wish to

characterize the image of the restricted Fa,b-transform. Using the polar form (2.2) of Fa,b, we

see that for any closed curve c with c′ = r exp(iθ),

Fa, b(c)(1) = 2b r(1)exp i a
2bθ(1)

= 2b r(0)exp i a
2b(θ(0) + θ(1) − θ(0))

= Fa, b(c)(0) ⋅ exp ia
bπind(c) ,

where ind(c) is the Whitney rotation index of the immersed curve c [50]. Observe that this

computation does not depend on our choice of polar representation of c′; indeed, if

θ = θ + 2kπ, then θ(1) − θ(0) = θ(1) − θ(0). It follows that a necessary condition for a complex

curve q ∈ C∞ I, ℂ*  to be the image of a closed curve under Fa,b is that there exists some

integer ℓ such that

q(k)(1) = q(k)(0) ⋅ exp ia
bπl (2.5)

for all integers k ∈ ℤ ⩾ 0. We denote by Va,b(ℓ) the codimension-∞ vector subspace of

C∞(I, ℂ) containing curves q with property (2.5). Let V a, b* (l) = V a, b(l) ∩ C∞ I, ℂ* , let Va,b

denote the union of all Va,b(ℓ), and let V a, b*  denote the union of all V a, b* (l). If we restrict our

attention to simple closed curves (i.e., those curves with no self-intersections), then we are

only interested in the vector space Va,b(1) and the open submanifold V a, b* (1).

The discussion above captures the higher order Ck closure conditions for c, but not the two-

dimensional C0 closure condition c(0) = c(1). In fact, the image of Fa,b is locally a

codimension-2 submanifold of Va,b. In order to perform calculations for closed curves, it

will be useful to characterize the two-dimensional normal space to this submanifold.

Consider the function fa, b:V a, b* ℂ defined by

fa, b(q) ≔ Fa, b
−1(q)(1) = 1

4b2∫I
|q |2 q

|q|

2b
a  dt . (2.6)
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The image of Imm S1, ℂ /Tra in V a, b*  is exactly the set  fa, b
−1(0). We wish to calculate the

gradient to fa,b(q) for q in this submanifold.

The derivative of fa,b at q in the direction of a variation p is given by

Dfa, b(q)(p) = 1
2b2∫I

q
q

2b/a
Re(qp) − i b

aIm(qp)  dt .

The normal space to the submanifold of closed curves is spanned by the gradients of the real

and imaginary parts of fa,b. The real component of Dfa,b(q)(p) is given by

ReDfa, b(q)(p) = 1
2b2∫I

Re q
q

2b/a
Re(qp) + b

aIm q
q

2b/a
Im(qp) dt

= ∫I
Re 1

2b2 Re q
q

2b/a
− i b

aIm q
q

2b/a
qp  dt,

and it follows that

grad  Re fa, b q = 1
2b2 Re q

q
2b/a

− i b
aIm q

q
2b/a

q . (2.7)

Similarly,

grad  Im fa, b q = 1
2b2 Im q

q
2b/a

+ i b
aRe q

q
2b/a

q . (2.8)

An important tool for shape analysis of closed curves is the projection from the preshape

space of open curves into the preshape space of closed curves. One cannot compute this

projection analytically, but the above characterization of the submanifold of closed curves

under the Fa,b-transform allows us to use a gradient descent algorithm for this purpose—see

Figure 2 for a few examples. The algorithm itself is similar in spirit to the one described in

[44] for the SRVF transform; we provide an outline of the algorithm without focusing on

details for brevity. The algorithm for projecting an open curve q into the preshape space of

closed curves follows four steps: (1) compute the Jacobian matrix Ji, j = δi, j + 3∫S1qiqjdt, i, j

= 1, 2, where i, j denote the first and second coordinates of q; (2) compute the residual using

(2.6) and solve Jβ = −fa,b(q); (3) update q = q + ϵ∑i = 1
2 βibi, where ϵ > 0 is a small

(emperically chosen) step size and the basis functions b1, b2 are given in (2.7) and (2.8); and

(4) rescale q such that its norm is 2b. We repeat steps (1)–(4) until the residual computed in

step (2) becomes small.

2.5. Relation to previous work.

The family of maps Fa,b includes transforms which have already appeared in the literature.

Indeed,
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F1, 1
2

(c) = c′ 1/2 c′
c′ = c′

c′ 1/2 ,

so that F1, 1
2
 yields the SRVF transform introduced in [24]. We also have

F 1
2, 1

2
(c) = c′ 1/2 c′

c′
1/2

= c′,

and we see that F 1
2, 1

2
 is the complex square-root transform studied in [55].

The SRVF was already shown to be a special case of a general family of transforms in [5].

There, the authors define a two-parameter family of transforms Ra,b for 2b ⩾ a > 0 by

Ra, b: Imm I, ℝ2 /Tra C∞ I, ℝ3

c c′ 1/2 T
0 + 4b2 − a2 0

1 ,

where T = Dsc. The image of the Ra,b-transform is an open subset of a cone given by

Ca, b = (x, y, z) ∈ ℝ3 ∣ 4b2 − a2 x2 + y2 = a2z2, z > 0 .

