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ABSTRACT Early detection and diagnosis of coronary artery disease could reduce the risk of developing
a heart attack. The coronary arteries are optimally visualised using computed tomography coronary angiog-
raphy (CTCA) imaging. These images are reviewed by specialist radiologists who evaluate the coronary
arteries for potential narrowing. A lack of radiologists in the UK is a constraint to timely diagnosis of
coronary artery disease, particularly in the acute accident and emergency department setting. The develop-
ment of automated methods by which coronary artery narrowing can be identified rapidly and accurately
are therefore timely. Such complex computer based tools also need to be sufficiently computationally
efficient that they can run on servers typically found in hospital settings, where graphical processing units
for example are unavailable. We propose a fully automatic two-dimensional Unet model to segment the
aorta and coronary arteries on CTCA images. Two models are trained to segment two regions of interest,
(1) the aorta and the coronary arteries or (2) the coronary arteries alone. Our method achieves 91.20% and
88.80% dice similarity coefficient accuracy on regions of interest 1 and 2 respectively. Compared with a
semi-automatic segmentation method, our model performs better when segmenting the coronary arteries
alone. The performance of the proposed method is comparable to existing published two-dimensional or
three-dimensional deep learning models. Importantly, the algorithmic and graphical processing unit memory
efficiencies are maintained such that the model can be deployed without requiring graphical processing units,
and therefore can be used in a hospital setting.

INDEX TERMS Aorta, computed tomography coronary angiography, coronary artery, deep learning,

segmentation.
I. INTRODUCTION coronary arteries can narrow as a result of build-up of athero-
Coronary artery disease (CAD) is one of the leading causes matous plaque within the artery wall. Reductions in local

of death in the UK [1] and worldwide. The lumen of the blood flow as a result of vessel lumen narrowing can starve
the heart muscle of oxygen. Vulnerable plaques can rup-

The associate editor coordinating the review of this manuscript and ture, occlude the vessel lumen and result in cardiac muscle
approving it for publication was Mehul S Raval . ischaemia/death, which manifests clinically as a heart attack.
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Early detection of the presence of atheromatous plaque and
vessel stenosis [2] could allow early medical intervention
and potentially reduce the risk of heart attack. Currently,
several non-invasive imaging modalities are available to clin-
icians for visualising the anatomy of the coronary arteries
as well as delineating the severity of vessel stenosis. These
imaging modalities are Stress Echocardiography [3], Car-
diac magnetic resonance imaging (MRI) [4] and Computed
Tomography Coronary Angiography (CTCA) [5]. CTCA is
the quickest of these methods and offers high sensitivity and
specificity for detection and exclusion of significant coronary
stenosis [6]. As a result CTCA is the preferred first-line
option for the assessment of stable cardiac disease in the
National Institute for Health and Care Excellence guidelines
for the UK [7]. CTCA has the ability to identify calcified,
non-calcified coronary plaque and mixed-attenuation plaques
which can help clinicians characterise plaques and formulate
management strategies.

To assess the severity of CAD, one approach involves
visual estimation of stenosis severity on CTCA scans. This
requires the geometrical information of the coronary arteries
to be provided in order to accurately assess the severity
of the stenosis. This approach however is subjective, time
consuming and requires specialist radiologists, who are in
short supply, to interpret the CTCA images [8]. Accurate
interpretation and diagnosis of CAD is heavily reliant on the
experience and expertise of individual clinicians [9], [10].
The diagnostic outcomes can differ between newly trained
clinicians compared to experienced specialists.

An alternative approach for assessing CAD severity
involves performing computational fluid dynamics (CFD)
on the target arteries [11]. It first requires identification
of accurate geometries of the aorta and coronary arteries.
A set of partial differential equations of blood flow are then
solved numerically given the boundary conditions and the
geometries. Once blood flow is estimated, the useful clinical
predictor, Fractional Flow Reserve (FFR) [12]-[14] can be
derived. Provided accurate geometries of the aorta and coro-
nary arteries are available, this approach provides an objec-
tive estimation of stenosis and does not require additional
imaging, which makes it particularly attractive to clinicians.

