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Abstract
A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the

accumulation of neuropathological proteins in brain regions of the default mode network (DMN).

Molecular models suggest that the progression of disease proteins depends on the directionality of

signaling pathways. At network level, effective connectivity (EC) reflects directionality of signaling

pathways.We hypothesized a specific pattern of EC in theDMNof patientswith AD, related to cogni-

tive impairment. Metabolic connectivity mapping is a novel measure of EC identifying regions of sig-

naling input based on neuroenergetics. We simultaneously acquired resting-state functional MRI and

FDG-PET data from patients with early AD (n = 35) and healthy subjects (n = 18) on an integrated

PET/MR scanner. We identified two distinct subnetworks of EC in the DMN of healthy subjects: an

anterior partwith bidirectional EC between hippocampus andmedial prefrontal cortex and a posterior

part with predominant input into medial parietal cortex. Patients had reduced input into the medial

parietal system and absent input from hippocampus into medial prefrontal cortex (p < 0.05, cor-

rected). In a multiple linear regression with unimodal imaging and EC measures (F4,25 = 5.63,

p = 0.002, r2 = 0.47), we found that EC (β = 0.45, p = 0.012) was stronger associated with cognitive

deficits in patients than any of the PET and fMRI measures alone. Our approach indicates specific dis-

ruptions of EC in the DMNof patients with AD andmight be suitable to test molecular theories about

downstream and upstream spreading of neuropathology in AD.
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1 | INTRODUCTION

Alzheimer's disease (AD) is characterized by the regional accumulation

of misfolded proteins that spread to widely distributed brain regions

along disease progression. For decades, the temporal and spatial dis-

tribution of amyloid-β plaques and tau tangles have been studied with

postmortem neuropathology (Braak & Braak, 1991; Price & Morris,

1999). Recently, the topographic progression of disease proteins has

been associated with macroscopic brain networks from magnetic res-

onance imaging (MRI; Buckner et al., 2005; Palop, Chin, & Mucke,

2006; Pievani, de Haan, Wu, Seeley, & Frisoni, 2011; Seeley, Craw-

ford, Zhou, Miller, & Greicius, 2009). In patients with AD, functional

(FC) and structural connectivity are primarily disrupted in the default

mode network (DMN) spanning medial and lateral parietal regions,

medial prefrontal cortex (MPFC) and hippocampus (Greicius, Srivas-

tava, Reiss, & Menon, 2004; Hahn et al., 2013). We and others

reported progressive FC disruption in the DMN, starting even in early

stages of mild cognitive impairment and preclinical stages (Greicius

et al., 2004; Lim et al., 2014; Nuttall, Pasquini, Scherr, & Sorg, 2016;

Pasquini et al., 2015; Sorg et al., 2007; Zhou et al., 2010). Together,

regions forming the DMN seem to affected early and most promi-

nently in the progression of AD.

Several recent studies tested models of pathological spread in

relation to DMN connectivity. Zhou et al. identified lateral parietal

regions of the DMN as vulnerability hubs for pathological spread in

AD (Zhou, Gennatas, Kramer, Miller, & Seeley, 2012). Similar coinci-

dences were reported for DMN structural connectivity and atrophy

(Raj, Kuceyeski, & Weiner, 2012), as well as for DMN FC, hypometa-

bolism, and amyloid-β burden (Drzezga et al., 2011; Iturria-Medina

et al., 2014; Myers et al., 2014; Pasquini et al., 2017; Scherr et al.,

2018). Sepulcre et al. found evidence for network based distribution

of both amyloid-β and tau when relating neuropathological accumula-

tion to gray matter tissue loss (Sepulcre et al., 2016). These findings

suggest that distinct features of DMN connectivity are critical for neu-

ropathology spread in AD, but the mechanism of spreading is still

unknown.

Cellular and molecular models have proposed that the spatially cas-

cading accumulation of neuropathological changes might be related to

the signaling hierarchy in brain networks (Brettschneider, Del Tredici,

Lee, & Trojanowski, 2015). According to one idea, misfolded disease

proteins accumulate in a prion-like fashion spreading downstream from

an infected to a naïve neuron (Frost & Diamond, 2010). Another theory

suggests spreading in an activity- or plasticity dependent manner

(Mesulam, 2000; Palop & Mucke, 2010; Yamamoto et al., 2015).

