
ORIGINAL ARTICLE

Detection of Salmonella Typhimurium contamination levels
in fresh pork samples using electronic nose smellprints in tandem
with support vector machine regression and metaheuristic
optimization algorithms

Ernest Bonah1,2 • Xingyi Huang1 • Yang Hongying1 • Joshua Harrington Aheto1 •

Ren Yi1,3 • Shanshan Yu1 • Hongyang Tu1

Revised: 29 August 2020 / Accepted: 8 October 2020 / Published online: 16 October 2020

� Association of Food Scientists & Technologists (India) 2020

Abstract Rapid detection and quantification of bacterial

foodborne pathogens are crucial in reducing the incidence

of diseases associated with meat products contaminated

with pathogens. For the identification, discrimination and

quantification of Salmonella Typhimurium contamination

in pork samples, a commercial electronic nose with ten

(10) metal oxide semiconductor sensor array is applied.

Principal component analysis was successfully applied for

discrimination of inoculated samples and inoculated sam-

ples at different contaminant levels. Support vector

machine regression (SVMR) together with a metaheuristic

framework using genetic algorithm (GA), particle swarm

optimization (PSO), and grid searching (GS) optimization

algorithms were applied for S. Typhimurium quantification.

Although SVMR results were satisfactory, SVMR hyper-

parameter tuning (c and g) by PSO, GA and GS showed

superior performance of the models. The order of the

prediction accuracy based on the prediction set was GA-

SVMR (RP
2 = 0.989; RMSEP = 0.137; RPD = 14.93)[

PSO-SVMR (RP
2 = 0.986; RMSEP = 0.145; RPD = 14.11)

[GS-SVMR (RP
2 = 0.966; RMSEP = 0.148; RPD =

13.82)[ SVMR (RP
2 = 0.949; RMSEP = 0.162; RPD =

12.63). GA-SVMR’s proposed approach was fairly more

effective and retained an excellent prediction accuracy. A

clear relationship was identified between odor analysis

results, and reference traditional microbial test, indicating

that the electronic nose is useful for accurate microbial

volatile organic compound evaluation in the quantification

of S. Typhimurium in a food matrix.

Keywords Salmonella � Foodborne pathogens � Electronic
nose � Chemometric algorithms � Longissimus pork

muscle � Metaheuristic algorithms

Introduction

Foodborne bacterial infections con-

tinue to be one of the world’s major causes of dis-

ease and death. Despite stringent inactivation control

measures, such as pasteurization, and ultra-high tempera-

ture (UHT) treatment, numerous outbreaks of foodborne

diseases have been reported due to the consumption of

contaminated meat products (Nadi et al. 2020).

According to the 2015 report of the World Health

Organization (WHO), as many as 600 million people

worldwide annually become ill after eating contaminated

food, of these, there are 420,000 recorded deaths, including

125,000 children under the age of 5 years (Havelaar et al.

2015). Most large-scale meat recalls have been caused by

bacterial contamination of processed food with these major

recalls leading to enormous financial costs as well as meat

wastage (Pozo and Schroeder 2016). Pathogen identifica-

tion for the meat industry, and for that matter, the entire
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food industry has emerged as the highest scientific and

technological priority in the industry.

The global food microbiology test for pathogens

amounted to 280 million tests in 2016, a market valued at

$1.8 billion, according to a recent report (https://www.-

foodsafetymagazine. com/magazine-archive1/february-

march-2017/a-look-at-the-microbiology-testing-market/).

It reflects a 23.2% increase in the amount of testing over a

span of 3 years, with Salmonella representing 43% of all

tests performed followed by Listeria and Listeria mono-

cytogenes (41%), pathogenic Escherichia coli (14%), and

Campylobacter (2%). The trend observed for all four pri-

ority pathogens over the past two decades was a definite

shift from traditional methods to rapid methods.

