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Abstract

Ordinary differential equations (ODEs) are widely used to model the dynamic behavior of a 

complex system. Parameter estimation and variable selection for a “Big System” with linear 

ODEs are very challenging due to the need of nonlinear optimization in an ultra-high dimensional 

parameter space. In this article, we develop a parameter estimation and variable selection method 

based on the ideas of similarity transformation and separable least squares (SLS). Simulation 

studies demonstrate that the proposed matrix-based SLS method could be used to estimate the 

coefficient matrix more accurately and perform variable selection for a linear ODE system with 

thousands of dimensions and millions of parameters much better than the direct least squares 

(LS) method and the vector-based two-stage method that are currently available. We applied this 

new method to two real data sets: a yeast cell cycle gene expression data set with 30 dimensions 

and 930 unknown parameters and the Standard & Poor 1500 index stock price data with 1250 

dimensions and 1,563,750 unknown parameters, to illustrate the utility and numerical performance 

of the proposed parameter estimation and variable selection method for big systems in practice.
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1 INTRODUCTION

Ordinary Differential Equations(ODEs) are widely used to model the dynamic behavior of 

a complex system (Butcher, 2014; Commenges et al., 2011; De Jong, 2002; Hemker, 1972; 

Holter et al., 2001; Huang et al., 2006; Lavielle et al., 2011; Li et al., 2011; Lu et al., 

2011; Ramsay et al., 2007). It is typical that the parameters which characterize the system 

must be estimated from the data in many real world applications. Parameter estimation of 

ODEs, also known as the inverse problem, has been studied by using the least squares 

(Li et al., 2005; Xue et al., 2010), the likelihood (Commenges et al., 2011; Lavielle et 

al., 2011), and Bayesian (Putter et al., 2002; Huang and Wu, 2006; Huang et al., 2006, 

2010) approaches. Several other methods, such as the principal differential analysis and 

generalized profiling approaches (Ramsay et al., 2007; Poyton et al., 2006; Ramsay, 1996; 

Ramsay and Silverman, 1998) and the two-stage methods (Hemker, 1972; Varah, 1982; 

Chen and Wu, 2008a,b; Liang and Wu, 2008) are also proposed.

As an example, ODE is one of the popular models to quantify the dynamic gene regulatory 

networks (DGRNs) (Bonneau et al., 2006; Li et al., 2011; De Jong, 2002; Sakamoto and 

Iba, 2001; Yeung et al., 2002; Voit, 2000; Holter et al., 2001; Spieth et al., 2006). based 

on the high-dimensional time-course gene expression data from microarray (Schena et 

al., 1995; Lockhart et al., 1996) and RNA-seq (Wang et al., 2009; Garber et al., 2011). 

However, due to the high computational cost and model identifiability issues, most of 

the aforementioned parameter estimation methods are only good for small-scale systems 

containing at most a few dozens of variables (De Jong, 2002; Sakamoto and Iba, 2001; 

Yeung et al., 2002; Voit, 2000; Holter et al., 2001; Spieth et al., 2006). Recently, Lu et 

al. (2011) developed a procedure for reconstructing DGRNs based on linear homogeneous 

ODE systems. In this approach, differentially expressed genes (DEGs) are first clustered into 

co-expressed modules (Luan and Li, 2003; Ma et al., 2006) based on temporal patterns of 

their expressions in order to reduce the dimension and ease the identifiability problem. In 

general, for a d-dimensional linear ODE system, there are p = d2 + d parameters that need 

to be estimated. Here d2 is the total number of unknown parameters in the ODE coefficient 

matrix and d is the number of initial conditions of the state variables that also need to be 

estimated. As an example, even after dimension-reduction, the resulted ODE-based DGRN 

for the yeast cell cycle application in Lu et al. (2011) still contains d = 41 dimensions 

(co-expression modules) and 1,722 unknown parameters that need to be estimated from 

the discrete, noisy time-course gene expression data. An important fact that we would like 

to point out is that the solutions to linear ODE systems are matrix exponential functions 

(Butcher, 2014) that are highly nonlinear. If we directly use the standard nonlinear least 

squares (NLS) approach (Xue et al., 2010) to estimate the parameters in the linear ODE 

system, we need to compute the matrix exponentials in order to evaluate the discrepancy 

between the observed variable and its corresponding prediction (or estimate) based on the 

model. However, matrix exponentials are known to be numerically unstable and cannot be 

computed efficiently (Moler and Van Loan, 2003). As an alternative, we may numerically 

solve the ODE system repeatedly, using methods such as the Runge-Kutta algorithm, to 

evaluate the NLS objective function. However, such a high-dimensional NLS problem is not 
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only hard to solve from a computational perspective, but is also prone to being trapped in 

local optima, which may be far away from the true global solution.

Based on the above considerations, Lu et al. (2011) applied the two-stage method (Chen 

and Wu, 2008a,b; Liang and Wu, 2008) to decouple the ODE coefficient matrix into d 
number of d-dimensional vectors; then they applied the SCAD method (Fan and Li, 2001) 

for parameter estimation and variable selection simultaneously for each of the row-vectors 

(equations) separately. This approach is straightforward to implement and computationally 

efficient. However, such a vector-based variable selection method ignores the wealth of 

structural information that is inherently possessed in the ODE coefficient matrix and it 

heavily depends on the good estimation of the derivatives of state variables that are sensitive 

to measurement errors. Consequently, it often leads to inaccurate parameter estimation and 

poor variable selection results (Ding and Wu, 2014).