The limiting cone C1, 1
2
 can clearly be identified with ℝ2, and then R1, 1

2
(c) gives the SRVF

transform of c. It is shown in [5] that the Ra,b-transform pulls back the L2 metric on

C∞ I, ℝ3  to the elastic metric ga,b.

We claim that the Ra,b-transforms correspond to Fa,b-transforms when 2b ⩾ a, so that our

main result generalizes [5] to work for all parameter choices. Indeed, writing ℝ3 ≈ ℂ × ℝ,

there is a projection map ℂ* Ca, b defined for each parameter choice with 2b ⩾ a > 0 in

polar coordinates by

(r, θ) a
2br cos 2b

a θ , a
2br sin 2b

a θ , 4b2 − a2

2b r , (2.9)

which extends to a local isometry pa, b:C∞ I, ℂ* C∞ I, Ca, b  with respect to the

corresponding L2 metrics. Expressing the map (2.9) in the form

w a w
2b

w
w

2b/a
, 4b2 − a2

2b |w| ,

it is easy to see that Ra,b = pa,b ○ Fa,b.
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In fact, this idea can be extended to all parameter values. The cones Ca,b can be understood

in terms of Regge cones; these are building blocks of the Regge calculus used to

approximate Riemannian manifolds in theoretical physics [39]. One constructs a two-

dimensional Regge cone from polar coordinates (r, θ) ∈ ℝ ⩾ 0
2  with standard metric dr2

+r2dθ2 by identifying points according to the relation (r, θ1) ~ (r, θ2) ⇔ |θ1 – θ2| = 2π – θ0

for some choice of deficit angle θ0 (allowed to be positive or negative). The map (2.9) is an

isometric embedding of the Regge cone with deficit angle θ0 = 1 − a
2b  onto a flat cone in

Euclidean space. For parameters with 4b2 < a2, replacing the trigonometric functions with

their hyperbolic counterparts and the coefficient in the third coordinate with a2 − 4b2
2b  yields

an isometric map of the Regge cone with (negative) deficit angle θ0 onto a flat cone in

Lorentz space (see [20]).

3. Shape preserving group actions.

3.1. Rotation actions and fibers of Fa,b.

We now treat the fact that Fa,b is multivalued for certain parameter choices and noninjective

for others. The fibers of Fa,b are closely related to the actions of the rotation group SO(2) on

Imm(I, ℂ)/Tra and C∞ I, ℂ* . Using the natural identification of SO(2) with S1, we can

represent the rotation actions as complex multiplication. That is, we express rotations in the

respective spaces as exp(iψ)c and exp(iψ)q, where exp(iψ) ∈ S1. As usual, multiplication in

these formulas is performed pointwise as complex numbers. We have the following

correspondence between the actions, which follows by an elementary computation.

Lemma 3.1. Let c ∈ Imm(I, ℂ)/Tra and exp(iψ) ∈ SO(2). Then for all a, b > 0,

Fa, b(exp(iψ)c) = exp iψ a
2b Fa, b(c) .

Theorem 3.2. The Fa,b-transform induces a well-defined isometry

Imm(I, ℂ)/  Tra, Rot  C∞ I, ℂ* /Rot

with respect to the metrics induced by ga,b and gL2
, respectively.

We abuse notation and continue to denote the induced isometry by Fa,b. The induced map is

defined by

Fa, b([c]) = Fa, b(c) , (3.1)

where we use brackets to denote the SO(2)-orbit of a parameterized plane curve. The right

side denotes the equivalence class of any branch of Fa,b(c) in the case that the map is

multivalued.
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Proof. We first note that all Fa,b-images of a curve c in the list (2.1) are related by rotations,

so that [Fa,b(c)] is a well-defined element of C∞ I, ℂ* /Rot. Lemma 3.1 then implies that the

induced map is well-defined. Similar arguments hold for the obvious map induced by the

local inverse Fa, b
−1 , giving a well-defined inverse map

Fa, b
−1 :C∞ I, ℂ* / Rot  Imm(I, ℂ)/  Tra, Rot  ,

so the induced map Fa,b is a bijection. Finally, it is easy to see that ga,b and gL2
 are invariant

under the action of SO(2). Therefore, the local isometry of Theorem 2.3 descends to a global

isometry on the quotient spaces. ■

We have the following immediate corollary.

Corollary 3.3. The Fa,b-transform induces a well-defined isometric embedding

Imm S1, ℂ /  Tra, Rot  V a, b* / Rot,

where V a, b*  is the space of curves defined in section 2.4.

3.2. The scaling action.

The group of positive real numbers ℝ > 0 acts on a parameterized curve by uniform scaling.

An easy calculation shows that the scaling action interacts with the Fa,b-transform as

follows: for λ ∈ ℝ > 0 and c ∈ Imm(I, ℂ)/Tra,

Fa, b(λc) = λ1/2Fa, b(c) .