Together, these models suggest that the signaling directionality in the

DMN might be a useful indicator of neuropathological spread in

AD. Statistical approaches for fMRI data, such as Granger causality

analysis (GCA) and dynamic causal modeling (DCM), exist to identify

directional signaling, or effective connectivity (EC), in macroscopic brain

networks. GCA revealed altered EC in DMN regions, showing both

reductions in connection strength to the posterior cingulate cortex and

stronger coupling of the MPFC with bilateral inferior parietal regions, as

compared with healthy controls (Zhong et al., 2014). Using DCM,

(Agosta et al., 2010) reported that AD patients had significantly reduced

EC between the left and right primary somatomotor cortices as com-

pared to healthy control participants.

We recently introduced metabolic connectivity mapping (MCM)

as a novel, in vivo method to identify EC in large-scale networks (Riedl

et al., 2016) (Figure 1). According to cellular data from neuroener-

getics, up to 75% of glucose metabolism is related to postsynaptic

activity, that is, signaling input (Attwell & Iadecola, 2002; Attwell &

Laughlin, 2001). We scaled this model to the macroscopic level and

identified signaling input along given FC pathways by integrating

simultaneously acquired fMRI and FDG-PET data. In the current

study, we applied MCM to the DMN and asked, whether EC is

reduced in patients with early AD. First, we identified two DMN sub-

systems in healthy subjects, an anterior DMN with bidirectional EC

between MPFC and hippocampus and a posterior DMN with directed

signaling converging into medial parietal cortex (MPC). Both systems

were linked only via unilateral EC from anterior into posterior DMN.

In patients with early AD, distinct connections of these DMN-

subsystems were disrupted, offering systems level support for distinct

molecular spreading theories of AD.

2 | METHODS AND MATERIALS

2.1 | Subjects

We examined 18 matched healthy controls and 35 patients with early

AD, including patients with mild cognitive impairment (MCI; n = 15) or

mild dementia (n = 20) both due to AD (AD-MCI, AD-dementia; Albert

et al., 2011; McKhann et al., 2011). The study was approved by the uni-

versity ethics committee (Technische Universität München) in line with

the institute's Human Research Committee guidelines. All participants

provided informed consent. Patients were recruited from the Center

for Cognitive Disorders at the Department of Psychiatry and Psycho-

therapy, healthy controls by word-of-mouth advertising. Further details

about inclusion criteria can be found in Supporting Information.

2.2 | Data acquisition

Scanning was performed on an integrated Siemens Biograph mMR

scanner (Siemens, Erlangen, Germany) simultaneously acquiring PET-

and MR-imaging data using the vendor-supplied 12-channel phase-

array head coil. We simultaneously measured FDG activity and blood

oxygenation level dependent (BOLD) signals of fMRI during resting

condition. fMRI was acquired during the initial 10 min after bolus

injection of FDG tracer reflecting highest dynamic of tracer kinetics,

followed by structural MRI. An average PET image of saturated FDG

distribution was reconstructed from list-mode data 30–45 min post

injection. Subjects were instructed to relax and keep their eyes closed,

not to think of anything in particular, and to not fall asleep. Details

about scanning parameters can be found in Supporting Information.

2.3 | Data processing

2.3.1 | Definition of DMN

We derived regions of the DMN from an independent sample of

healthy controls (n = 31, mean age 25.4 years ± 3.1). Resting state
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fMRI data underwent the same preprocessing pipeline as patients and

healthy controls (see below). Preprocessed data were analyzed via

canonical group-independent component analysis (see Supporting

Information). The component representing the DMN was selected by

visual inspection, statistically evaluated (one-sample t test, p < 0.05

FWE corrected, cluster level > 100), and clusters in MPFC, MPC, left

and right parietal cortices (L/RPC), and the hippocampus region (HPC)

were defined as separate DMN regions for further analyses. One

should note that HPC was only partly included in our DMN compo-

nent (what is a typical result of ICA-based network parcellation, see

for example (Allen et al., 2011; Nuttall et al., 2016; Sorg et al., 2007).

As previous studies identified the whole HPC as part of the DMN, for

example, (Andrews-Hanna, Reidler, Sepulcre, Poulin, & Buckner,

2010), we extended our HPC mask to a publicly available bilateral

HPC identified by an automatic surface parcellation of healthy sub-

jects (n = 39) using FreeSurfer (Fischl et al., 2002). Importantly, para-

hippocampal, and entorhinal cortices are assigned to separate

regions in this parcellation atlas and were joined for our HPC mask.