In this paper, we propose a novel matrix-based approach to avoid the poor estimates of the 

vector-based two-stage method and the computational problem of the NLS method (Xue 

et al., 2010). At the heart of the proposed method is a special form of the separable 

least squares (SLS) method (Ruhe and Wedin, 1980) based on the Jordan Canonical 

Decomposition (JCD) of the coefficient matrix, which essentially transforms the original 

nonlinear optimization problem into an equivalent problem in which only d number 

of eigenvalues, instead of all d2 +d parameters, need to be estimated via a nonlinear 

optimization algorithm. The rest can be obtained by a closed-form formula with little 

computational cost. We further exploit the analytic form of the solution to the linear ODE 

system after the similarity transformation used in JCD to avoid numerically solving the 

original ODE system in evaluating the NLS objective function. Moreover, the derived 

analytic form of the objective function has analytic gradients which can be computed 

stably and efficiently. The estimates of the original unknown parameters are recovered from 

the closed-form functions of eigenvalue estimates of the coefficient matrix. In simulation 

studies, we show that the new approach is not only much faster, but also reaches the global 

optima much more frequently and produces more accurate and stable estimates than the 

alternative methods. Finally, we apply the proposed method to two real-world applications, 

one is a DGRN modeling with d = 30 dimensions and p = 930 unknown parameters, and 

another is stock market system modeling with d = 1250 dimensions and p = 1,563,750 

unknown parameters, to demonstrate that large linear ODE systems can be recovered well 

using the proposed approach.

2 Models and Methods

2.1 Model Description

We consider the parameter estimation problem for the following high-dimensional 

homogeneous linear ODE system

dx(t)
dt = Ax(t), ∀t ∈ T1, T2 ,

x T1 = x0,
(1)
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where

x(t) = x1(t), x2(t), …, xd(t) T (2)

is a d-dimensional state variable vector on a range satisfying

0 ≤ T1 < T2 < ∞ .

The coefficient matrix A ∈ ℝd × d and initial condition x0 ∈ ℝd are the unknown parameters 

in the system which need to be estimated using the observed data.

In real world applications, we assume that x(t) are measured with independent errors at finite 

time points t1, t2, …, tn , and the measurement errors at each time point follow a Gaussian 

distribution with non-singular covariance matrix Σϵ, i.e.,

yi tj = xi tj + ϵij, ϵ ⋅ j ∈ ℝd ∼ N 0, Σϵ , i = 1, …, d; j = 1, …, n . (3)

For convenience, we denote the d × n-dimensional data matrix yi tj  collectively as y.

Based on the maximum likelihood principle, the inverse problem of estimating A and x0 

can be formulated as the following nonlinear weighted least squares (NWLS) minimization 

problem

min
A, x0

y(t) − x A, x0 (t) Σϵ
2 . (4)

Depending on the context, yi(t) can either represent the observed curves or discrete data at 

time t; x A, x0 (t): = etAx0 is the solution curve of the ODE system (1) with parameters A 

and x0. The dimension of the above optimization space is p = d2 + d. Two typical choices of 

norm ∥ ⋅ ∥Σϵ used in Equation (4), the weighted Euclidean-metric for discrete observations 

and the weighted L2-metric for functions, are given in the Supplementary Text (Section S2).

2.2 Similarity Transformation and Separable Least-Squares

The optimization problem (4), in principle, can be numerically solved directly via any 

suitable nonlinear optimization algorithm designed for nonlinear least-squares problems, 

which is termed as the “direct LS method” in this study. In practice, when the parameter 

space is large (e.g., d ≥ 100), the dimension of the nonlinear optimization problem could 

be very large (p = d2 + d ⩾ 10, 100 if d ⩾ 100), which is difficult to solve numerically and 

likely to be trapped in local solutions. In this subsection, we propose a method based on 

the similarity transformation (ST) and separable least squares (SLS), aiming to reduce the 

nonlinear optimization dimension significantly, so that we could expand our capability to 

handle big ODE systems.
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For ODE system (1), we further assume that the coefficient matrix A has no multiplicity in 

its spectrum (no two eigenvalues are exactly identical). This assumption does not lead to 

much loss of generality, because such matrices only form a zero-measure set (w.r.t. either 

dμ, the standard Lebesgue measure on ℝd × d, or any probability measure that is absolutely 

continuous w.r.t. dμ, such as the probability measure associated with real random matrices 

such as Ginibre ensemble, Gaussian orthogonal ensemble, Wishart ensemble, etc.) in the 

space of all d-by-d matrices (Ginibre, 1965; Lehmann and Sommers, 1991; Tao, 2012).

Remark.—We would like to point out that if A does have multiplicity in its spectrum, then 

there exist other coefficient matrices which can generate exactly the same curves (or data 

points). In other words, the system is theoretically not identifiable. If no other structural 

information of A is given a priori, we will not be able to recover A even if we are given 

infinitely many observations without noise.

Under this assumption, the real Jordan canonical form of A is

A = QΛQ−1, (5)

where Λ is a block diagonal matrix with only two types of blocks: a 1 × 1 block containing 

one real eigenvalue of A; or a 2 × 2 block 
a b

−b a  which corresponds with a pair of conjugate 

complex eigenvalues a ± bi. We can always choose an appropriate arrangement of Q such 

that the diagonal blocks Λ are organized as follows

Λ =

a1 b1
−b1 a1

⋱
ak bk

−bk ak
c1

⋱
cd − 2k

, (6)

where k ≤ n
2  is a non-negative integer indicating the number of 2 × 2 blocks in Λ.

Theorem 2.1.—The optimization problem(4)is equivalent to

min
Λ, Q

y(t) − QTx(Λ, e)(t) Σϵ
2 , (7)

whereeis a constant vector formed by k pairs of (0,1)T ‘s and d − 2k of 1’s as follows

e = (0, 1, …, 0, 1
k of (0, 1)s

, 1, …, 1
d − 2k of 1′s

)T . (8)
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Proof. Please see the Supplementary Text (Section S6.1).