It will be convenient to represent the quotient of the preshape space by this scaling action as

Imm(I, ℂ)/  Tra, Sca  ≈ c ∈ Imm(I, ℂ) ∣ c(0) = 0,  length (c) = 1 . (3.2)

For Σ = I or S1 and a, b > 0, define the Hilbert sphere of radius r to be the space

ℋa, b
Σ (r) =

q ∈ C∞ I, ℂ |∫Σ
|q |2  dt = r2 , Σ = I,

q ∈ V a, b |∫Σ
|q |2  dt = r2 , Σ = S1 .

Proposition 3.4. The Fa,b-transform sends Imm(Σ, ℂ)/ Tra, Sca  into the Hilbert sphere

ℋa, b
Σ (2b). It induces an isometry between Imm(Σ, ℂ)/ Tra, Sca,  Rot  and its image in

ℋa, b
Σ (2b)/Rot.

Proof. Let c ∈ Imm(Σ, ℂ) have length one. Using (2.2), we have
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∫Σ
|Fa, b(c)|2 dt = ∫Σ

2b c′ 1/2 2 dt = 4b2∫Σ
c′ dt = 4b2 .

The second statement follows by noting that ℋa, b
Σ (2b) is invariant under the rotation action

of SO(2) so that we can restrict the isometries of Theorem 3.2 and Corollary 3.3. ■

3.3. The reparameterization action.

The final shape-preserving group action to consider is the action of Diff+(I) on Imm(I, ℂ) by

orientation-preserving reparameterizations. An element γ ∈ Diff+(I) of the diffeomorphism

group also acts on q ∈ C∞ I, ℂ*  by the formula

γ * q ≔ γ′ (q ∘ γ) . (3.3)

Proposition 3.5. The map Fa,b is equivariant with respect to the Diff+(I)-actions on Imm(I, ℂ)
and C∞ I, ℂ*  defined above.

Proof. Let c ∈ Imm(Σ, ℂ) and γ ∈ Diff+(Σ). Then

Fa, b(c ∘ γ) = 2b γ′ c′ ∘ γ 1/2 γ′ c′ ∘ γ
γ′ c′ ∘ γ

a
2b

= γ′ 1/22b c′ ∘ γ 1/2 c′ ∘ γ
c′ ∘ γ

d
2b = γ′ 1/2Fa, b(c) ∘ γ .

■

We likewise wish to consider the action of Diff+(S1) on Imm S1, ℂ  and the corresponding

action in transform space. To understand the reparameterization action in transform space

for closed curves, it is convenient to identify Va,b(ℓ) with the vector space

V a, b(l) = q ∈ C∞ ℝ, ℂ* ∣ q(t + 1) = q(t) ⋅ exp ia
bπl .

Under this identification, the Diff+(S1)-action on transform space is once again given by

(3.3) in the sense that a similar equivariance result holds in this setting.

4. Geodesics between curves.

4.1. Geodesics for open curves.

For open curves, Theorem 3.2 provides an isometry of Riemannian manifolds

Fa, b: Imm(I, ℂ)/ Tra, Rot , ga, b C∞ I, ℂ* /Rot, gL2
.
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We can therefore compute geodesics between curves in the former space by translating the

problem to the simpler target space, C∞(I, ℂ), where geodesic paths are simply straight lines.

Passing to the open subset C∞ I, ℂ* , we lose geodesic completeness as the geodesic joining

q0, q1 ∈ C∞ I, ℂ*  given by qu = (1 – u)q0 + uq1, u ∈ [0, 1], may pass through a curve with

qu(t) = 0 for some t. Nonetheless, geodesic distance in the larger space still induces a metric

on the restricted space, and curves which are sufficiently close will be joined by a well-

defined geodesic (see [13, section 3.4] for a discussion of this phenomenon in the SRVF

framework). The geodesic distance between a pair of curves in the geodesic completion of

the image space is

dL2
q0, q1 = q0 − q1 L2 = ∫I

|q0 − q1|2 dt
1/2

.

Geodesics in the quotient Imm(I, ℂ)/ Tra, Rot ≈ C∞ I, ℂ* /Rot are realized as geodesics

between curves in the total space C∞(I, ℂ) after a preprocessing step whereby the curves are

aligned over SO(2) using a standard algorithm called Procrustes analysis (essentially a

singular value decomposition problem). Furthermore, we calculate explicit geodesics in

Imm(I, ℂ)/ Tra, Sca, Rot  by using Proposition 3.4 to transfer the problem to the Hilbert

sphere. The geodesic joining a pair of curves q0, q1 ∈ ℋa, b
I (2b) is given by spherical

interpolation,

qu = 1
sin(D) sin((1 − u)D)q0 + sin(uD)q1 ,

where D = arccos q0, q1 L2/4b2  is the geodesic distance in the Hilbert sphere. Geodesics in

the quotient ℋa, b
I (2b)/Rot are treated by the same optimization procedure as in the flat case.

4.2. Geodesics for closed curves.

Geodesics in Imm S1, ℂ / Tra, Rot  can be treated in a similar manner to the open case; that

is, we transfer the problem to the simpler space Va,b/{Rot}. Each vector space Va,b(ℓ) is flat,

so its geodesics are straight lines. However, the fact that the image of the isometry induced

by Fa,b is codimension-2 in Va,b makes the procedure more complicated.