Deriving accurate geometrical information of the aorta and
coronary arteries is important for the above approaches. It is
achieved by delineating the outline of the vessels, termed
segmentation. Blood vessel segmentation can be performed
manually, semi-automatically or automatically [15]-[20].
Manual segmentation is subjective and time consuming,
requiring pixel-by-pixel labelling of individual vessels. Semi-
automatic and automatic segmentation methods are objec-
tive and quicker, though they can require manual correction
for under- or over- segmented vessels. There remains an
unmet need to develop fast, objective and accurate automated
computer-derived coronary artery segmentation algorithms
that can be deployed in a hospital setting to assist clinicians
diagnose CAD. This is especially relevant in Accident and
Emergency (A+E) departments where CTCA reviews are
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often delayed due to a lack of available specialists to read the
CTCAs [21]. This delay in turn slows patient management
in A+E, increases resource utilisation and results in excess
costs to the health service.

Deriving accurate geometries of the aorta and coronary
arteries are crucial components of the clinical information
required by radiologists and cardiologists to evaluate the
severity of coronary artery disease. The current approaches
used to segment the coronary arteries and the aorta have vary-
ing accuracy, can be time consuming and most importantly
require extensive computational resources. Most hospital sys-
tems in the UK do not have access to the required computa-
tional resources such as GPUs required for machine learning
analyses. We have proposed a deep learning approach to
improve the accuracy and speed of cardiac vessel analysis.
Our proposed approach is fast, accurate and fully automatic.
But most importantly, our method requires only low computa-
tional resources, which are feasible to be implemented within
a hospital network.

A fully automatic detection and classification system for
CAD using computer-based deep learning algorithms is a
way to achieve the above goal. The first stage of the process
initially requires segmentation (identifying the outlines) of
the aorta and coronary arteries on CTCA images. The second
stage involves classification of disease severity performed
on segmented CTCA images. The segmentation task has be
considered in two ways in the literature. The first involves
segmentation of both the aorta and the coronary arteries. For
example, Gu et al. [22] proposed a 3D deep learning model
to perform this task. The other strategy is to segment just the
coronary arteries alone. For example, Huang et al. [23] sug-
gested a 3D deep learning method with centreline to segment
the coronary arteries. In general, the performance of aorta and
coronary artery segmentation is better than segmentation of
the coronary arteries alone. A more detailed summary regard-
ing existing deep learning-based segmentations is discussed
in the following paragraph.

The utility of deep learning applied to medical images [24]
and relevant work in medical image segmentation have been
extensively discussed in the literature [25]-[27]. The works
related to artery segmentation on CTCA images have been
discussed in two review papers [20], [28]. They provide a
review of 3D vessel lumen segmentation techniques and deep
learning methods for cardiac image segmentation. The focus
of the current study relates to deep learning methods for
coronary artery segmentation and we briefly summarise the
work published in the following paragraph.

Several deep learning techniques have been pro-
posed to segment the aorta and/or coronary arteries.
Moeskops et al. [29] investigated a single convolutional neu-
ral network trained to segment coronary arteries in car-
diac CTA images. The training dice similarity coefficient
(DSC) accuracy was around 65%. A 3D-convolutional neu-
ral network was presented by Merkow e al. [30], which
demonstrated that processing the volumetric data in 3D
could improve the segmentation performance compared to
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2D processing. However, the performance of the coronary
artery segmentation model was not reported. Kjerland [31]
adopted a 3D DeepMedic network to segment both the
aorta and coronary arteries. The reported DSC accuracy was
between 75%-78%. Huang et al. [23] examined a 3D Unet
with/without a centerline to segment the coronary artery. The
DSC accuracy was between 71%-78%.