Remark.—It is worth noting that Theorem 2.1 converts the original optimization problem 

(4) with d2 + d unknown parameters into the optimization problem (7), which also has a total 

number of d2 + d unknown parameters (i.e., d2 unknown parameters in Q and d eigenvalues 

in Λ). Our current choice of e in Eqn (8) ensures that the new transformed ODE system 

has a simple solution (see below), which enables us to derive a closed-form solution for Q 
(see Eqn (13)) when Λ is given. We can then apply the separable LS method to estimate Λ, 

which is a nonlinear optimization of only d unknown parameters. After Λ is estimated, Q 
(with d2 unknown parameters) can be computed by closed-form solution Eqn (13) with very 

little computational cost.

It is well known that for the given block-diagonalized matrix Λ, the ODE system

dx(t)
dt = Λx(t), ∀t ∈ T1, T2 ,

x T1 = e,
(9)

has the following solution

x2j − 1(Λ, e)(t) = exp ajt sin bjt,
x2j(Λ, e)(t) = exp ajt cos bjt,

j = 1, 2, …, k (10)

xj(Λ, e)(t) = exp cj − 2kt , j = 2k + 1, 2k + 2, …, d . (11)

Here xi(Λ, e)(t) is the ith component of the solution vector x(Λ, e)(t), and e is a constant 

vector given in (8).

Notice that for a fixed Λ, optimizing the objective function in (7) with respect to Q can be 

reduced to a linear regression problem with a closed-form solution, i.e., for a given Λ

min
Q

y(t) − QTx(Λ, e)(t) Σϵ
2

(12)

gives a closed-form solution (see Supplementary Text Section S6.2 for the deduction).

Q(Λ) = x(Λ, e)(t), x(Λ, e)(t) −1 ⋅ x(Λ, e)(t), y(t) . (13)

Using the closed-form solutions (10), (11), and (13), the optimization problem (7) can be 

transformed into an equivalent problem that only involves Λ by the separable LS principle

min
Λ

y(t) − QT(Λ)x(Λ, e)(t) Σϵ
2 . (14)

Despite the fact that Λ is a d × d matrix, it only contains d unknown parameters that 

need to be estimated, due to its special structure. Moreover, the objective function (14) is 
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continuously differentiable with respect to the parameters in Λ. Therefore, we can derive 

the analytical formulas for the gradients of parameters, which will accelerate the nonlinear 

optimization procedure dramatically (see Supplementary Text, Section S6.4).

Once we obtain Λ, an estimate of Λ that minimizes (14), we can immediately obtain Q, 

the regression estimate of matrix Q, from Equation (13). The estimates of the original ODE 

coefficient matrix and initial conditions can then be computed as

A = QΛQ−1, x0 = Qe, (15)

where e is given in (8).

The following theorem shows that A, x0 are indeed the optimal solution of (4).

Theorem 2.2.—Λis a minimizer of(14)if and only if A, x0 generated byEquation (15)is a 

minimizer of(4).

Proof. See the Supplementary Text (Section S6.3).

Based on the bijection between the local minimizers of original least-squares problem (4) 

and the reformulated problem (14), together with the fact that the two objective functions 

have identical values at corresponding local minimizers, we obtain the following corollary 

immediately.

Corollary 2.3.—Λis a global minimizer of(14)if and only if A, x0 generated byEquation 

(15)is a global minimizer of(4).

The essence of Theorem 2.2 and Corollary 2.3 is that the original NLS optimization problem 

(4), which is of dimension d2+d, is equivalent to an eigenvalue estimation problem, which 

is a nonlinear optimization problem of dimension d. This is a dramatic dimension reduction 

for the nonlinear optimization problem. We require the number of distinct data points n 
> d in order to avoid the identifiability problem, although the total number of unknown 

parameters p = d2 + d can be much greater than n. We provide the pseudo-code of the 

parameter estimation algorithm, called the Similarity Transformation-based Separable Least 

Squares (ST-SLS), in the Supplementary Text (Section S1). While we choose the Levenberg­

Marquardt Algorithm (LMA) to solve the reformulated optimization problem (14) in the 

ST-SLS Algorithm based on its flexibility, it can be replaced by any suitable optimization 

algorithm in principle.

We would like to point out that although the above method is developed for the 

homogeneous linear ODE model (1), it can be applied to heterogeneous linear ODE models 

with a simple mathematical technique that adds an additional constant term to the state 

variable x(t). Detailed discussion is given in the Supplementary Text (Section S4).
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2.3 Asymptotic Variance and Inference

In this section, we provide the asymptotic variance-covariance matrix estimation for A, 

which represents the uncertainty in parameter estimation. The proofs of the two theorems in 

this section are provided in the Supplementary Text (Section S6.5).

In what follows we consider A as vec(A), which is a d2-dimensional vector of parameters 

such that vec(A)(l − 1)d + k: = Alk. We define D(A,t) as the following d × d2-dimensional 

matrix function

Di, (l − 1)d + k(A, t) =
∂ etAx0 i

∂Akl
, i = 1, …, d; l = 1, …, d; k = 1, …, d . (16)

Apparently, Di, (l − 1)d + k(A, t) is the Jacobian matrix of the solution curves, x(t): = etAx0, 

with respect to A evaluated at time t. We can then express the total Fisher information matrix 

of A as a function of D(A, t).

Theorem 2.4.— Given x 0 and Σϵ (covariance matrix of the measurement error), the total 

Fisher information matrix pertain to the estimation of ODE system (1) is

I(A) = ∑
j = 1

n
DT A, tj Σϵ

−1D A, tj . (17)

Obviously, DT A, tj Σϵ
−1D A, tj  is positive-semi-definite for all j. Because I(A) is 

a summation of positive-semi-definite matrices, it must be positive-semi-definite. 

Consequently, I(A) is positive-definite as long as it is of full rank.

Based on Theorem 2.4, we have the following asymptotic results for A.

Theorem 2.5.—Assume that

a. Ais a unique global minimizer of(14).

b. I(A), the total Fisher information matrix, is of full-rank (hence positive-definite).

c. The ODE system(1), given thatAis the true system matrix andx0is the true initial 
condition, is identifiable in the following sense. If there is a matrixBsuch that

etjBx0 = etjAx0for allj = 1, 2, …, n, thenB = A.