To sustain food safety and human health, the monitoring

of food safety indicators, especially foodborne pathogens,

is crucial. Rapid analytical methods that are sensitive,

accurate, cost-effective, and easy-to-use for process control

and foodborne pathogen detection are needed to ensure the

quality and safety of meat products.

Systems for the identification of volatile and non-vola-

tile characteristic compounds related to microbial growth

in meat products have been studied previously. As markers

of microbial contamination, microbial volatile organic

compounds (MVOCs) have already played an essential role

in clinical diagnosis, environment monitoring and in recent

years and have been applied to determine microbial con-

tamination of food (Wang et al. 2016).

An electronic nose (E-nose) is a non-invasive technique

for detecting volatile analytes using a range of chemical

sensors (Chang et al. 2020; Huang et al. 2019). E-nose can

identify microbial genera via detailed MVOCs profiles in

food samples (Zambotti et al. 2014). E-nose devices are

currently used in the identification foodborne microbial

pathogens (Balbin et al. 2017; Bonah et al. 2019a, b; Gobbi

et al. 2015; Wang et al. 2016) together with multivariate

statistical analysis tools. Many of these research concen-

trated on bacterial discrimination, prediction and classifi-

cation. However, no study on foodborne bacteria

quantification based on e-nose sensor responses have been

reported in meat products. An earlier study utilized E-nose

sensor responses to predict E. coli numbers in packaged

alfalfa sprouts with a regression coefficient (R2) = 0.903

(Siripatrawan et al. 2006).

Multivariate statistical analysis is applied to obtain key

information on the relationship between MVOCs and

microbial genera in food. These computational intelligence

techniques, such as support vector machines (SVMs) and

artificial neural networks (ANN), have been widely applied

in E-nose studies. SVMs are the newly developed machine

learning methods that have achieved enormous prominence

in identification, pattern recognition, and regression (Elbisy

2015). SVM provides a more robust model with a higher

generalization error, which also shows that SVMs are not

subject over-fitting relative to ANN (Patil et al. 2012).

It must be noted that SVM is constrained since the

efficiency of SVM models relies heavily on setting the

SVM hyper-parameters and SVM kernel parameters

properly. Therefore, to determine the values of these

parameters, which lead to the lowest generalization error,

an automated, effective and relatively rapid approach is

required. Most of the techniques used to solve this problem

are based on metaheuristics such as genetic algorithm (GA)

and particle swarm optimization (PSO).

In this work, E-nose measurements of the MVOCs

sensor response profiles of Salmonella Typhimurium from

inoculated pork samples at varying concentrations were

used to estimate and predict pathogen concentration by

support vector machine regression (SVMR). The opti-

mization ability of different metaheuristic algorithms was

investigated to optimize the models and improve the pre-

diction accuracy of bacterial concentration in the inoculate

pork sample. Therefore, our specific goal was to apply

three-parameter optimization approaches (GA-SVMR, GS-

SVMR and PSO-SVMR) and compare the performance to

the ordinary SVMR models for the prediction of Sal-

monella Typhimurium.

Materials and methods

Sample preparation

The fresh longissimus pork meat was obtained from a

Zhenjiang local supermarket. The samples were immedi-

ately packed without cleaning into commercial food-grade

polymer wraps. The meat was minced and processed with a

household mincing machine stored at 4 �C. To prevent

contamination, mincer parts were cleaned and disinfected

with detergent, chlorine (1000 ppm) and ethanol. All meat

batches used were tested to ensure that they were clear of

Salmonella Typhimurium according to the ISO

16654/2001, ISO 6579:2002 and National Standard of the

People’s Republic of China, Standard of Pathogenic Limits

for Food GB 29921-2013) standard for Salmonella detec-

tion in food and were determined to be negative in 25 g.

Bacterial preparation and inoculation

Salmonella Typhimurium CICC 22956 were acquired from

the Center of Industrial Culture Collection. Beijing, China.