Recently, a 3D multi-channel Unet has been proposed by
Chen et al. [32], which had a DSC accuracy of 80% for
coronary artery segmentation. Shen et al. [33] proposed a
3D fully convolutional network with attention gates to seg-
ment both the aorta and coronary artery. The boundary of
the segmented artery was smoothed by a level set function.
The average DSC accuracy was about 90%. Lee et al. [34]
introduced a template transformer network where a shape
template is deformed to match the underlying structure of
interest through an end-to-end trained spatial transformer
network for coronary artery segmentation. The DSC accuracy
is between 76%-78%. Wolterink et al. [35] proposed using
graph convolutional networks to predict the spatial location of
vertices in a tubular surface mesh that segments the coronary
artery lumen. The average DSC is 74%. Mirunalini et al. [36]
proposed a two-stage approach to segment the coronary
artery. The first stage adopted a 2D Recurrent Convolutional
Neural Network to detect the artery in the slice, then a 2D
residual Unet was used to segment the coronary artery. The
intersection over union (IoU) was reported, which was 84%.
Lei et al. [37] developed a 3D Attention Fully Convolutional
Network model to automatically segment the aorta and coro-
nary artery for CCTA. The mean DSC is 83%. Gu et al. [22]
recently published a 3D global feature embedded network
with active contour loss to segment the aorta and coronary
artery. The reported average DSC is 91.43%.

Recently, a multi-objective clustering and toroidal model-
guided tracking method has been used to segment the coro-
nary artery tree automatically [38]. Gao et al. [39] have
proposed a novel deep neural network solution (TreeVes-Net)
that allows machines to perceive FFR values directly from
static coronary CT angiography images.

There is a lack of efficient deep learning methods (which
only require low computational resources) that can be used
within typical hospital networks. For example, 3D deep learn-
ing models require a high computational resource. Though
a 2D deep learning method has been described in the litera-
ture [36], the second additional component that was part of
this model would increase the computational complexity of
the model and hence decrease the algorithmic efficiency of
the method. We propose a 2D Unet to perform aorta and/or
coronary artery segmentation and demonstrate that this 2D
Unet is practically feasible to be implemented given that
the computational resources are limited to those available in
a hospital network whilst maintaining a good segmentation
accuracy. Additionally, we emphasise that we are the first to
employ a 2D technique (2D Unet) for artery segmentation
directly on the CTCA image. Most of the previous studies
evaluating coronary artery segmentation have utilised 3D
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models. For the study that employed a 2D approach, where
an additional sequence model was required for segmentation,
the coronary artery segmentation was performed indirectly.

In this study, we propose a modified U-Net [40] model: (1)
a batch normalization layer is added to the convolution block;
(2) a dropout layer is added before each convolution block
and evaluate its performance for the automated segmentation
of the aorta and coronary arteries on CTCA images. We then
retrain our model to segment the coronary arteries alone and
demonstrate improved performance.

The main contributions of this study are:

o The first study to propose a modified 2D Unet that
directly segments the aorta and/or coronary arteries on
CTCA scans

o The method is practically feasible to be implemented
within clinical systems where the available computa-
tional resources are limited

o Importantly, our technique works well when the coro-
nary arteries alone are segmented (accuracy ~89%).

il. METHOD

All the patients in the study had presented with chest pain
and associated symptoms that indicated an intermediate risk
of coronary artery disease. All patients underwent cardiac
CT angiography for anatomical assessment of their coronary
arteries and risk stratification for coronary artery disease.
71 cases were selected out of a total of 101 cases. 30 cases
were not usable mainly due to major motion artefacts, arte-
facts on the image or the presence of coronary stents or bypass
grafts distorting the coronary anatomy. The Simpleware Sca-
nlP algorithm also failed in vessel segmentation on two of the
selected cases. To segment the aorta and/or coronary artery
we have proposed a modified 2D Unet model where: (1) a
batch normalization layer has been added to the convolution
block; (2) a dropout layer is added before each convolution
block. The proposed method is compared to semi-automatic
segmentation (Simpleware-ScanIP) and 2D/3D deep learning
methods. The segmentation performance and time taken for
vessel analysis are then evaluated.