With these assumptions, whenn ∞, Aconverges in distribution to a normal distribution 

with the correct mean (A) and covariance matrix I(A)−1

A ∼ AN A, I(A)−1 . (18)
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By definition, the asymptotic variance of Aij is the diagonal element of I(A)−1. 

More specifically, var Aij = I(A)(j − 1)d + i, (j − 1)d + i
−1  asymptotically. With these variance 

estimates, we can test the null hypothesis H0, ij:Aij = 0 against the corresponding alternative 

hypothesis H1, ij:Aij ≠ 0 by using the standardized network strength, zij: =
Aij

var Aij
, as the 

test statistic. Such a statistic follows an asymptotic standard normal distribution under H0, ij. 

Because we need to test a large number (d2) of hypotheses, a suitable multiple testing 

procedure, such as the Holm-Bonferroni procedure Holm (1979), Šidák procedure (Šidák, 

1967), Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) needs to be applied 

to control for the overall type I error. The confidence interval for parameter estimates could 

also be constructed based on the asymptotic results.

2.4 Variable Selection

For problems with a priori information that the coefficient matrix A is a sparse matrix, it is 

advantageous to add a regularized term imposing sparsity on the coefficient matrix estimate.

min
A, x0

y(t) − x A, x0 (t) Σϵ
2 + ρ(A) . (19)

Possible choices of the penalty term ρ(A) include LASSO (Tibshirani, 2011), SCAD (Fan 

and Li, 2001), MCP (Zhang, 2010), etc.

Taking the similarity transformation as we did in previous subsections leads to

min
Λ

y(t) − QT(Λ)x(Λ, e)(t) Σϵ
2 + ρ Q(Λ)ΛQ−1(Λ) , (20)

where Q(Λ) is defined by (13), respectively. We can apply the same optimization algorithm 

to solve the above problem.

Notice that minimizing the objective function in (20) should result in a sparse estimate for 

matrix A theoretically. However, we still need to use the separable LS estimate (13) for Q, 

which is the optimal solution of (12), instead of (20). This approximation may not shrink the 

estimates of true zero-elements of A to exactly zero. Thus, we need to determine a numerical 

threshold c such that if Aij < c, we replace Aij by zero. Similar idea has been adopted for 

removing estimates with small nonzero values due to numerical errors for L1 regularized 

regression algorithms such as LASSO (Yukawa et al., 2012; Combettes and Wajs, 2005). 

One simple method for determining the threshold is to use the variance estimate in (17) and 

(18) in Section 2.3 to formulate an asymptotic z-test to check whether Aij ≠ 0. However, this 

method is not applicable to large networks or systems, because it requires the estimation 

of a d2 × d2-dimensional covariance matrix which is computationally infeasible when d is 

large. An alternative way is to select a threshold to classify the estimated coefficients into 

two groups: zero and non-zero groups, based on standard classification methods such as the 

K-nearest-neighbor (KNN) algorithm.
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Note that the closed-form gradient of parameters for the objective function (20) is not 

available. Therefore, a derivative-free optimization (DFO) algorithm such as the NEWUOA 

(Powell, 2006; Zhang et al., 2010) needs to be used and the computational cost is higher 

compared to that of the ST-SLS Algorithm in this case (see more discussions in the 

Supplementary Text, Section S3). The pseudo-code of ST-SLS with variable selection (ST­

SLS-VS) is provided in the Supplementary Text (Section S1).

3 Simulation Studies

3.1 Design of Simulation Experiments

In this section, we compare the proposed ST-SLS and ST-SLS-VS methods based on the 

eigenvalue estimation framework with the existing methods via simulation studies with 

different dimensions and different noise levels. Notice that it is not trivial to design high­

dimensional ODE simulation experiments. To generate reasonable ODE simulation models, 

special cares must be taken in order to avoid the collinearity of the simulated system 

and ease the identifiability problem. In particular, the eigenvalues of the coefficient matrix 

A need to be bounded away from each other. Based on these considerations, we obtain 

A by first generating its eigenvalues with good properties, then randomly generating its 

eigenvectors. More specifically, we first generate the eigenvalues by their real parts and 

imaginary parts separately. The real part of each eigenvalue should be non-positive in order 

to make the system stable. But it cannot be too negative, otherwise the ODE solution as 

an exponential function of time will decay to zero very rapidly, which may produce an 

ODE system numerically unidentifiable (Miao et al., 2011). In our simulation experiments, 

the real parts of eigenvalues are generated from a uniform distribution on [−0.7,0]. The 

imaginary parts of eigenvalues are only required to be bounded away from each other. For 

example, a typical choice, employed in our simulation studies, is ±2π,±4π,...,±dπ with a 

small Gaussian noise added. Once Λ is generated, we multiply it by a randomly generated 

non-singular matrix Q to create the coefficient matrix, i.e.,

A = QΛQ−1 . (21)

Technically Q can be any invertible square matrix, however for the variable selection 

experiment, the coefficient matrix should be sparse. Hence we use matrix Q with a 

special block-diagonal structure, which guarantees the sparsity of both Q and its inverse, 

consequently A can be generated as a sparse matrix.

Once the ODE coefficient matrix is generated, observed data are generated from ODE model 

(1) using its analytical solution. The time-points of observations are distributed evenly on 

the interval [0,1]. Random noise is added to the simulated data from the ODE system, 

which is i.i.d. Gaussian noise with a distribution N 0, (ασ)2 , where σ is taken to be the 

sample standard deviation of the original data, α controls the noise level, which is taken 

as 0, 0.1, or 0.3 respectively; in which 0 stands for the noise-free case. The dimension of 

simulation models is set as d = 30,100,300,1000, respectively. All results are given based 

on 1000 random simulations, except for the 1000-dimensional case, which is based on 100 

Wu et al. Page 10

J Am Stat Assoc. Author manuscript; available in PMC 2021 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



simulations due to high computational cost. All simulations were performed on a laptop 

running Xubuntu 14.04 operating system with 2.5GHz CPU and 8G of RAM.