Frozen culture on slant agar was activated in Tryptic Soy

Broth (TSB, AOBOX, Beijing) at 37� C for 24 h. In other

to achieve inoculation levels of * 102, * 104

and * 107 CFU/g, the appropriate serial dilutions of fresh
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S. Typhimurium culture was manually mixed with 100 g of

thawed samples at 4� C.

Electronic nose system and data acquisition

This investigation was performed by a PEN3 electronic

nose (Airsense Analytics GmbH, Schwerin/Germany),

consisting of 10 metal–oxide–semiconductor (MOS) sen-

sors with different selectivity to volatiles (Aheto et al.

2020; Giungato et al. 2019). Sampling, headspace gener-

ation parameters and system settings used in this study are

described in detail by Bonah et al. (2019b). Furthermore,

the ten (10) sensor response values were recorded for

120 s. Five (5) grams of the sample was transferred into a

20 mL vial and sealed with a magnetic screw cap and

septum for analysis. Before sampling, 10 min was allowed

to ensure the gas was saturated at the top of the sealed

bottle. The PEN3 Win Muster v. 1.6.2 program was used

for data acquisition, pattern recognition and interpretation.

Microbial enumeration

Evaluation of pork meat pathogen contamination was

conducted using simultaneous E-nose measurements in

parallel with microbiological analysis using the plate count

method. Bacterial enumeration was performed according to

Osaili et al. (2020) using Xylose Lysine Deoxycholate

Agar (Sorbitol). Typical colonies were counted after 48 h

of incubation at 37 �C.

HS-GC-IMS analysis

HS-GC-IMS (Headspace- gas chromatography-ion mobil-

ity spectrometry) was used as the reference method. GC-

IMS analysis was performed with a FlavourSpec� (G.A.S.

Gesellschaft für analytische Sensorsysteme mbH Dort-

mund, Germany) fitted with a nonpolar GC column (SE-

54-CB from CS-Chromatographie Service GmbH (Düren,

Germany) consisting of 0.25 lm film thickness (94%

methyl-5% phenyl-1% vinyl silicone).

The sample was transferred into a 20 mL vial and sealed

with a magnetic screw cap and septum for analysis.

Automatic injection of a 500-lL aliquot of the headspace

was carried out after the ampoules were heated (37 �C,
3 min) with an agitation speed of 500 rpm in the heated

injector of the GC-IMS apparatus. The separation was

achieved by means of a 30 m length nonpolar GC column

composed of 94% methyl-5% phenyl-1% vinyl silicone

after which the Volatile Organic Compounds trapped were

thrust into the GC column (40 �C) through nitrogen (N2)

carrier gas with a purity of C 99.999%. The flow rate of

the N2 carrier gas was set at a commencement rate of

2 ml.min-1 and programmed as follows: flow rate of

2 mL.min-1 (0–2 min), 2–5 mL.min-1 (2 –5 min),

5–50 mL.min-1 (5–10 min), and 50–150 mL.min-1

(10–15 min).

Afterwards, the VOCs are ionized in the ionization

chamber, after been split up in the GC column (40 �C).
With constant temperature and voltage (40 �C,
400 V cm-1) in the drift region, the ions the reach the IMS

detector via a shutter grid with a grid pulse width of

100 ls. The drift tube length is 10-cm and a drift gas(N2)

flow rate = 150 mL.min-1.

Data acquisition was performed with the IMS Control

TFTP Server Software. To identify particular compounds

signal drift and retentions times are compared at their

coordinate locations. The data signals obtained are then

compared to the GC 9 IMS Library version 1.01 (G.A.S.

Gesellschaft für analytische Sensorsysteme mbH).

Furthermore, PRTools 5.0 toolkit (Delft University of

Technology, Netherlands) and MATLAB R2018a software

(The Mathworks Inc., Natick, USA) was employed for ion

mobility characterization, data visualization as well as

feature extraction for chemometric analysis.

Data pre-processing and feature extraction

Electronic nose sampling showed different sensor response

rates for different contaminant levels. The mean-differen-

tial coefficient value can be used to describe the sensor’s

average response velocity and its main characteristics (Xu

et al. 2018). Therefore, the mean differential coefficient

value M(i)ave was taken as the characteristic value of the

sensor response curve.