We first note that the problem has a remarkable simplification in the case that a = b, where

the closure condition fa,b(q) = 0 (see (2.6)) reduces to L2-orthogonality of the coordinate

functions of q. This was exploited by Younes et al. in [55] to give explicit geodesics for

closed curves by relating the space of closed curves to an infinite-dimensional Stiefel

manifold.

Apparently, such a simplification is unique to the case a = b, and the space of closed curves

is not isometric (at least, not in any obvious way) to a classical manifold otherwise.

Fortunately, the low codimension of the space of closed curves in the flat space Va,b allows

us to approximate geodesics in the submanifold numerically. There are several algorithms in
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the literature which are easily adapted to our setting, such as parallel transport-based path-

straightening [44] and other gradient descent-based [5, 52] methods. In the examples

provided in section 6, we use a simplistic projection-based algorithm to approximate

geodesics, described as follows. Given two closed curves, q0, q1 ∈ ℋa, b
S1

(2b), we first

construct a geodesic in the preshape space of open curves using spherical interpolation as

described in section 4.1. Then we perform a pointwise projection of the open preshape space

geodesic into the preshape space of closed curves using the numerical algorithm outlined at

the end of section 2.4. We leave the development of more sophisticated algorithms for

computing geodesics in the preshape space of closed curves for future work.

4.3. Optimized geodesics in the shape spaces.

To compute geodesics in the shape space of unparameterized curves with respect to the

metric induced by ga,b, we pass to the quotient of the parameterized curve space by the

action of the diffeomorphism group Diff+(I) (Diff+(S1) in the case of closed curves). The

geodesic between Diff+(I)-orbits [c1] and [c2] of parameterized curves cj is realized in

practice as the geodesic between c1 and c2 in the total space Imm(I, ℂ), where c2 = c2 ∘ γ and

γ = arginf distga, b c1, c2(γ) ∣ γ ∈ Diff+(I) . (4.1)

Here distga, b denotes geodesic distance with respect to ga,b. In general, the

reparameterization realizing this infimum may fail to be smooth (see [55, section 4.2]),

whence the geodesic is actually realized in the larger space of L2 curves. Precise

characterizations of the regularity of solutions to the optimization problem for SRVF

parameters g1,1/2 have been the subject of several recent articles, and it has been shown that

for C1 input curves, the optimal reparameterization γ is achieved and is differentiable almost

everywhere [11]. For applications, the realistic setting considers piecewise linear (PL)

curves (defined precisely in the following section), and it is known that in that case, the

optimal reparameterization is realized and is also PL [31]. We adapt the methods of [31] to

the PL setting for general elastic metrics ga,b in section 5.

A major benefit of our results is that under the Fa,b-transform, the optimal

reparameterization problem (4.1) becomes equivalent to the optimization problem which

appears under the SRVF formalism. We are therefore able to utilize existing, highly efficient

numerical approaches to approximate solutions of (4.1) (for example, the dynamic

programming approach [40]). Once an approximate solution γ is obtained, we are able to

easily compute geodesics in the shape space using the techniques of section 4.1 applied to c1

and the reparameterized curve c2.

The approach described above can be adapted to provide geodesics in the space of curves of

fixed length (using the Hilbert sphere geodesics of section 4.1, together with the simple

relationship between Euclidean and spherical distance) and geodesics in the space of closed

curves (by numerically optimizing over Diff+(I) × S1, where the S1 factor corresponds to a

search for optimal seed points between the two curves).
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5. Extending to piecewise linear shapes.

5.1. Problem setup.

A natural question of both theoretical and practical interest is whether the previous results

can be extended to spaces of curves of lower regularity. Indeed, the methods above can be

used, essentially without modification, to show that the map Fa,b can be extended to give an

isometry

Imm1(I, ℂ)/  Tra, Rot  , ga, b C0 I, ℂ* , gL2
,

where Imm1 denotes the space of C1 immersions and ga,b is the appropriately extended

elastic metric.

It is common in the literature on the SRVF transform to consider the space AC I, ℝN  of

absolutely continuous curves in Euclidean space (absolutely continuous curves can be

characterized as those curves which are continuous everywhere and differentiable almost

everywhere [41]). Recall that the transform F1, 1
2
 recovers the SRVF transform for smooth,

immersed plane curves. This map extends to a well-defined map,

F1, 1
2

:AC(I, ℂ) L2(I, ℂ),

c(t)
c′(t)
c′(t) , c′(t) exists and is nonzero, 

0 otherwise,

which is a homeomorphism that pulls back gL2
 to g1, 1

2  at smooth points. Theoretical details

of this construction are examined in [31, 11].

One would like to similarly extend the remaining Fa,b-transforms to spaces of curves of low

regularity, but this causes immediate issues. For a/2b ≠ 1, one of Fa,b or its inverse is

multivalued pointwise, since the map involves complex exponentiation. In previous sections,

we relied on the smoothness of our curves (or at least continuity of derivatives) to choose

complex roots coherently in order to ensure Fa,b was well-defined up to rotations.