3.2 Parameter Estimation Comparisons

In this subsection, we present the results for parameter estimation comparisons between 

the proposed ST-SLS method and the direct-LS method from simulation studies. For fair 

comparisons, the Levenberg-Marquardt algorithm is employed as the optimization solver for 

both the ST-SLS method (iteratively updating Λ) and the direct-LS method (estimating A 
by directly minimizing the LS objective function). Please refer to the Supplementary Text 

(Section S3) for more details on the optimization algorithms.

The simulation results of parameter estimation comparisons are reported in Table 1. We 

compare the two methods in computational cost, goodness-of-fit, and parameter estimation 

accuracy for different ODE system dimensions (d) and different noise levels (α). The 

computational cost is quantified by the CPU time (in seconds) used to run the algorithms. 

The goodness-of-fit is evaluated by the Relative Residue Sum-of-Squares (RRSS) of model 

fitting, which is the objective function value at the final solution, divided by the squared 

Frobenius norm of the data matrix. The overall parameter estimates are evaluated by the 

Relative Estimation Error (REE), which is defined as

REE(A) = ∥ A − A ∥F
A0 F

× 100%, REE x0 = x0 − x0 2
x0 2

× 100%, (22)

where (A, x0) are the true parameters and A, x0  are their corresponding estimates.

From Table 1, we see that, for the noise-free case (α = 0), both methods for all the 

dimensions produced good parameter estimates with perfect fit. The computational time 

increases with the system dimension (d) as expected. This demonstrates that both methods 

are good under the ideal case of no measurement error. When the measurement noise is 

added to the data, the direct-LS method produces poor results. The relative error of fitting 

(RRSS) of the direct-LS method could go up to 30–45%, and the estimation error (REE) 

could be 6 to 12 fold difference between the estimate and the true value of the coefficient 

matrix A. This indicates that the direct-LS method likely converges to local solutions which 

can be far away from the true solution. For the cases of higher dimensions (d = 300 and 

1000), the direct-LS method does not converge and fails to obtain the estimates. On the 

contrary, our new ST-SLS method produces reasonable results for all the simulation cases. 

The relative RSS of model fitting is very low (<1%) and much smaller than that of the 

direct-LS method for all simulation cases, suggesting that our new method fits the model 

very well. The REE of coefficient matrix A ranges from <1% to 20.6% and the REE 

for initial value estimates is even smaller. So the ST-SLS algorithm produces very good 

estimates for all unknown parameters. We also observe that for both methods, the estimation 

for initial state x0 is much better than the estimate of coefficient matrix A. This is because 

the estimate of x0 is the fitted solution evaluated at time t = 0 and the model fitting is 

always very good. In addition, the proposed ST-SLS is very fast and produces results in a 

few seconds for the cases of low or medium dimensions (d = 10 to 100), which require many 
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hours of CPU time for the direct-LS method. For the high-dimensional case (d = 300 and 

1000) for which the direct-LS method fails to obtain the results, the ST-SLS algorithm is still 

able to obtain good results in a few minutes (d = 300) or a few hours (d = 1000) on a regular 

PC, which demonstrates the scalability of our new method for handling large systems.

3.3 Variable Selection Comparisons

For high-dimensional ODE variable selection, the only existing computationally feasible 

method is the two-stage method (Lu et al., 2011). In this subsection, we compare our new 

ST-SLS-VS algorithm (equipped with three different regularized terms) with the two-stage 

method in terms of variable selection performance for big ODE systems.

We performed 1000 simulation runs with different noise levels for d = 30, 100, and 300 

respectively; and 100 simulation runs for d = 1000 due to the high computational cost. 

The results based on the average of these simulation runs are reported in Table 2. In this 

simulation study, we compared the Sensitivity (SEN) and Specificity (SPE), which measure 

the true and false positive rates of variable selection, respectively, between the two-stage 

method (Lu et al., 2011) and the proposed ST-SLS-VS methods.

As we pointed out in Section 2.4, no closed-form gradient formula of the objective 

function (20) is available to implement the ST-SLS-VS algorithm. We have to use a 

derivative-free optimization algorithm, such as NEWUOA (Powell, 2006; Zhang et al., 

2010) for optimization (see the Supplementary Text, Section S3), which requires a higher 

computational cost. For example, the ST-SLS-VS algorithm produced the results for an 

average of about 5 minutes for dimension d = 300 cases and 5–6 hours for dimension d 
= 1000 cases with a high noise level, which is slower than that of the ST-SLS algorithm. 

The reason that the ST-SLS-VS algorithm is slower is two-fold: no closed-form gradient can 

be used and the objective function is more complicated to evaluate. We implemented the 

ST-SLS-VS algorithm using Fortran while the two-stage method is implemented in R, that is 

why we did not compare the computational cost between the ST-SLS-VS algorithm and the 

two-stage method. But in general, the two-stage method is much faster because it converts 

the linear ODE parameter estimation into linear regression model fitting.

From Table 2 and 3, we can see that the sensitivity of the two-stage method, ranging 

from 85% to 95%, is generally good for most simulation cases, but its specificity is very 

low (ranging from 44% to 67%) with noisy data. In comparison, the performance of the 

proposed ST-SLS-VS method was very stable, and the three choices of regularization terms 

produced similar results. Our methods not only identified the exactly correct results in all 

noise-free cases, but also had very good sensitivity (mostly higher than 80%) and specificity 

(97–100%) in other cases. Overall, our new method outperforms the existing two-stage 

method in variable selection.

4 Real Data Analysis

We applied the proposed ODE parameter estimation and variable selection methods to two 

application data sets to illustrate their utility and scalability for large scale systems. The 

first one is a set of time-course microarray data collected from yeast culture at stationary 
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phase (Aragon et al., 2006) with a medium-size system of 30 dimensions and 930 unknown 

parameters. The second one comprises of 10-year historic daily values of stocks that were 

indexed by the Standard & Poor with a large system of 1,250 dimensions and 1,563,750 

unknown parameters.