A. CLINICAL DATA

The final study data represented CTCA scans performed on
69 subjects with chest pain. The scans were acquired at Uni-
versity College Hospital London and Barts Health NHS Trust
using different CT scanners and acquisition protocols. All the
patients in the study had presented with chest pain and associ-
ated symptoms that indicated an intermediate risk of coronary
artery disease. All patients underwent cardiac CT angiogra-
phy for anatomical assessment of their coronary arteries and
risk stratification for coronary artery disease. The study was
carried out in accordance with the recommendations of the
South East Research Ethics Committee, Aylesford, Kent, UK,
with written informed consent from all subjects in accordance
with the Declaration of Helsinki. An example of a CTCA scan
is shown in Fig. 1.
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FIGURE 1. A CTCA scan of a patient. Arrow = right coronary artery; arrowhead = ascending aorta.

B. DATA PRE-PROCESSING

The original Digital Imaging and Communications in
Medicine (DICOM) data were pre-processed using 3D Slicer.
The brightness of the CTCA image was adjusted by win-
dowing (window center = 40, window width = 400). The
image was saved as a NIfTI Data Format. The image size
was 512 x 512 pixels. The image was then processed by
ImageJ [41]. The pixel intensity was normalised by using
linear histogram stretch and then rescaled to between 0 to 255.
The final images were converted to 8-bit Portable Network
Graphics (PNG) for training, validation and testing. The pre-
processing technique is simple and quick to perform.

C. SEMI-AUTOMATIC SEGMENTATION

Initial annotation was performed using Simpleware-ScanIP
(Version 2018.12; Synopsys, Inc., Mountain View, USA).
The segmentation procedure consisted of thresholding, back-
ground flood-fill and split algorithms. Firstly, thresholding
was applied such that only regions containing contrast were
considered. Secondly, a seed point was placed within the
aorta, and the background flood-fill algorithm was able to
segment the coronary arteries and cardiac chambers which
were connected to the aorta. Lastly, the split algorithm was
performed such that the aorta and the coronary arteries were
separated from the cardiac chambers. It should be noted that
the split operation may be repeated such that all connected
chambers are separated. The workflow of these procedures is
displayed in Fig. 2.

The initial mask contained the ascending aorta (AA), right
coronary artery (RCA), left circumflex artery (LCX) and left
coronary artery (LCA). The mask was then fine-tuned manu-
ally using 3D Slicer [42]. To acquire the mask containing just
the coronary arteries, the AA was removed to leave the RCA,
LCX and LCA only. An example of initial and final masks is
shown in Fig. 3.

D. MANUAL SEGMENTATION
The manual segmentation was implemented in Slicer 3D. The
annotator highlighted the vessel by identifying the contrast
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within the CTCA image given an initial mask. The segmented
masks were used as the optimum manual (ground-truth)
labels.

E. SEGMENTATION METHODS

1) AORTA AND CORONARY ARTERY SEGMENTATION

The regions of interest that the current work focusses on
are the aorta and coronary arteries. There are two scenarios
where these masks are used. (1) The combined mask of the
aorta and coronary arteries is useful for blood flow estimation
using computational fluid dynamics. Aorta segmentations
can produce continuous 3D measurements of aortic size and
shape which are objective and allow detailed longitudinal
comparisons of subtle changes in aortic morphology for var-
ious disease states of the aorta. (2) The mask of coronary
arteries alone is useful for cardiologists to assess the degree
of stenosis in areas where CAD has developed. The proposed
method was therefore evaluated on these two segmented
masks.

2) FULLY AUTOMATIC SEGMENTATION

a: OUR PROPOSED MODEL

Our model is based on the 2D Unet [40]. A Unet is
a deep convolutional neural network consisting of down-
sample and up-sample paths. The first component of the
network extracts spatial features and contexts, while the sec-
ond component localizes the features by using transposed
convolutions. A sigmoid function is used for the final back-
ground/foreground classification. We have modified the Unet
model in two ways: (1) a batch normalization layer is added
to the convolution block; (2) a dropout layer is added before
each convolution block. The training process suffered from
internal covariate shift. The batch normalisation was able
to stabilise the training by normalising the inputs for each
mini-batch which was performed by computing the mean
and standard deviation of each input variable to a layer per
mini-batch. The dropout layer was used to reduce overfitting
by setting the weights to be zero randomly. This additional
implementation improved the stability and performance of
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CT slice

Separated masks Initial mask

FIGURE 2. The workflow of initial annotation by using Simpleware-ScaniP.