5.2. Extended Fa,b-transform.

Inspired by our results for smooth curves, we can extend our work to one of the most

important spaces of curves from a practical standpoint: piecewise linear curves. Let PL(I, ℂ)
denote the space of PL planar curves; that is, each c ∈ PL(I, ℂ) is a continuous curve such

that there is a decomposition

I = I1 ∪ I2 ∪ ⋯ ∪ Ik = t0 = 0, t1 ∪ t1, t2 ∪ ⋯ ∪ tk − 1, tk = 1

with c′(t) = vj ∈ ℂ for all t ∈ (tj–1, tj), j = 1, …, k. We call the points c(tj) vertices of c and the

tj are called vertex parameters. A PL curve c is called a piecewise linear immersion if |c′(t)|
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≠ 0, where c′(t) is defined. Let PL(I, ℂ)/Tra denote the space of PL curves modulo

translations, which we identify with the set of curves based at the origin.

We define the extended Fa,b-transform to be the map

Fa, b(c) = 2br1/2exp iaθ
2b ,

where r is the piecewise constant function

r(t) =
v1  for t ∈ 0, t1 ,
vj  for t ∈ tj − 1, tj , j = 2, …, k, (5.1)

and θ is the piecewise constant function defined recursively by

θ(t) =
θ1 = arctanIm v1

Re v1
θj − 1 + sj ⋅ δθj

 for t ∈ 0, t1 ,
 for t ∈ tj − 1, tj , j = 2, …, k . (5.2)

The term δθj ∈ [0, π] is the jth exterior angle between the (j – 1)th and jth edges of c and is

given by

δθj = arccos Re vj − 1vj
vj − 1vj

. (5.3)

To simplify notation later on, we set δθ1 = θ1. The coefficient sj ∈ {−1, 1} describes the

orientation of the jth exterior angle and is given by

sj = sign Im vj − 1vj , (5.4)

where we define the sign function for any real number a according to the convention

sign(a) ≔ 1  if a > 0,
−1  if a ⩽ 0.

We set s1 = 1.

Lemma 5.1. Let c be a smooth immersion with a fixed representation of c′ in polar

coordinates, c′= reiθ, so that θ(0) = arctan Im c′(0)
Re c′(0)  and θ is continuous. Let {cn} be a

sequence of PL immersions with vertices sampled from c (i.e., each cn is a secant
approximation of c). Assume that the sequence {cn} converges uniformly to c in C1, and let
(rn, θn) be polar coordinates for cn, obtained by formulas (5.1) and (5.2). Then rn → r and θn

→ θ uniformly.

Proof. The assumption of uniform convergence (cn)′(t)→c′(t) immediately implies rn(t)

→r(t) uniformly, and one only needs to check convergence of the angle functions. Let vjn

denote the derivative vectors of cn, and let vj
n denote the derivative vectors of c sampled at
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vertex parameters of cn. Moreover, let θ j
n denote samples of the function θ at the vertex

parameters of cn.

Fix a small ϵ > 0, and in particular assume that ϵ < π
3 . Our assumption that (cn)′ → c′

uniformly implies that there exists N such that for all n > N we may choose a collection of

angles θj
n  satisfying vjn = rjnexp i θj

n  and θj
n − θ j

n < ϵ for all j. Increasing N if necessary, we

may also assume that the following estimates hold for all j:

• |θj
n − θj − 1

n | < π (by the definition of θn), and

• |θ j
n − θ j − 1

n | < ϵ (by continuity of c).

We claim that θj
n = θj

n for all j. By the definition of θj
n, the contrary would imply that for

some j we have

π < θj
n − θj − 1

n ⩽ θj
n − θj

n + θj − 1
n − θj − 1

n + θj
n − θj − 1

n < π,

and we have arrived at a contradiction. Thus θj
n − θ j

n < ϵ for all j, and this completes the

proof. ■

Remark 5.2. Sequences of approximating PL curves as described in Lemma 5.1 arise by

linear spline approximation. For a smooth c: [0, 1] ℝ2, we pick a mesh t0 < t1 < ⋯ < tn and

define a linear spline cn interpolating between the c(tj). As the mesh is refined, the resulting

sequence of PL curves converges uniformly to c (see, e.g., Theorems 6.1 and 6.15 of [42]).

Lemma 5.1 immediately implies the following convergence result.

Proposition 5.3. Let c be a smooth immersed plane curve, and let {cn} be a sequence of PL
immersions as in Lemma 5.1. Then Fa,b(cn) → Fa,b(c) in L2.

Remark 5.4. This shows that if a PL curve approximates a smooth curve, then taking

sufficiently many samples produces a transformed curve, which is close to the transformed

smooth curve. On the other hand, if the PL curve is truly meant to contain jagged angles,

then the discrete Fa,b is still well-defined but may not be a faithful representation of the

curve in transform space. In this scenario, ad hoc methods are necessary to extend the

transformation.

5.3. Injectivity.

Theorem 3.2 says that Fa,b induces a bijection

Imm(I, ℂ)/ Tra, Rot C∞ I, ℂ* / Rot .