4.1 Time-course Yeast Microarray Data Analysis

The first application example is a subseries of time-course gene expression data (Gene 

Expression Omnibus number GSE3688) collected from yeast cells in stationary-phase 

cultures with the oxidative stress exposure (Aragon et al., 2006). These data were collected 

every 1-minute for 35 minutes, with an additional final time point at 60 minutes (a total of 

37 time points) using microarray. We applied the functional principal component analysis 

approach (Wu and Wu, 2013) and identified top 30 significant genes related to cycle 

regulations (Spellman et al., 1998). Our goal is to study the regulatory relationships among 

these 30 genes using a linear ODE model.

We applied our proposed methods and the developed ST-SLS/ST-SLS-VS algorithms 

described in Section 2 to the gene expression data and recovered a dynamic network for the 

top 30 significant yeast cell cycle-related genes. We obtained the estimated dynamic system 

coefficient matrix (A) and the standard deviation for each edge using Equations (17) and 

(18) in Section 2.3. As discussed and suggested in Section 2.4, we used the two-sided z-test 

with the Holm-Bonferroni multiple testing procedure (Holm, 1979) and determined the 

network sparsity by controlling the familywise error rate at 0.05. The resulted network has 

a sparsity of 95% and is illustrated in Figure 1. Note that 14 isolated genes (FLC2, PET9, 

RDH54, BEM1, BUD3, NDC80, MMR1, CAR2, SPT21, GCV2, WHI3, ARG1, GNT, and 

YKR012C) are not included in this plot. The reconstructed gene regulatory network is 

provided in the Supplementary Table S1.

From Figure 1, we see that SST2, PUT1, ZSP1, DSN1, and SPC34 are central hub 

nodes with the largest number of adjacent edges (network degree). According to the 

Saccharomyces Genome Database (SGD) (Cherry et al., 1998), SST2 encodes GTPase­

activating protein for GPA1P, which is required to prevent receptor-independent signaling 

of the mating pathway. The null mutation of this gene leads to increased cell size and 

decreased growth rate. PUT1 encodes proline oxidase and the mutation of this gene results 

in the inability of yeast to grow when proline is the sole nitrogen source. ZSP1 is a 

protein of unknown function but is known to interact with PHO88, which is a member 

gene of the phosphate metabolism pathway. DSN1 is an essential component of the MIND 

kinetochore complex and is known to play an important role in attachment of spindle 

microtubules to kinetochore involved in meiotic sister chromatid segregation. SPC34 is 

a spindle pole component, which is an essential subunit of the Dam1 complex (DASH 

complex). Both DSN1 and SPC34 are components of the kinetochore and their connection is 

well established (Tanaka et al., 2005; Pramila et al., 2006). The connection between SPC34 

and SST2 has also been documented (Montpetit et al., 2005).

Other network connections identified by our methods are novel and may help generate 

hypotheses for further investigations. For example, ZSP1 is an under-studied gene which 

is only known to interact with PHO88. We discovered that it had a strong connection 
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with PHO89, which is another member gene in the phosphate metabolism pathway. This 

observation suggests that ZSP1 may play a more important role in phosphate metabolism 

than what we currently know. The strong connection between PUT1 and SST2 is somewhat 

surprising and interesting because PUT1 and SST2 seem to fulfill very different biological 

functions. PUT1 is critical for S. cerevisiae to digest proline, which is the most abundant 

source of nitrogen in grapes, the natural environment of wild yeast (Huang and Brandriss, 

2000). SST2 is best known for its function in regulating mating response, which seems 

to be unrelated to proline digestion. However, SST2 is also known to be involved in cell 

proliferation (Lopez et al., 1997) and growth, especially in a nutrient-limited environment 

(Lopez et al., 2001; Boer et al., 2003). Our findings suggest that PUT1 and SST2 might have 

an intimate relationship in the interplay between nitrogen metabolism and cell growth. In 

addition, we found that three genes (YLR297W, YMR253C, YPR174C) in the network have 

no clear biological annotation in literature. Among them, YLR297W is a regulator of PUT1 

and SST2, the two most connected hub nodes. Our results may provide useful insights for 

future experimental investigations of biological functions of these genes.

4.2 Standard & Poor Stock Market Data Analysis

Traditionally stochastic differential equation (SDE) models such as the Black-Scholes­

Merton Model (Black and Scholes, 1973; Merton, 1973; Øksendal, 2013) is used for 

modeling stock market price data. It is known that the corresponding ODE model could 

be used to describe the mean behavior of the SDE (Ahmed, 1998) (Theorem 1 in Chapter 2). 

Here we apply the linear ODE model to stock price data from the S&P 1500 (also known 

as S&P Composite 1500 Index) to investigate the long-term dynamic interactions of stock 

price changes for the companies in the S&P 1500. The data used in this study cover 10-year 

span of daily closing price of these stocks from 2004 to 2014 (2,668 trading days). The 

original index contains 1,501 stocks, of which 251 were removed from the analysis due to 

missingness and other data issues. Based on the remaining 1,250 stocks, we reconstructed 

a linear ODE system of d = 1,250-dimensions, or p = 1,563,750 unknown parameters. Our 

variable selection algorithm produced a network of sparsity of 97.3%. This reconstructed 

network is provided in Supplementary Table S2.

Table 4 lists the top ten companies (nodes) that have the highest network degree in this 

graph. One interesting observation is that most of these highly connected companies are 

not the largest corporations by market capitalization, such as Apple Inc. or Exxon Mobile. 

Instead, four of them provide the basic IT infrastructure such as telephone service or 

network hardware; two of them are related to healthcare services; three provide financial 

services, which can also be considered as the “infrastructure” for modern economy. In 

summary, most connected companies are not the largest or most famous ones indexed by 

the Standard & Poor, but those that provide the fundamental infrastructure for the entire 

economy.