M ið Þave¼
1

n� 1

Xn�1

z¼1

xiz þ 1�xiz

Dt
ð1Þ

n = number of test points (n = 120)

i = sample number of each variety

xiz = zth response value of the ith sample

4t = time difference of adjacent test points (4t = 1 s).

Support vector machine regression

SVMR (Cortes and Vapnik 1995) was used to predict

bacterial populations on pork meat samples based on sen-

sor responses from E-nose measurement. The basic idea in

SVM regression is to map the input data (nonlinear

regression problem) into a higher-dimensional function

space and solve a linear regression problem (Shokri et al.

2015). In the formulation of SVMR, several loss functions

such as the Laplacian, Huber, Gaussian, and e-insensitive
can be applied. The stable e-insensitive loss function (L e)
is more generally used among these loss functions (Cortes

and Vapnik 1995). The SVR loss function is given as:
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J ¼ 1

2
kxk2 þ C

Xm

i¼1

ni þ n�i
� �

ð2Þ

Where e is a precision parameter that represents the tube

radius around the regression function f(x)

The aim of using the e—insensitive loss function is to

find a function capable of fitting current training data with a

deviation less than or equal to e. The problem of opti-

mization can be reformulated as

Xm

i¼1

ni þ n�i
� �

¼ 0 and 0� ni; n
�
i �C; ð3Þ

Minimise

1

2

Xm

i¼1

Xm

j¼1

a�i � ai
� �

a�j � aj
� �

K xi; xj
� �

�
Pm

i¼1

Yi a�i � ai
� �

þ E
Pm

i¼1

Yi a�i � ai
� �

8
>>><

>>>:
ð4Þ

subjectto

Pm

i¼1

a�i � ai
� �

¼ 0

a�i ; ai 2 0;C½ �

8
<

:

The distance between the actual values and the respec-

tive limit values of the e—tube are represented by the

positive slack variables. The constant is a parameter that

determines the interaction and trade-off between the

empirical risk and the flatness of the model.

Standard kernel functions that are implemented are

stated below, where c, r and d are kernel parameters.

Radial basis function (RBF) kernel:

K xi; xj
� �

¼ exp �cxi � x2j

� �
ð5Þ

Linear kernel:

K xi; xj
� �

¼ xi; xj ð6Þ

Polynomial kernel:

K xi; xj
� �

¼ cxi; xjþrÞ
� d ð7Þ

Sigmoid kernel:

K xi; xj
� �

¼ tanh cxi; xjþrÞ
�

: ð8Þ

The RBF kernel is highly recommended for its com-

plexity and performance (Bao et al. 2013). The kernel

parameter specification implicitly specifies the layout of

the high-dimensional feature space /(x) which governs the

nature of the final solution (Tay and Cao 2001).

Grid search and heuristic algorithms employed

for SVMR optimization problem

The advantage of the SVM algorithm; is that it is not

affected by local minima, nor does it suffer from the curse

of high-dimensionality due to the use of support vectors.

Unfortunately, the SVM performance depends heavily on

the parameter setting and the selection of the kernel (Phan

et al. 2017).

The quality of the selection of SVM parameters and

kernel functions affects the performance of learning and

generalization. The optimization of the model structure is

crucial for developing high-quality SVM models with

excellent generalization capabilities (Herceg et al. 2019).

However, there is no exact procedure for achieving the

maximal range of SVMR hyperparameters. Search algo-

rithms must be applied to generate the optimum set of

hyperparameters to guarantee the maximum possible

accuracy of the final model. Search algorithms based on

grid searches (Mohandes et al. 2004) where the parameter

search space is split into groups of potential parameters to

be evaluated, usually in a uniform manner and meta-

heuristics algorithms (Genetic algorithms, Particle swarm

optimization, ant colony optimization etc.) is applied to

conduct a robust investigation on the hyper-parameter

search space.