Initial mask

Final mask

FIGURE 3. The final coronary artery mask fine-tuned using 3D slicer.

the proposed model. The details of our proposed model is
shown in Fig. 4.

b: MODEL TRAINING

55 datasets (n = 13 with no coronary disease, n = 42 with
coronary disease) were used for training (80%) and validation
(20%) The test data set contained 14 datasets (n = 5 with no
coronary disease, n = 9 with coronary disease). There were
11677 slices in the training dataset and 2920 slices in the
validation dataset. Slice by slice training was adopted. Two
models were trained by using the following optimum manual
labels: (1) Aorta and coronary arteries (2) coronary arteries
only.

c: TRAINING IMPLEMENTATION

The proposed models were implemented in Tensorflow
(v 2.1.0) and Keras (2.3.1) on Linux (Rocks 7). They were
executed on a cluster (Intel Xeon Gold 5118, 2.3GHz) with
a Tesla V100-PCIE-32GB GPU. The Adam algorithm was
used to optimise the proposed models. The learning rate
was initially set to le-5. 200 epochs were set for model
training. The only hyperparameter optimised in this study
was the learning rate. It was initially set as le-5. When the
DSC had stopped improving after three epochs, the learning
rate was reduced by a factor of 0.1 using Keras function —
ReduceLROnPlateau. The setting was as follows: factor =
0.1, patience = 3, min_Ir = 0.00001. Early stopping was
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executed when the loss was not reduced across 10 consecutive
epochs.

d: LOSS FUNCTION AND PERFORMANCE EVALUATION

The combined binary cross entropy (BCE) and dice similarity
coefficient (DSC) with equal weights were used as the loss
function for deep learning. The segmentation performance
was measured by using DSC and IoU metrics which are
commonly used to measure the similarity between two seg-
mentations.

e: THE SEGMENTATION PREDICTION IMPLEMENTATION
The prediction was performed by using the trained models
above. It was implemented on Tensorflow (v 2.1.0) and Keras
(v 2.3.1) on Windows 10 and executed on a machine (Intel
19-9960X, 3.1GHz) with a Nvidia Geforce RTX 2700 GPU.
The time required for the prediction was also recorded on a
per subject/patient basis.

3) SEGMENTATION PERFORMANCE AND TIME EVALUATION
The accuracy of the segmentation performance of our pro-
posed method was compared with published accuracies of
existing 2D and 3D deep learning models. Our model was
also compared with the standard Unet++ [43] and its vari-
ant that incorporating Xnet [44] with batch normalisation.
It should be noted that the standard skip connections in Unet
only combine the decoder feature maps with the same scale
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FIGURE 4. The network architecture of our proposed method.

feature maps from the encoder, this could limit its ability
to capture the intermediate features maps at multiscale lev-
els. The redesigned skip connections mechanism in Unet++
could be used to overcome this limitation and hence a better
artery segmentation might be obtained.

For the test dataset, the time required for segmentation and
the segmentation performance for our method was compared
to semi-automatic segmentation methods. The performance
of the segmentation was evaluated by using the DSC and
IoU metrics. The Mann-Whitney U Test was performed to
evaluate whether there was any difference in segmentation
time between automatic and semi-automatic approaches. The
analyses were implemented on SPSS (IBM SPSS Statistics
for Windows, version 25, IBM, Armonk, NY, USA).