Unfortunately, the same property is not enjoyed by the extended Fa,b-transform, as shown by

the following example.
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Example 5.5. Let c1 and c2 be the PL curves given by c1′ (t) = 1 and

c2′ (t) =
1, t ∈ [0, 1/2],

eiθ, t ∈ [1/2, 1],

for some fixed choice of θ ∈ (0, π]. Then Fa,b(c1)(t) = 2b and

Fa, b c2 (t) =
2b, t ∈ [1/2, 1],

2b exp iθ a
2b , t ∈ [1/2, 1] .

Taking parameters a and b satisfying a
2b = 2π

θ  yields Fa,b(c1) = Fa,b(c2), while it is clear that

c1 and c2 do not differ by a rigid rotation.

This potentially causes a major problem when computing distances between PL curves: two

PL curves which do not differ by a rotation can receive zero geodesic distance in Fa,b-

transform space. Luckily, the next proposition shows that this situation is highly nongeneric

and that it does not arise in most applications.

Proposition 5.6. Let c1 and c2 be PL immersions with k segments whose derivatives are
represented in polar coordinates by the functions (r1, θ1) and (r2, θ2), respectively, as
defined by formulas (5.1) and (5.2). The images of the curves under the extended Fa,b-
transform are the same if and only if r1(t) = r2(t) for all t and there exist integers ℓj such that

sj1δθj1 = sj2δθj2 + 4b
a ljπ

for all j = 1, …, k.

Proof. Assume that Fa,b(c1) = Fa,b(c2). Then |Fa,b(c1)(t)| = |Fa,b(c2)(t)| holds for all t, and it

follows that r1(t) = r2(t) for all t. Since rj(t) ≠ 0, we have that exp aθ1
2b = exp aθ2

2b . This

equality holds if and only if

aθj1

2b =
aθj2

2b + 2ljπ

for all j = 1, …, k for some integers ℓj. Therefore

θj
1 = θj

2 + 4b
a ljπ . (5.5)

Setting j = 1 and recalling that we are using the convention δθ1 = θ1 and s1 = 1 provides our

first condition on the θ-functions. The j = 2 instance of (5.5) reads
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θ2
1 = θ2

2 + 4b
a l2π θ1

1 + s2
1δθ2

1 = θ1
2 + s2

2δθ2
2 + 4b

a l2π

s2
1δθ2

1 = s2
2δθ2

2 + 4b
a l2 − l1 π .

The claim then follows in the j = 2 case after relabeling the integer coefficient of 4b
a π. The

general claim follows similarly by induction. ■

It follows that Fa,b is generically injective on PL(I, ℂ)/ Tra, Rot  in the sense that if c1 and c2

are PL curves with Fa,b(c1) = Fa,b(c2), then there exists an arbitrarily small perturbation (in

the C1 sense) c2 of c2 such that the SO(2)-orbit of Fa, b c2  is different from that of Fa,b(c1).

We also have the following corollary, which provides injectivity of Fa,b on PL curves with

bounded exterior angles.

Corollary 5.7. The extended map Fa,b is injective when restricted to the set of PL

immersions with exterior angles uniformly bounded by 2b
a π.

In particular, note that Fa,b is always injective on PL curves when a
2b ⩽ 1.

Proof. Let c1 and c2 be PL immersions such that δθj
1, δθj

2 < 2b
a π for all j. If Fa,b(c1) = Fa,b(c2),

then Proposition 5.6 implies that there exist integers ℓj such that

sj1δθj1 − sj2δθj2 = 4b
a ljπ

for all j. We have

sj1δθj1 − sj2δθj2 ⩽ δθj1 + δθj2 < 4b
a π,

so that each ℓj = 0. Therefore θ1 = θ2 and it follows that c1 = c2. ■

For PL curves obtained by sampling a smooth curve, dense enough sampling ensures that

exterior angles can be bounded by an arbitrarily small number. It follows that Fa,b can be

guaranteed to be injective. To quantify this, consider the simple case of a secant

approximation of a smooth curve c by an equilateral PL curve with edgelength s. At a vertex

of the PL curve, let δθ denote the exterior angle, and let κ denote the curvature of c at that

point. Then we have the Taylor approximation (see [1])

δθ = sκ + O s3 .

Assuming that the PL curve has N vertices, that c is normalized to have length 1, and that s
is therefore roughly equal to 1/N, it follows that there is an asymptotic bound
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|δθ | ⩽
κmax

N + O 1/N3 ,

where κmax is the maximum curvature of c. We therefore obtain the desired bound on the

turning angle as soon as

N > a
2bπ κmax + O 1/N2 .

5.4. Exact matching.

The algorithm for computing geodesic distances in the shape space Imm(I, ℂ)/ Diff +(I)
outlined in section 4.3 calls for a solution of the optimization problem (4.1). We now wish to

demonstrate the existence of solutions to the corresponding problem in the PL setting. In

order to achieve a solution, we replace the smooth diffeomorphism group Diff+(I) with the

semigroup

Γ = γ ∈ AC(I, I) ∣ γ(0) = 0, γ(1) = 1, γ′(t) ⩾ 0 when γ′(t) exists  .

The PL optimization problem seeks the optimal reparameterization γ for PL curves c1 and

c2 satisfying

γ = arginf distga, b c1, c2(γ) ∣ γ ∈ Γ . (5.6)

Because the Fa,b-transform induces the same optimization problem for general elastic

metrics ga,b as the one studied in the SRVF setting g1,1/2, we are able to directly appeal to

the recent work of Lahiri, Robinson, and Klassen [31].