To better understand the interactions of these companies from a more focused perspective, 

we divided the stocks into sectors and reconstructed the sub-network for each sector. More 

specifically, we downloaded the list of stocks issued by 500 large-cap companies indexed 

by the Standard & Poor as of October 12, 2015, among which 421 nodes (companies) are 
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not isolated nodes. These companies were further divided into nine sectors according to 

the Global Industry Classification Standard (GICS)SM. In sub-network construction for each 

sector, we retain edges with absolute strength greater than 95% of all edges in order to make 

the results comparable across sectors. We define the hubs as the top 10% most connected 

(measured by network degrees) companies within each sector, which are listed in Table 5. 

These sub-networks are illustrated in individual figures and are provided as one compressed 

file (Supplementary File S3).

We noticed some interesting results from Table 5. For example, Harman Internaltional 

Industries and Amazon are the two most connected companies in the Consumer 

Discretionary sector as expected, because both companies have wide varieties of products 

that may influence or be influenced by other industrial leaders. However, it is somewhat 

surprising to see that Wynn Resorts, which is a developer and operator of high-end hotels 

and casinos, ranked the third among all 63 companies in this category. Further investigation 

shows that all 13 connections related to the Wynn Resorts are inward connections, which 

means that the Wynn Resorts is highly dependent to the performance of many other 

companies in this sector, but its stock price does not have high impact to other companies. 

This observation may suggest that we may use hotel and casino performance as a “litmus 

test” of the overall fitness of consumer spending.

5 Discussion

In this paper, we present a new ODE parameter estimation and model selection framework 

which is based on estimating the eigenvalues of the linear ODE coefficient matrix instead 

of directly estimating its entries. This new approach dramatically reduces the dimension of 

the corresponding nonlinear optimization problem from p = d2 + d to d, and the rest of the 

d2 parameters can be obtained from a closed-form formula that does not require extensive 

computation. As a result, our proposed algorithms are much faster and more stable than 

competing procedures and can be easily scaled up to handle large ODE systems. Moreover, 

our reformulation of the problem provides closed-form gradients of the objective function, 

that can be used to further accelerate and stabilize the computation.

In simulation studies, we demonstrate that the new ST-SLS method is much stabler and 

faster than the competing method to locate the global solution of the high-dimensional 

optimization problem, which leads to better performance for parameter estimation for big 

ODE systems. The superior performance of our new ST-SLS estimation method and the 

corresponding variable selection algorithm is not only due to the capability of significant 

dimension reduction and the availability of closed-form gradients of the objective function, 

but also the fact that the coupled ODE information is used efficiently.

We also applied our new algorithms to two real world appliactions to illustrate their usability 

in practice; one is the yeast cell cycle gene expression data with 30 dimensions and another 

is the Standard & Poor Index stock price data with 1,250 dimensions. Our analysis results 

show that the new methods could effectively recover high-dimensional dynamic networks 

based on observed time-course data.
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Our proposed methods are applicable to the general high-dimensional linear ODE model 

that is identifiable in theory, but some attentions should be paid in practical implementations. 

In practice, the linear ODE is theoretically identifiable if the eigenvalues of the coefficient 

matrix are distinct; but the ODE model may have numerical or statistical identifiability 

problems (Miao et al., 2011) when several eigenvalues have zero or near-zero imaginary 

parts (e.g., more than 2 real eigenvalues are present), this is because more real eigenvalues 

indicate more exponential terms in the ODE solution and the power of exponential terms 

is difficult to distinguish and identify numerically, which is similar to the multi-collinearity 

problem in linear regression. Also notice that our proposed methods require the number of 

distinct data points to be greater than the dimension of the ODE system, i.e., n > d, although 

the total number of unknown parameters p = d2 + d can be greater than n. This requirement 

is needed to avoid the identifiability problem. In general, the identifiability problem has 

to be dealt before our method can be applied. Usually the model needs to be modified or 

some variables can be combined to reduce the identifiability problem, but this is beyond the 

scope of this paper. Motivated readers can find more information on this topic in Miao et al. 

(2011).

In this Big Data era, it is a common task to build dynamic relationships among many 

components or elements in a big system based on more and more affordable frequent time­

course data, so that the complex networks can be reconstructed and analyzed (Liu et al., 

2011; Barabasi et al., 2011). A linear ODE system is a simple yet powerful model that can 

be used to describe dynamic relationships among elements of a big system. Future extension 

of similar ideas in this article to high-dimensional nonlinear ODE systems (Wu et al., 2014) 

and/or systems with partially observed variables (Wu et al., 2015), although challenging, 

is warranted. We believe that the field of identification and analysis of high-dimensional, 

complex dynamic systems is still in its infancy despite its wide applications in practice. We 

hope that our work will motivate more research in this direction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Gene regulatory network reconstructed from the time-course yeast microarray data. 

Different sizes of nodes indicate network degree, which is defined as the number of adjacent 

edges of a node in the reconstructed network. Positive (negative) regulations are colored in 

green (red).
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Table 1:

Parameter estimation comparisons between the direct-LS method and our new ST-SLS method. The 

computational cost (CPU time in second), relative RSS (RRSS) and REE are given as a percentage, based 

on the average of 1000 simulation runs (with the standard deviation in brackets) for most cases except for the 

Direct-LS method with d = 100 and the ST-SLS method with d = 1000, of which only 100 simulation runs 

were used due to the high computational cost.