Ill. EXPERIMENTS AND RESULTS

A. LEARNING CURVE

The learning curves of our model for two scenarios are shown
in Fig. 5. No overfitting was found in the training for both
scenarios. Some fluctuations of the loss function were found
at an early stage of training, though the training became
stable later on. This potentially reflects the fact that the train-
ing was performed in mini-batches. The training that used
the aorta and coronary arteries as ground-truth labels took
125 epochs, while the training using coronary arteries alone
as the ground-truth label took only 51 epochs. This indicates
that the aorta and coronary arteries have distinct features that
took longer to learn in the first scenario.
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The accuracy (DSC) during training is shown in Fig. 6.
Within the same model, it can be seen that the segmentation
performance improves as more features are learnt.

B. EFFECT OF NETWORK DEPTH

In general, a deeper network would be able to capture the
main/larger diameter artery on the CTCA image, while a
shallow network would be able to capture the branch/narrow
diameter artery on the CTCA image. For this work, an opti-
mization study was performed (see Table 1). We found that
the optimal results (performance on test set) were obtained
when using a four-layer (number of layers over which skip
connections were used) network.

C. SEGMENTATION PERFORMANCE

Table 2 shows the segmentation performance when the aorta
and coronary arteries were segmented. The accuracy of our
method and Simpleware-ScanlP are 91.20% and 99.40%
respectively. The semi-automatic approach performed better
than our method when both the aorta and coronary arteries
were present in the mask.

The performance for segmentation of the coronary arteries
alone is shown in Table 3. The accuracy of our method
and Simpleware-ScanlIP were 88.80% and 73.22% respec-
tively. Our method performs better than the semi-automatic
approach when just the coronary arteries are present in the
mask.

The results demonstrate that a semi-automatic approach is
good at segmenting the aorta. The semi-automatic approach
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FIGURE 5. Learning curves: trained with (A) aorta and coronary arteries (B) coronary arteries only.

TABLE 1. Effect of network depth to segmentation performance.

Aorta and coronary artery Coronary artery only
DSC (average) Training | Validation Test Training | Validation Test
1-layer 27.35% 26.95% 24.14% 51.48% 50.62% 48.14%
2-layer 66.80% 67.13% 67.60% 66.46% 68.65% 73.34%
3-layer 86.24% 86.79% 85.36% 87.74% 87.51% 82.63%
4-layer 93.62% 93.33% 91.20% 93.82% 93.41% 88.80%
S-layer 95.06% 94.98% 88.78% 94.63% 94.49% 88.16%
6-layer 95.37% 95.13% 87.81% 94.94% 94.55% 88.22%
7-layer 94.83% 94.99% 88.97% 94.56% 94.39% 87.58%

was limited in its ability to segment the coronary arter-
ies, but as the aorta occupied most of the volume of the
mask, the overall segmentation accuracy remained high. Our
method performed well when attempting to segment the coro-
nary arteries alone. This suggests that our model has the
ability to utilise other features (i.e. shape) to recognise the
coronary arteries, while the semi-automatic approach relies
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solely on pixel density. If the contrast within the coronary
artery is not bright enough, the semi-automatic approach will
miss some segments of the coronary artery (See Fig. 7).

The segmentation results of patients 1 and 2 are displayed
in Figs. 8 and 9. From Fig. &, it is clear that our method can
segment the aorta and coronary arteries, with a result very
close to the optimal manual label. The Simpleware—ScanIP
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FIGURE 6. Learning curves - accuracy (DSC): trained with (A) aorta and coronary arteries (B) coronary arteries only.

segments the aorta with good accuracy while some segments
of the coronary arteries are missing.

For patient 2 (Fig. 9), our method can segment the aorta
and coronary arteries well, but the segmentation incorporates
an artefact (red arrowhead). When segmenting the coronary
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arteries alone, some segments of the coronary arteries are
missing in the segmentation. As expected, the aorta segmen-
tation is good when using the semi-automatic method, while
the segmentation of the coronary arteries is relatively poor.
It should be noted that the artefact present in the segmentation
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TABLE 2. Segmentation performance - mask contains aorta and coronary arteries.