All regions-of-interest (ROI) were then transformed into individual

subject space of patients and controls using the inverse transforma-

tion matrix from the normalization procedure. In the following, we

used these individualized DMN ROIs to calculate regional metabo-

lism, inter-regional FC, and most importantly, ROI-to-ROI EC based

on MCM.

2.3.2 | Data preprocessing

We applied standardized preprocessing to fMRI and PET data as pre-

viously reported (for details see (Riedl et al., 2016). In brief, the mean

FDG-PET volume was coregistered to the mean EPI volume, resulting

in a subject-specific coregistered multimodal dataset.

For FC analysis, we additionally applied spatial normalization,

smoothing, and movement artifact control. In brief, fMRI volumes

were normalized to a standard template of the Montréal Neurological

Institute (MNI template), spatially smoothed using a Gaussian kernel

of full-width-half-maximum of 6 mm, and controlled for excessive

head motion (exclusion criteria: cumulative motion translation or rota-

tion >3 mm or 3� and mean point-to-point translation or rotation

>0.15 mm or 0.1�); in addition movement-induced artifacts across

groups were controlled by comparing movement- and signal quality

parameters across groups such as frame-wise displacement (Power,

Barnes, Snyder, Schlaggar, & Petersen, 2012), the root-mean-square

of translational parameters (Van Dijk, Sabuncu, & Buckner, 2012), and

signal-to-noise ratio of functional MRI data differed across groups

(ANOVA, p > 0.05 each). Further details about these preprocessing steps

can be found in Supporting Information.

We performed MCM in native space, therefore omitting spatial

normalization during preprocessing. Additionally, standard space

tissue-probability maps of gray, white matter and CSF were warped

onto single-subject T1-weighted images and stored as masks for later

use. In order to reduce the partial volume effects during coregistration

of fMRI- and FDG-images we first resampled both datasets to com-

mon voxel dimensions of 2 × 2 × 2 mm3 and applied spatial smooth-

ing with a kernel of 4 mm. MCM was limited to gray matter voxels

using a range of probability thresholds (0.4–0.7) which were obtained

in the segmentation process of the T1 weighted images (see Support-

ing Information Tables S4 and S5 for control analyses).

FIGURE 1 Novel measure of directional signaling in human brain networks derived from simultaneously acquired fMRI and FDG data. (a) Using

fMRI only, functional connectivity (FC), the temporal correlation of fMRI-based voxel time-series (r), indicates undirected connectivity among
macroscopic brain regions of the DMN (here: Medial parietal cortex (MPC) and medial prefrontal cortex (MPFC)). (b) Simultaneously acquired
energy consumption from FDG-PET allows for voxelwise correlation (r) of FC and FDG in each subject. Based on cellular models of
neuroenergetics, a positive correlation in a given region indicates signaling input along a FC pathway (here, afferent EC into MPC [blue], but not
into MPFC [red]). Applied to all FC pathways among DMN regions, this novel approach reveals directional signaling or effective connectivity
(EC) in the DMN
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2.3.3 | Region-to-region FC

We performed a region-to-region FC-analysis (FCmean) using the REST

toolbox (Song et al., 2011). In a pairwise manner, we temporally corre-

lated the mean time courses of all DMN-regions. Pearson's correlation

coefficients were r-to-z-Fisher-transformed. For each group and

region-region pair, FC was evaluated by one-sample t tests, and group

comparisons (i.e., healthy controls vs. patients [collapsed], and vs. AD-

MCI and AD-dementia separately) were performed using two-sample

t tests and ANOVA. We indicated all alpha levels surpassing a Bonferroni

correction for multiple testing at p < 0.05.

2.3.4 | Regional metabolism

After coregistration of the mean FDG-PET volume to the mean fMRI

volume, we scaled PET volume data to normalized FDG activity by

whole brain FDG uptake values, and then resampled both datasets to

common voxel dimensions of 2 × 2 × 2 mm3 (for more details, see

(Riedl et al., 2016). Then we calculated regional metabolism as the

averaged FDG-activity across voxels for each DMN-region (FDGamp).

Data from the control and patient groups (collapsed and AD-MCI and

AD-dementia groups separately) were compared using two-sample

t tests and ANOVAs (p < 0.05, Bonferroni corrected).

2.3.5 | MCM

We recently introduced MCM as a measure of intrinsic EC integrating

voxel-wise values of FC (FCvox) and FDG (FDGvox) activity in single

subject space (Riedl et al., 2016). Based on a cellular model of neuroe-

nergetics, we interpret a positive spatial correlation between FCvox

and FDGvox in a given region as signaling into this area (target region).