Direct-LS ST-SLS

Dimension(p) Noise(α) Time in 
second

RRSS(%) REE(A)
(%)

REE(x0)
(%)

Time in 
second

RRSS(%) REE(A)
(%)

REE(x0)(%)

30 0 852 0 0 0 0.005 0 0 0

30 0.1 908(632) 30(12) 610(350) 43(15) 0.013(0.0005) 0.019(0.0018) 0.21(0.050) 0.020(0.0062)

30 0.3 866(349) 41(15) 1220(700) 58(31) 0.014(0.0008) 0.17(0.016) 2.1(0.64) 0.21(0.0056)

100 0 14982 0 0 0 1.0 0 0 0

100 0.1 16010(3972) 35(13) 760(300) 42(15) 1.2(0.49) 0.017(0.0054) 0.97(0.091) 0.023(0.0034)

100 0.3 55293(41769) 45(31) 1111(812) 73(51) 1.2(0.50) 0.17(0.0098) 1.7(0.99) 0.021(0.0030)

300 0 - - - - 93 0 0 0

300 0.1 - - - - 99(5.0) 0.017(0.0016) 2.3(0.41) 0.023(0.0019)

300 0.3 - - - - 101(2.8) 0.015(0.0014) 4.0(0.74) 0.021(0.0017)

1000 0 - - - - 7613 0 0 0

1000 0.1 - - - - 8437(13) 0.018(0.0020) 8.8(2.9) 0.030(0.0094)

1000 0.3 - - - - 8434(22) 0.015(0.0041) 20.6(16.7) 0.020(0.0069)
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Table 2:

ODE variable selection comparisons between the 2-stage method and our new ST-SLS-VS algorithm. Both 

sensitivity (SEN) and specificity (SPE) are given as a percentage based on 1000 simulation runs for the cases d 
= 30,100,300 and 100 simulation runs for the case d = 1000 with the standard deviation in brackets.

2-Stage Method ST-SLS-VS(LASSO)

Dimension(d) Noise(α) SEN% SPE% SEN% SPE%

30 0 91.7 98.8 100 100

30 0.1 93.3(1.1) 63.6(1.3) 100(0) 100(0)

30 0.3 85.6(3.8) 43.5(1.5) 100(0) 100(0)

100 0 94 99.5 100 100

100 0.1 94.7(1.3) 67.3(0.3) 100(0) 100(0)

100 0.3 89.8(1.3) 65.9(0.2) 100(0) 99(0.1)

300 0 96.3 99.7 100 100

300 0.1 93.9(0.1) 62.1(0.2) 100(0) 99(0.1)

300 0.3 88.3(0.5) 62.5(0.2) 91(0.9) 98(0.1)

1000 0 98.0 99.9 100 100

1000 0.1 90.8(2.7) 60.2(1.5) 85(3.9) 99(0.1)

1000 0.3 85.1(4.3) 53.3(6.2) 80(5.5) 97(0.1)
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Table 3:

ODE variable selection comparisons between the 2-stage method and our new ST-SLS-VS algorithm. Both 

sensitivity (SEN) and specificity (SPE) are given as a percentage based on 1000 simulation runs for the cases d 
= 30,100,300 and 100 simulation runs for the case d = 1000 with the standard deviation in brackets.

ST-SLS-VS(SCAD) ST-SLS-VS(MCP)

Dimension(d) Noise(α) SEN% SPE% SEN% SPE%

30 0 100 100 100 100

30 0.1 100(0) 100(0) 100(0) 100(0)

30 0.3 100(0) 100(0) 100(0) 100(0)

100 0 100 100 100 100

100 0.1 100(0) 100(0) 100(0) 100(0)

100 0.3 100(0) 100(0) 100(0) 100(0)

300 0 100 100 100 100

300 0.1 100(0) 99(0.1) 100(0) 99(0.1)

300 0.3 92(0.9) 98(0.1) 92(0.9) 98(0.1)

1000 0 100 100 100 100

1000 0.1 87(4.1) 98(0.1) 86(4.3) 98(0.1)

1000 0.3 81(5.4) 93(0.8) 82(5.4) 93(0.9)
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Table 4:

Top ten most influential companies ranked by the network degree, which is defined as the number of adjacent 

edges of a node in the reconstructed network.

Company Category Network Degree

TDS Telephone & Data Systems Inc IT Infrastructure 1162

UVE Universal Insurance Holdings Inc Financial 696

AKRX Akorn Inc Energy 648

NDAQ Nasdaq OMX Group/The Financial 613

GIS General Mills Inc Food 589

ABAX Abaxis Inc Healthcare 552

CMTL Comtech Telecommunications IT Infrastructure 548

NTGR Netgear Inc IT Infrastructure 545

NTCT Netscout Systems Inc IT Infrastructure 530

SBRA Sabra Health Care REIT Financial/Healthcare 515
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Table 5:

Most influential companies in each sector defined by the network degree, which is the number of its adjacent 

edges in the reconstructed network.

Company Sector Degree

HAR Harman Int’l Industries Consumer Discretionary 20

AMZN Amazon.com Inc Consumer Discretionary 16

WYNN Wynn Resorts Ltd Consumer Discretionary 13

GIS General Mills Consumer Staples 8

ADM Archer-Daniels-Midland Co Consumer Staples 7

CHK Chesapeake Energy Energy 9

DO Diamond Offshore Drilling Energy 7

RRC Range Resources Corp. Energy 7

NDAQ NASDAQ OMX Group Financials 43

ACE ACE Limited Financials 19

FITB Fifth Third Bancorp Financials 16

TMK Torchmark Corp. Financials 12

BXP Boston Properties Financials 10

PNC PNC Financial Services Financials 10

ENDP Endo International Health Care 13

JNJ Johnson & Johnson Health Care 10

SYK Stryker Corp. Health Care 9

FLS Flowserve Corporation Industrials 20

FLIR FLIR Systems Industrials 16

ITW Illinois Tool Works Industrials 14

NFLX Netflix Inc. Information Technology 11

PAYX Paychex Inc. Information Technology 11

BLL Ball Corp Materials 9

T AT&T Inc Telecommunications Services 3

AEE Ameren Corp Utilities 5

NEE NextEra Energy Utilities 5

SCG SCANA Corp Utilities 5
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