With aorta DSC (average) IoU (average)
Simpleware-ScanIP 99.40% 98.81%
Our method 91.20% 83.82%
TABLE 3. Segmentation performance - mask contains coronary arteries only.
Without aorta DSC (average) IoU (average)
Simpleware-ScanIP 73.22% 57.75%
Our method 88.80% 79.85%

(A)

FIGURE 7. (A) Ground-truth mask (yellow) (B) Mask from Simpleware-ScanlP (blue) with a missing vessel (orange circle) (C) Mask from

our model (red).

of the aorta and coronary arteries using our method can be
easily removed by excluding the non-connected components
of the mask.

D. SEGMENTATION PERFORMANCE COMPARISON WITH
UNET++

Table 4 shows the segmentation performance of the standard
Unet++ and its variant [Xnet with batch normalisation].
From Table 4, the performance of the standard Unet++ is
the weakest. This may be due to the fact that batch normal-
isation has not been adopted to reduce the internal covari-
ate shift which has affected the training significantly. While
the Unet++ variant performed much better than standard
Unet++, its performance remains slightly worse than our
model. This suggests that learning through semantically sim-
ilar feature maps may not be useful for artery segmentation.
The segmentation of the aorta and/or coronary artery using
the Unet++4 [Xnet/BN] is shown in Fig. 10.

E. SEGMENTATION TIME
The segmentation time of our proposed method compared
to semi-automatic segmentation is shown in Table 5 (aorta

VOLUME 9, 2021

and coronary arteries) and Table 6 (coronary arteries only)
respectively. The mask prediction using our method was
significantly faster than the Simpleware-ScanIP for both seg-
mentation scenarios (p-value < 0.001), taking less than 4 sec-
onds on average to predict the aorta and/or coronary arteries
masks. Additionally, the segmentation time was between 40s
and 141s when run on a CPU with multi-cores.

IV. DISCUSSIONS

A deep learning model based on a 2D Unet has been devel-
oped to segment the aorta and/or coronary arteries on cardiac
CTCA images. Two models were trained to segment ROIs
in two scenarios - (1) the aorta and coronary arteries (2)
coronary arteries only. Our method demonstrates 91.20% and
88.80% DSC accuracy on scenarios 1 and 2 respectively.
This suggests that our method can segment the aorta and/or
coronary arteries with high accuracy.

Current deep learning approaches require high computa-
tional resources, which are difficult to implement in standard
hospital networks. Therefore, we developed an alterna-
tive deep learning approach (2D Unet) that is feasible for
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(A) Optimal manual label (B) Optimal manual label

(C) Our method (D) Our method

(E) Simpleware-ScanIP (F) Simpleware-ScanIP

FIGURE 8. Segmentation results of patient 1. Segmentation of aorta and coronary arteries: (A) Optimal manual label, (C) Our method,
(E) Simpleware-ScanlP. Segmentation of coronary arteries only: (B) Optimal manual label, (D) Our method, (F) Simpleware-ScanlP.

TABLE 4. Segmentation performance of standard Unet++ and its variant [Xnet with batch normalisation].

Aorta and coronary artery \ Coronary artery only
DSC (average) Training | Validation | Test | Training | Validation Test
Standard Unet++ (L) 27.47% 26.95% 24.14% | 51.48% 50.62% 48.14%
Standard Unet++ (L) 27.47% 26.95% 24.14% | 51.48% 50.62% 48.14%
Unet++ [Xnet/BN] (L) | 85.81% 79.61% 86.27% | 86.67% 76.27% 78.11%

implementation in a hospital network and which importantly Compared with a published 3D deep learning model [22]
maintains good segmentation accuracy. developed to segment the aorta and coronary arteries, which
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(C) Our method

(E) Simpleware-ScanIP

(F) Simpleware-ScanIP

FIGURE 9. Segmentation results of Patient 2: with aorta and coronary arteries (A) Optimal manual label (C) Our method
(E) Simpleware-ScanlP, with coronary arteries only (B) Optimal manual label (D) Our method (F) Simpleware-ScaniP.

TABLE 5. Segmentation time - mask contains aorta and coronary arteries.