Proposition 5.8. The optimal reparameterization between two PL curves [c1] and [c2] with
respect to ga,b is realized by a PL function in Γ .

Proof. The images of the PL curve cj under Fa,b are piecewise constant maps qj into ℂ ≈ ℝ2.

The reparameterization action of the semigroup Γ  on cj transforms into an action on the

image curves by the formula

γ * qj = γ′ ⋅ qj ∘ γ,

defined pointwise almost everywhere. The optimization problem (5.6) becomes

inf
γ ∈ Γ

q1 − γ * q2 L2 .

It follows from [31, Theorem 5] that this new optimization problem is solved by a PL

element of Γ . ■
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It is observed in [31] that an optimal matching γ ∈ Γ  between PL curves c1 and c2 may

contain flat or vertical portions (i.e., the derivative may vanish or there may be

discontinuities). Observe that in this case we could find reparameterizations γj of both

curves cj so that each γj only contains flat portions and no discontinuities. The

reparameterized curves cj(γj) no longer lie in the space of PL curves, but rather in some

slightly more general space where the parameterization can stop at vertices for positive time.

In any case, we still obtain geodesics between these mildly singular curves, and the resulting

geodesic distance is still a sensible metric on the subspace of PL curves. This behavior is

thoroughly explored in [31] for the SRVF setting, and it will be interesting to study it in

detail for our general setting in future work.

6. Numerical experiments.

6.1 Implementation issue.

In the case when a
2b > 1, the inverse mapping from the Fa,b-transform space to the space of

curves is not guaranteed to produce valid angle functions when the curves are expressed in

polar coordinates. This is due to large local differences between the angle functions for the

shapes being compared. In these cases, we use a path-straightening algorithm to find the

appropriate angle functions along the geodesic path. We omit the details of this algorithm for

brevity, but the basic idea is as follows. Plane curves to be compared are first mapped via

Fa,b by converting to polar coordinates, as discussed above. Optimal alignment and

reparameterization is performed on the transform side. For rotational alignment, we use the

standard version of Procrustes analysis (a singular value decomposition problem). To find

optimal reparameterizations of open curves, we use the dynamic programming algorithm of

[40]. To find optimal reparameterizations of closed curves, we also use dynamic

programming, but with an additional search for an optimal starting point on each curve (seed

search). After optimal rotational alignment and reparameterization, we calculate the polar

coordinate r-function along the geodesic explicitly. However, inverting the full Fa,b-

transform along the geodesic, and specifically inverting the polar coordinate θ-function,

proves numerically difficult. We thus compute the polar coordinate θ-functions along the

geodesic using a gradient descent algorithm based on an objective function given by the

elastic metric-based energy of the path in the space of curves. Since the r-functions along the

geodesic path can be easily computed, the overall problem simplifies slightly to one where

only the first term in (1.1) plays a role in the optimization problem; this results in a simple

and computationally efficient path-straightening algorithm that iteratively updates the path

according to the gradient of the path energy [44, 29]. We note that the Fa,b-transform still

provides a significant numerical simplification in this case as it allows us to search for

optimal rotations and reparameterizations in the transform space under the L2 metric.

6.2 Examples.

We show several examples of geodesic paths and associated geodesic distances between

shapes of open (Figures 3–5) and closed (Figures 6 and 7) curves for different parameter

values in the elastic metric, computed via the methods described in sections 4 and 6.1. Each

figure shows the curve evolution and the optimal reparameterization in blue with the identity
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in red for comparison. While the example in Figure 3 considers two simulated open curves,

the examples in Figures 4–7 use curves from the well-known MPEG-7 computer vision

database.2 Comparing within each figure shows the qualitative effect of parameter values on

the curve evolutions, while comparing distances within shape classes across figures gives a

sense of the range and distinguishing powers of the geodesic distance metrics. One can

immediately make some qualitative observations. First, note that in each example the

optimal reparameterizations for the a
2b = 0.5 and 0.17 parameter choices are quite close to

the identity. This was experimentally observed to be typical and makes sense heuristically:

as the value of a
2b  is decreased, the penalty for stretching deformations in the elastic metric

dominates, and bending deformations along the geodesic becomes less costly than

reparameterizing to avoid them. Studying this behavior more quantitatively will be the

subject of future work. Second, observe that distances increase as the ratio a
2b  is decreased.

This is explained both by the higher penalty on reparameterizations (hence on matching

similar features in the curves), as well as the fact that the (length normalized) curves lie on

the Hilbert sphere Ha, b
Σ (2b) after applying Fa,b (see Proposition 3.4). The figures were

produced by fixing a = 1 and varying b, so that decreasing a
2b  corresponds to increasing the

radius of the sphere containing their transformed images.