Both voxel profiles are extracted in native space and no spatial

smoothing is applied. FCvox is calculated for each voxel in the target

area as the temporal correlation between each voxel's time series and

the averaged time series of a distant (source) region. FDGvox in the

target area is derived from the PET-image. We calculated the EC

among all regions of the DMN mask back-projected into each individ-

ual's native space. The statistical significance of a directional signaling

pathway among DMN-regions was calculated using one sample t tests

for each group separately (p < 0.05, Bonferroni corrected). Group dif-

ferences (i.e., healthy controls vs. patients [collapsed], and vs. AD-MCI

and AD-dementia separately) in the strength of EC were evaluated

using two-sample t tests and ANOVA (p < 0.05, Bonferroni cor-

rected). The variance of both FC (FCvar) and FDG (FDGvar) in a region

was calculated as the average squared deviation of all voxel values

from the mean value in that region.

2.3.6 | Integrated analysis

In a final step, we tested whether EC impairments were associated

with cognitive deficits in the patient group. Therefore, we performed

a multiple linear regression analysis, with MMSE as dependent vari-

able and the following independent variables: EC, FDGamp, and

FCmean. Independent variables were regionally specified due to group

difference results. Additional control variables of no-interest were

age, gender, and global gray matter volume. MMSE was chosen as

simple reliable index for cognitive impairment for the range from MCI

to dementia.

3 | RESULTS

3.1 | Spatially distinct patterns of reduced
metabolism and reduced FC in the DMN of patients
with early AD

We first identified major regions of the DMN in an independent sam-

ple of healthy controls (Figure 2). These regions were then used as

templates to calculate FDG uptake and FC in our study cohort of

patients with early AD and matched controls (Table 1). We identified

changes of regional energy metabolism in the DMN of patients, both

for the collapsed group including AD-MCI and AD-dementia, and for

each patient group separately. For the collapsed group, two-sample

t tests revealed a significant decrease of FDGamp in all parietal regions

and in the hippocampus of patients (MPC: t51 = −6.61, p = 8 × 10−8;

LPC: t51 = −7.27, p = 2 × 10−9; RPC: t51 = −7.36, p = 1 × 10−9;

HPC: t51 = −4.89, p = 1 × 10−5; all p < 0.05 corrected), but not in the

prefrontal cortex (MPFC: t51 = −1.82, p = 0.09). The drop in meta-

bolic activity ranged from 17–30% (see Table S1A for full statistics,

and Figure 3(a)). We found similar results in separate groups of AD-

MCI and AD-dementia with an additional trend toward reduced

metabolism in the MPFC of the AD-dementia group (Supporting Infor-

mation Table S1B).

We then studied pairwise FC pathways among all DMN-regions.

One-sample t tests (p < 0.05 corrected) indicated significant FCmean

among all pairs of isocortical DMN regions, both in healthy controls

and in patients; significant hippocampal FCmean was found only with

MPFC in the healthy control group (Table S2A, Figure 3(b)). In group

comparisons using two-sample t tests, all functional connections

between the medial prefrontal and all parietal regions were reduced in

patients with early AD (MPC: t51 = −2.94, p = 0.005; LPC:

t51 = −2.84, p = 0.007; HPC: t51 = −4.75, p = 0.002; all p < 0.05 cor-

rected; RPC: t51 = −2.75, p = 0.008). The FCmean of parieto-parietal

connections did not differ between patients and controls (Table S2A,

Figure 3(b)). In patients with AD-dementia, additional reductions of

FCmean were found between parietal regions (Table S2B). In summary,

we found spatially distinct patterns of reduced energy metabolism

and reduced FC in patients with AD. Lower energy metabolism

occurred locally in hippocampal and parietal regions, while FC was

diminished for long-range connections between parietal and MPFCs

(Figure 3(c)).

3.2 | Effective connectivity among DMN regions is
severely disrupted in patients

In a next step, we studied EC among DMN regions. In healthy con-

trols, one-sample t tests revealed two subnetworks of reciprocal EC

within the DMN (Supporting Information Table S3A, Figure 4(a)). In

the anterior part of the DMN, significant unidirectional EC occurred

from the hippocampus into MPFC (with a trend to bidirectional EC,

see Supporting Information Table S3A); in posterior DMN, unidirec-

tional EC predominated from lateral into MPC. The only link between

anterior and posterior DMN was unidirectional EC from MPFC into

MPC. In patients with early AD, we observed a reduced pattern of EC

among DMN regions. We found measurable EC only into MPC and
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from MPFC into hippocampus (Table S3A, Figure 4(a)). Group differ-