With aorta Time (average) Time (SD)
Simpleware-ScanIP 203.07s 101.69s
O“(TGI;%})IOd 3.295 0.47s
(CPU only(f) Egrzztr};(s),d 4 threads) 138.57s 15.74s
(CPU only ?ﬁ%?g’f;:}d 32 threads) 40.93s 4.71s

uses a 3D global feature embedded network with active
contour loss, the performance of our method was similar

VOLUME 9, 2021

(DSC:91.20% (our method) vs 91.43% ([22])). Our proposed
method utilised a smaller number of network parameters
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(A) Patient 1

(B) Patient 1

(C) Patient 2

(D) Patient 2

FIGURE 10. Segmentation results by Unet++ [Xnet/BN]. Segmentation of aorta and coronary arteries: (A) Patient 1, (C) Patient 2.

Segmentation of coronary arteries only: (B) Patient 1, (D) Patient 2.

TABLE 6. Segmentation time - mask contains coronary arteries only.

Without aorta Time (average) Time (SD)
Simpleware-ScanIP 345.00s 113.45s
O“(IG“II,%I)IOd 3.365 0.50s
(CPU onl}(l) i1r2ri:1f)tr1;(s),d 4 threads) 140.07s 16.90s
(CPU only (—)lir6nclg‘f;(s),d 32 threads) 40.93s 4.75s

resulting in more efficient training and a faster prediction time
compared to the published 3D model. Our method requires
less GPU memory, which is a common limitation when train-
ing and implementing a 3D model. It should also be noted that
our method does not require GPUs for deployment, which
favours its application in hospital networks where typically
only CPUs are available.

The performance of our method was also compared with
the 2D RCNN + 2D Unet technique [36] for scenario 2. Our
method showed comparable performance (IoU: 79.85% (our
method) vs 84.36% ([36])), but does not require implemen-
tation of a sequence model to detect the coronary arteries.

108884

Implementing an additional sequence model would increase
the computational complexity and hence decrease the algo-
rithmic efficiency. It should be noted that the difference in
reported accuracy between these methods are likely to relate
to the different test sets that were evaluated.

Compared with semi-automatic methods, our model per-
formance is degraded when segmenting the aorta and
coronary arteries. However, our model gives improved accu-
racy when segmenting the coronary arteries alone. The find-
ings highlight the importance of evaluating segmentation
performance of large vessels and small vessels separately
to reduce the potential bias of segmentation performance
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metrics. In terms of the prediction time, our proposed model
provided the fastest prediction when compared with the semi-
automatic method. Though the time difference is statistically
significant, it may be negligible from a clinical perspective.

Our study utilised a larger sample size for training and pre-
diction when compared to the published 2D approach. This
allows for a more generalizable model and therefore a more
reliable prediction. It should be noted that two cases were
excluded in our analysis as the Simpleware ScanIP failed
to segment the vessels. Our deep learning model however
was still able to segment the aorta and coronary arteries
adequately.

There are several limitations to this study. The design of
the study was retrospective, and accordingly it may have
suffered from patient selection bias. The ground-truth labels
of the study were obtained by manual annotation and it is
possible that the accuracy of the labels were potentially biased
due to the annotator’s experience. The performance of our
model was compared with existing models using different
datasets. The lack of openly available code for other models
precluded direct comparisons of models on the same dataset.
Although our method can predict the segmented mask with
good accuracy, visual inspection of the imaging by experts is
still required. Currently, small regions of the proximal coro-
nary artery are occasionally missed when using our models.
Further improvements could be made by incorporating an
attention gate to our model, which could allow the network to
focus more closely on the coronary arteries during training.

V. CONCLUSION

Our study demonstrates that a 2D UNET model is able to seg-
ment the coronary arteries efficiently and with good accuracy.
It has the advantage that it can be deployed within hospital
computer networks where GPUs are not available. Our study
is a first essential stage of work to develop fully automatic
detection and classification systems for coronary artery dis-
ease by using computer-based deep learning algorithms. The
aims of our future work would be to extend our model for
coronary artery disease severity classification which could
speed up the patient pathway for referrals with chest pain in
A&E departments.
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