While being successful in solving complex problems,

metaheuristic approaches do not guarantee overall opti-

mum results. In solving complex multi-modal problems,

these methods may be stuck in local optima (Saddique

et al. 2020). Furthermore, their convergence speed depends

on the proper adjustment of the parameters associated with

each metaheuristic approach (Moscato and Cotta 2019).

Model evaluation

Regression model accuracy and performance was measured

by the root- mean -square error of cross-validation

(RMSECV), the root-mean-squared error of calibration on

the calibration set (RMSEC), root mean square error of

prediction (RMSEP). The residual predictive deviation

(RPD) was also calculated to examine the predictive ability

of the model.

Data processing, classification and performance

characterization

The application platform was implemented in Matlab

2018a in windows 10, which is a universal mathematical

development tool. The Libsvm (version 3.23.) initially

designed by (Chang and Chih-Jen 2011)was used for SVM

classification and parameter optimization. The empirical

evaluation was performed using Intel (R) Core (TM) i3-

4010U CPU @ 1.70 GHz with 8.00 GB of RAM.

SPXY (sample set partitioning based on joint x–y dis-

tances) method(Galvão et al. 2005) was applied to split the

acquired sample spectra from 120 samples per each bac-

teria into two parts that were subsequently used for model

calibration (72) and prediction (48) respectively. Overall
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correct classification rate (OCCR), was employed to

establish the performance of all models developed.

Results and discussion

Microbiological reference analysis

The reference testing for S. Typhimurium contamination

was performed using the above methods, and the numeric

results were reported in Table 1. The mean concentration

of each bacterial inoculation levels was * 102(2.14

± 0.42), * 104 (4.21 ± 0.32), and * 107(7.33 ± 0.36)

Log CFU/g. The predictive models established in the study,

as can be seen in Table 1, encompassed broad data ranges

and can, therefore, produce relatively better results than the

narrow data coverage for online applications.

Volatile organic compound analysis via E-nose

and HS-GC-IMS

The resistance values (Go/G) of all the sensors rise sharply

and decrease rapidly in the presence of pork samples

inoculated with bacteria odors within 20–30 s as demon-

strated (Fig. 1). Different sensors showed different

responses in volatile substances in the pork samples inoc-

ulated with different concentrations of pathogens. In par-

ticular, significant variation in responses of S2, S4, S6, S7,

S8 and S9 sensors varied considerably. Moreover, sensors

S1, S3 and S5 had no response and remained unchanged,

and the S10 sensors had few alterations (Fig. 1). The broad

range of contaminated sample E-nose patterns is attributed

to various concentrations of inoculum and increasing

microorganism (S1)

The detection, discrimination and quantification of

volatile compounds in pork samples with specific bacterial

concentration by an electronic nose was therefore mostly

dependent on the six sensors, including S2, S4, S6, S7, S8

and S9 sensors which were responsive to nitrogen oxides,

hydrogen gas (H2), methane (wide-ranging organic com-

pounds), inorganic sulfur compounds, alcohol and aromatic

compounds respectively.

The E-nose results were further validated by the result

from the HS-GC-IMS, with more than 29 compounds in the

samples defined and measured based on HS-GC-IMS

analysis. Figure 2 shows the 29 VOCs identified as dis-

tinctive ion transport peaks as well as the horizontal cross-

section view corresponding to the inoculated bacterial meat

samples at different concentrations. Only part (15 out of

29) of the distinctive ion transport peaks could be recog-

nized in the NIST2014 spectral database, as shown in

S2(Supplementary). From the table, more alcohols (7) were

detected. Our study was consistent with the study by

Timsorn et al. (2016) showed alcohols to be among the

most prevalent volatiles in meat products when detecting

bacteria population with an electronic nose.