ences based on two-sample t tests (p < 0.05 corrected) revealed sig-

nificantly decreased EC in the patient group for signaling from MPFC

(t51 = −3.51, p = 9 × 10−4) and left parietal cortices (t51 = −3.13,

p = 0.003) into MPC, from left to right parietal cortex (t51 = −3.84,

p = 3 × 10−4), and from hippocampus into MPFC (t51 = −2.81,

p = 0.007; Supporting Information Table S3A, Figure 4a). Analyzing

EC for AD-MCI and AD-dementia groups separately revealed that

group differences in early AD were mainly driven by differences in the

AD-dementia group (Supporting Information Table S3B). In summary,

we found a specific pattern of EC in the DMN of healthy subjects with

predominant EC into MPC and bidirectional EC between MPFC and

hippocampus. Anterior and posterior DMN were linked via unidirec-

tional EC from MPFC into MPC. In patients, the EC into MPC and

from hippocampus to MPFC was most severely disrupted (Figure 4b).

In control analyses we tested the stability of our finding with

respect to region size and signal variance. Previously, we had demon-

strated stable results of EC, even when reducing the number of voxels

by up to 80% (Riedl et al., 2016). In the current study, we replicated

the EC-analysis on DMN-regions with a balanced number of voxels

(range within 10%) across all subjects (Supporting Information

Table S4, right columns) yielding identical results with deviations of

less than 4% for the strength of EC within each group (Supporting

Information Table S5). Furthermore, EC depends on the variance

of FDG (FDGvar) and FC (FCvar) values within each DMN-region.

We therefore tested whether FDGvar and FCvar differed across groups

(Supporting Information Figure S1). Two-sample t tests revealed a sig-

nificant difference for FDGvar in lateral parietal and hippocampal

regions but not in medial parietal or prefrontal regions. Our major

finding of reduced EC into medial parietal and prefrontal cortices was

therefore not related to differences in variance of FDG in these

regions.

3.3 | Cognitive deficits were associated with
multimodal EC but not with unimodal imaging
measures

In a final step, we tested whether any of the uni- or multimodal

imaging parameters were associated with cognitive deficits as mea-

sured with MMSE. As only MPC showed changes in any of the three

parameters, we initially focused on this region. We performed a mul-

tiple linear regression analysis in patients with early AD, with MMSE

being the dependent variable and the following independent vari-

ables: “EC into MPC,” “FDGamp in MPC,” and “FCmean of MPC.” Con-

trol variables were age, gender, and global gray matter volume.

Furthermore, we defined an interaction variable EC × FDGamp, to

test for an influence of EC and FDGamp on cognitive performance.

This model significantly explained variance in MMSE scores

(F4,25 = 5.63, p = 0.002) with an r2 = 0.47. Among the individual

explanatory variables, only “EC into MPC” (standardized β = 0.54,

p = 0.012) was significantly associated with MMSE scores

(Supporting Information Figure S2). FDGamp (std. β = 0.39, p = 0.06)

showed a trend toward significance, while FCmean (std. β = 0.05,

p = 0.76) was not significant when assuming a corrected alpha level

of p = 0.017. The interaction between EC and FDGamp was not sig-

nificant (std. β = −0.12, p = 0.63), indicating independent influence

of EC on MMSE. To further control for interrelatedness among inde-

pendent variables of the model, we also tested for relationships

among the explanatory imaging variables by calculating collinearity

via variance inflation factor (VIF). Importantly, no collinearity

occurred, particularly among the significant variables FDGamp and

“EC into MPC” (VIFEC: 1.01, VIFFDG: 1.0, VIFFC: 1.2).

Although MPC was the only region with changes in any of the

imaging parameters, the diminished FC of the MPFC might be a more

representative explanatory variable of cognitive deficits. We therefore

FIGURE 2 Regions of the DMN as defined in the present study. Key regions of the DMN were derived from an independent component analysis

of an independent dataset of healthy subjects and used as regions-of-interest for all subsequent analyses of connectivity in this manuscript.
Additionally, we added a HPC mask from a publicly available surface parcellation atlas (see Section 2). HPC = Bilateral hippocampus; LPC = left
parietal cortex; MPC = medial parietal cortex; MPFC = medial prefrontal cortex; RPC = right parietal cortex