We also provide a short classification experiment that shows the benefits of using general

weights for the stretching and bending terms in the context of differentiating forgeries from

genuine signatures. The data used here consists of 40 different signatures, which are a subset

of the SVC 2004 dataset [51]. Each signature class contains 20 genuine signatures and 20

skilled forgeries. We classified each signature as genuine or a forgery using leave-one-out

nearest neighbor with respect to the geodesic distance under the ga,b metric for various

parameter choices (a,b). As baselines, signatures were classified by two classical metric-

based methods: L2 distance between arclength parameterized curves, Hausdorff distance

between the (discrete) arclength parameterized curves considered as unstructured point

clouds, and Fréchet distance between the curves. Table 1 reports the overall classification

rate (across all 40 signature classes) for each metric, as well as the number of signature

classes where classification was perfect. The first group of three results contains parameter

values covered by the Ra,b-transform of [5], with a
2b = 1 corresponding to the SRVF and

a
2b = 1

2  corresponding to the complex square-root transform. The last three results are for

parameter values obtained using our new transform. Classification is more successful for the

parameter values given by our new results, with a
2b = 2 matching the performance of the

SRVF. Figure 8 shows the classification rates for a
2b = 1 and a

2b = 2 across the 40 individual

signature classes. Although these parameter values have the same overall performance, we

see that their performances differ drastically by signature class. This suggests that certain

parameter values may be more sensitive to features appearing in particular signature classes,

and that it is in general beneficial to vary the choice of parameters to suit a given task.

2 http://www.dabi.temple.edu/~shape/MPEG7/dataset.html
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6.3. Complexity and runtime.

The computational complexity for computing distances between curves in shape space with

any of the elastic metrics lies in the reparameterization step. The particular algorithm we are

using, outlined in [40], enforces artificial constraints on the slope of each segment in the

discrete reparameterization in order to improve speed. To match curves with n samples, the

complexity of our algorithm is O(n2) (without the slope constraints, the complexity is O(n4)

—see [40]). The runtime to compute geodesic distance between unparameterized open

curves with n = 100 samples is on the order of hundredths of a second. For closed curves,

the exhaustive seed search scales the runtime by a factor of n, but this can be improved for

practical computations; e.g., one can compute L2 distance between parameterized curves for

all seed choices, then keep some smaller collection of best seeds to search over with

dynamic programming. For a
2b ⩽ 1, computing geodesics between registered curves is

essentially instantaneous due to their explicit form for open curves under the Fa,b-transform

and the fast projection algorithm for closed curves. When a
2b > 1, the gradient-descent-based

algorithm described in section 6.1 is employed to compute geodesics, and its runtime is

highly dependent on parameter choices, which we have not optimized.

7. Future directions.

Our first direction for future work is to develop various statistical tools under this

framework. These will include computation of summary statistics such as the average and

covariance of a set of shapes, exploration of variability in various shape classes through

PCA, building generative shape models, inference via hypothesis testing and confidence

intervals, and finally regression analysis. Given the simplification of the metric under the

proposed Fa,b-transform, and the simple geometry of the preshape space, we will be able to

build upon existing work in this area based on the SRVF transform (i.e., a
2b = 1) We have

seen in the presented examples that different choices of a and b produce different geodesic

paths, thus resulting in different statistical analyses.

Second, we will build statistical models that allow the data to choose appropriate values of a
and b for the given application and task. For example, in the context of classification, one

can learn optimal weights on training data and then apply the proposed framework on a

held-out set. Furthermore, one can build hierarchical Bayesian models for registration,

comparison, and averaging of shapes of planar curves that include priors on the values of a
and b. Such models can be developed in a similar manner to the functional data approaches

in [28, 32]. In those works, the authors simply work with fixed values of a and b. We

propose to extend those methods by additionally including the weights for stretching and

bending in the posterior distribution.

In previous work, one of the authors extended the results of Younes et al. [55] to give a

metric with explicit geodesics on the space of closed loops in ℝ3 [38]. This is accomplished

by replacing the complex squaring map with the Hopf map S3 → S2. Using quaternionic

arithmetic, we expect that the results of this paper can be extended to provide transforms

which simplify metrics on space curves as well.
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Figure 1.
Left: A pair of curves which are close in Hausdorff distance. Right: The continuous polar

angle functions of the curves are quite different, resulting in images under Fa,b which are far

apart in Hausdorff distance.
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Figure 2.
Projections of an open curve into the preshape space of closed curves under different Fa,b-

transforms.
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Figure 3.
Geodesic path and distance between shapes of two artificial open curves.
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Figure 4.
Geodesic path and distance between two structurally different bone shapes.
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Figure 5.
Geodesic path and distance between two very different shapes.
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Figure 6.
Geodesic path and distance between two very different shapes.
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Figure 7.
Geodesic path and distance between two shapes of flowers with a different number of petals.
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Figure 8.
Classification rates across 40 individual signature classes using the geodesic distance for

parameters a
2b = 1 (in blue) and a

2b = 2 (in red).
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Table 1

Overall classification rates and number of perfect classifications for the signature experiment.

Method Classification rate Perfect matches

Arclength 86.44 1

Hausdorff 90.81 3

Fréchet 91.75 3

a
2b = 1

4 86.50 0

a
2b = 1

2 93.81 6

a
2b = 1 97.50 19

a
2b = 2 97.50 19

a
2b = 3 96.69 16

a
2b = 4 97.00 16
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