TABLE 1 Demographics of patients with early AD and healthy

controls

Healthy
controls AD-MCI AD-dementia p value

n 18 15 20 -

Age (y, mean) 63.2 (8.5) 66.9 (10.1) 65.7 (6.1) >0.05

Sex (female) 8 8 10 >0.05

Education (y, mean) 10.3 (1.4) 10.1 (2.0) 9.7 (1.6) >0.05

MMSE score (mean) 29.4 (1.1) 27.2 (2.3) 21.9 (5.4) 0.002

CERAD total (mean) 87.2 (8.9) 69.2 (11.2) 58.0 (13.5) 0.037

p-values significant for p<0.05.
CERAD = consortium to establish a registry for Alzheimer's disease; MCI =
mid cognitive impairment; MMSE = mini-mental state examination; stan-
dard deviations in brackets; statistics derived from ANOVA, except for chi
squared test applied to sex.
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repeated the multiple regression analysis but replaced “FCmean of MPC”

with “FCmean of MPFC.” The overall model equally well explained

MMSE variance (F4,25 = 5.59, p = 0.002, r2 = 0.47), but the contribu-

tion of FCmean was again not significant (std. β = 0.004, p = 0.98).

4 | DISCUSSION

Using a novel, multimodal imaging measure of directional signaling in

the brain, we identified a unique pattern of EC in the DMN of healthy

FIGURE 3 Energy metabolism and functional connectivity in the DMN. (a) Bar plots indicate decreased energy metabolism (FDGamp) in medial (MPC),

left (LPC), and right (RPC) parietal cortex, and in hippocampus (HPC) of patients with AD (orange) compared to healthy controls (gray). (b) Left: Bar plots
indicate decreased pairwise functional connectivity (FCmean) of fronto-parietal and fronto-hippocampal connections in the patient group (green)
compared to healthy controls (gray). Right: Graphical illustration of significant FC among all DMN regions in healthy controls and patients. (c) Summary
illustrating significantly decreased energy metabolism (orange arrows) and FC (dotted lines) in the DMN of patients with AD. **p < 0.05 Bonferroni
corrected. See Supporting Information Tables S1 and S2 for full statistics

FIGURE 4 Effective connectivity in the DMN. (a) Left: Bar plots indicate pathways with decreased directional signaling, particularly connectivity

into medial (MPC) and right (RPC) parietal cortex and from hippocampus into prefrontal cortex (MPFC). Right: Graphical illustration of significant
EC among DMN regions in healthy controls and patients. (b) Summary illustrating significantly decreased EC (dotted lines) in the DMN of patients
with AD. **p < .05 Bonferroni corrected. See Supporting InformationTable S3 for full statistics
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subjects and specific disruptions of EC in patients with AD. Particu-

larly, frontal and parietal input to MPC and hippocampal input to

MPFC was reduced.

4.1 | Localized and network effects in the DMN of
patients with AD

In our study, unimodal analyses of energy metabolism and FC revealed

both regional and network-wide changes in patients with AD. FDG-

PET showed hypometabolism in parietal cortices and hippocampus,

while network analysis of fMRI data revealed disruptions of long-

range FC between medial prefrontal and all parietal areas of the

DMN. Both findings are in line with prior studies on AD using differ-

ent imaging modalities. Amyloid-β accumulation in medial and lateral

parietal cortices coincides with hypometabolism in the same regions

even in prodromal stages of AD (Grothe et al., 2016). Tau pathology

accumulates first in the entorhinal cortex and hippocampus (Braak &

Braak, 1991; Schöll et al., 2016; Sepulcre et al., 2016) while amyloid-β

originates in the neocortex (Grothe et al., 2016; Klunk et al., 2004;

Sepulcre et al., 2016). Complementing these localized effects, network

analyses of fMRI, EEG, and MEG data point to widespread connectiv-

ity changes in AD among DMN regions particularly affecting long-

range connections (Greicius et al., 2004; Stam et al., 2005, 2006;

Zhang et al., 2010). Together, molecular imaging identifies brain

regions most affected by neuropathology, and network imaging

detects disruptions of connectivity pathways between these regions.

Our multimodal EC approach might offer a framework to integrate

localized and network changes in AD.

4.2 | Directional signaling in the DMN of healthy
subjects

Based on a cellular model of neuroenergetics, we recently introduced

a simultaneous functional imaging approach to detect directional sig-

naling in large-scale brain networks (Riedl et al., 2014, 2016). Here,

we first identified EC in the DMN of healthy subjects. MCM revealed

two distinct patterns of directional signaling in the DMN extending

the more unspecific pattern of FC characterized by long-range con-

nections between medial prefrontal and all parietal regions. We found

unidirectional EC converging onto MPC in the posterior DMN, and

bidirectional EC between MPFC and hippocampus in the anterior

DMN. These two subnetworks were linked via unidirectional EC from

medial prefrontal into MPC. This means that we found no evidence

for EC directly connecting lateral parietal and MPFCs. This finding

extends prior network analyses based on undirected functional and

structural connectivity measures. Network analyses with low-

dimensional independent component analysis identified a singular

DMN, but this network split into an anterior and a posterior DMN

with higher component decompositions (Allen et al., 2011; Fransson,

2006). Similarly, seed-based FC analyses have identified a prefronto-

medial temporal and a parietal subsystem of the DMN (Andrews-

Hanna et al., 2010; Uddin, Clare Kelly, Biswal, Xavier Castellanos, &

Milham, 2009). In whole-brain graph analyses the medial fronto-

parietal axis has been identified as a major network hub in functional

and structural connectivity analyses (Hagmann et al., 2008; van den

Heuvel & Sporns, 2011). Moreover, these hub regions consume rela-

tively large amounts of energy (Tomasi, Wang, & Volkow, 2013),

which is consistent with high demands on information integration in

these regions from an energetics point of view.

Additionally, we found strong FC and EC among MPFC and hip-

pocampus which is supported by imaging and tracer approaches

(Kahn, Andrews-Hanna, Vincent, Snyder, & Buckner, 2008; Strange,

Witter, Lein, & Moser, 2014). In humans, FC between MPFC and hip-

pocampus is present during rest (Kahn et al., 2008; Uddin et al., 2009)

and increases during memory consolidation (van Kesteren, Fernández,

Norris, & Hermans, 2010). Moreover, axonal tracing studies in rats

identified the same pathway using structural connectivity methods

(Strange et al., 2014). However, fMRI studies have also reported equal

coupling of the hippocampus with posterior parts of the DMN (Dunn

et al., 2014; Greicius, Supekar, Menon, & Dougherty, 2009; Wang

et al., 2010) that we could not identify in our approach. While anterior

hippocampus is particularly connected with prefrontal cortex, poste-

rior parts are more strongly connected with the posterior DMN and

particularly via parahippocampal structures (Ward et al., 2014). How-

ever, spatial overlap exists along this anterior–posterior axis

(Ranganath & Ritchey, 2012; Strange et al., 2014; Zarei et al., 2013).

In the current study, we aimed for balanced ROI-size across regions

and subjects as well as for a sufficient number of voxels per ROI to

achieve accurate MCM-results (see stability of MCM-pathways with

avg. ROI size of around 500 voxels in (Riedl et al., 2016)). We there-

fore included voxels associated with hippocampus, entorhinal, and

parahippocampal cortex in the hippocampus mask to achieve suffi-

cient extent. This, on the other hand, might explain why we were not

able to identify significant signal and parietal pathways from the hip-

pocampus in the average ROI signal.

4.3 | Directional signaling in the DMN of patients
with AD

In patients with early AD, we found EC patterns that were generally

consistent with healthy subjects. The EC into MPC from lateral parie-

tal and MPFCs was preserved, as well as the medial prefrontal input

to hippocampus. However, the strength of all connections was dimin-

ished, particularly in the subgroup with AD-dementia, most notably

the EC into medial and right parietal cortices and the hippocampal

input to MPFC. This means that our novel approach identified similar

patterns of EC in the DMN across both populations but strongly

reduced EC between specific brain regions in patients with AD.

Compared to fMRI-only approaches, such as GCA and DCM, our

multimodal attempt might compensate for several pitfalls inherent to

these statistical approaches. GCA might be prone to spurious “causal-

ity” that is in fact the result of naturally occurring time-lags among dif-

ferent brain regions. For example, GCM applied to simulated fMRI

time-series data was shown to perform relatively poor, which

“suggests that the directionality results may not be trustworthy”

(Smith et al., 2011). DCM, on the other hand, integrates a hemody-

namic forward model that describes the transformation from neural

activity to the measured BOLD signal. A growing body of evidence

indicates that Aβ not only affects neurons but also cerebral blood ves-

sels (Zhang, Gordon, & Goldberg, 2017). Due to the damaged

4140 SCHERR ET AL.



vasculature in AD, important assumptions of DCM, that is, the map-

ping between neuronal activity (hidden states) and measured BOLD

response, might therefore be violated in these patients. Here, we sub-

stantially extend prior results from fMRI data because our approach

on EC is not confounded by violated preconditions of Granger causal-

ity and DCM. In contrast to GCM, our fMRI analysis relies on more

conventional 0-lag FC instead of lagged FC. In contrast to DCM, our

approach is model-free and relies on the integration of two indepen-

dently measured brain signals. However, future studies are necessary

to demonstrate which specific aspect of EC are captured by MCM.

Finally, we tested whether any of the imaging parameters was

associated with cognitive deficits in patients and whether our inte-

grated measure of EC might explain more variance than unimodal

FDG or FC alone. The overall model including all three parameters

explained 47% variance of MMSE in patients with early AD. However,

only EC significantly contributed to the regression. While FDG alone

showed a trend to significance, its contribution in the interaction term

with EC was negligible. Prior studies using FDG have identified

decline in local energy metabolism of parietal regions as a key marker

for AD (Buckner et al., 2005; Grothe et al., 2016, 2017; Scherr et al.,

2018). Still, our regression model suggests that including further infor-

mation about distant connectivity and interpreting energy metabolism

in terms of directional signaling might be better suited to explain cog-

nitive deficits in patients.

4.4 | EC and two molecular theories about
neuropathological spreading in AD

AD begins with dysfunction in discrete regions but involves much

larger brain areas with disease progression. Two pathophysiological

spreading mechanisms have been suggested based on molecular find-

ings. A “nodal stress” model suggests disease progression in an

upstream manner starting in highly connected hub regions with strong

synaptic plasticity (Palop & Mucke, 2010; Zhou et al., 2012). This

model is based on recent data that identified amyloid-β as an activity-

dependent regulator of postsynaptic activity in the healthy brain

(Walsh et al., 2002). Pathological accumulation of amyloid-β in highly

active brain regions would therefore trigger feedback suppression of

upstream regions. This is in line with hypometabolism and amyloid-β

accumulation in parietal cortices of the DMN (Buckner et al., 2005).

Following a prion-like mechanism, another model suggests down-

stream spreading to connected cells (Frost & Diamond, 2010; Jucker &

Walker, 2011). This model is based on findings of transneuronal

spread where the transfer of intracellular tau aggregates has been

observed between cocultured cells in vitro (Frost, Jacks, & Dia-

mond, 2009).

On the systems level, we here found impaired signaling pathways

in the DMN of patients that might relate to both neuropathological

models. Given the preference for accumulation of amyloid-β in neo-

cortical regions and of tau in the hippocampus, we propose the fol-

lowing working hypothesis for both upstream and downstream

pathological influences. The presence of EC converging into MPC

might best support the theory about activity-dependent accumulation

of amyloid-β. The unilateral decrease of EC from hippocampus into

MPFC, on the other hand, might best relate to a prion-like spread of

tau starting from medial temporal lobes. Another startling yet consis-

tent imaging finding might also relate to distinct spreading models.

Hypometabolism and atrophy are most consistently observed in hip-

pocampal and parietal regions, together with accumulation of tau and

amyloid-β respectively. However, MPFC is strongly affected by

impaired FC yet largely spared by hypometabolism and atrophy

(La Joie et al., 2012). This discrepancy in the overlap of distinct imag-

ing parameters might be related to distinct influences of neuropathol-

ogies in subcircuits of the DMN and to a secondary impairment of

prefrontal regions by both downstream and upstream pathological

processes. While it is likely that diverse factors and interactions

between tau and amyloid-β pathology contribute to the pathogenesis

of AD, our hypothesis about protein-dependent spreading mecha-

nisms could be directly tested in vivo using pathology-specific PET

tracers (Sepulcre et al., 2016).

4.5 | Limitations

Our MCM based measure of EC might be confounded by altered

vascular-hemodynamic properties in patients. Recently, we demon-

strated that impaired perfusion contributes to impaired FC in AD

(Göttler et al., 2018), and it is well known that FDG-PET-based

measures reflect not only metabolism but also hemodynamics

(Raichle & Mintun, 2006). As both FC and FDG-PET-based metabo-

lism contribute to EC, altered hemodynamics might confound EC

changes in patients. Future studies, therefore should control for

these hemodynamic-vascular aspects by additional perfusion-based

imaging and subsequent control. Furthermore, FC measures might

be confounded by group differences in vigilance fluctuations

(Chang et al., 2016). Although we immediately asked participants

after rs-fMRI about falling asleep, more subtle vigilance changes

and reliability of self-reports should be added in future studies.
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