Different intensities of VOCs identified in each bacterial

sample are also shown in Fig. 2 to enable differentiation of

bacteria according to their concentrations. As can be seen,

the signal intensity of some VOCs was much higher or

lower at different contaminant levels, while others exhib-

ited minor changes in intensity. This could be due to

growing or decreasing metabolic and catabolic activity

such as proteolysis, glycolysis and lipolysis of the microbes

(Audrain et al. 2015).

Qualitative discrimination based on E-nose response

VOCs are regarded as markers of microbial growth during

primary and secondary metabolism as by-products and are

primarily influenced by the form of microbial species and

strains involved (Wang et al. 2016).

We conclude that the rise in sensor signal (E-nose) and

color intensities (HS-GC-IMS) should also be closely

related to bacterial concentration. The findings indicate that

E-nose could qualitatively reflect bacterial concentration

based on the levels of VOCs produced and should be

successful in assessing pathogen presence in meat samples.

Principal component analysis (PCA) was applied to

analyze the inoculated bacteria samples and the control

group. E-nose PCA results showed that three main com-

ponents (PC1-52.57%, PC2-38.88%, PC-8.53%) were

maintained and constituted 99. 99% of the overall varia-

tion. The results from the PCA plot (Fig. 3) showed that

the three levels of bacteria inoculated sample and control

group were clustered at different positions, clearly showing

that the influence of bacterial contamination on volatiles

produce by the pork samples was sufficient to discriminate

between the contaminated groups and control group.

Furthermore, the output of the PCA may also be used to

test the quality of the dataset before being applied as an

input in a quantitative model. The above results show good

sensor responses to bacterial contamination, since there is

no significant overlap between different sample groups,

with each group showing a unique pattern in PCA results.

Table 1 Statistical characteristics of microbiological analysis refer-

ence values (Log CFU/g) of S. Typhimurium in pork samples

Pathogen Number of samples Range

S. Typhimurium Calibration set 72 2.33–7.53

Prediction set 48 2.12–7.36
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Fig. 1 Radar plot of sensor

responses S. Typhimurium

inoculated pork samples

Fig. 2 Fingerprint comparison

of volatile organic compounds

(VOCs) by different

concentrations of S.
Typhimurium inoculated pork

samples

Fig. 3 Principal Component

Analysis (PCA) of final

classification model based on

data fusion a 2logCFU/ml,

b 4logCFU/ml c 7logCFU/ml
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Quantitative discrimination

Chemometric and enzyme-generated MVOCs are currently

the two types of strategies employed to obtain vital infor-

mation that can demonstrate the relationship between

MVOCs and microbial genera in foods (Wang et al. 2016).

In this study, statistical analysis was also applied to MVOC

data analysis for quantitative analysis. The viability of

using the E-nose signals extracted from the pork inoculated

with the bacteria for colony count prediction was studied.

In other to identify the right SVM kernel parameter

which improves the overall performance of SVMR model

to quantify the BFP, radial basis function (RBF), linear,

polynomial and sigmoid kernel functions were applied

simultaneously (Andrew 2001). Each kernel function was

performed five (5) times, and the results averaged. From

the results (Table 2), the RBF function showed the lowest

RMSE (0.217) and the highest accuracy for prediction

(0.937) and was therefore used during the optimization

stage.

Although the SVMR model result obtained above could

accurately predict bacterial foodborne pathogen concen-

trations in the pork samples, the results were not excellent

due to poor hyperparameter tuning (the best combination of

C and g parameters to create a good SVM regression

model). The grid search (GS), genetic algorithm (GA) and

particle swarm optimization (PSO) method were applied to

optimize the C and g parameters for modifying the RBF

kernel function for influencing the SVMR model (Hu et al.

2019).

Parameter optimization in multivariate regression is

very valuable for enhancing the model’s predictive ability

(Xu et al. 2017). The data from the E-nose signal is opti-

mized and tested against the calculated microbial reference

data using GA-SVMR, GS-SVMR and PSO-SVMR mod-

els. The results from the three optimized SVMR models

offered varying but higher predictive accuracy relative to

the SVMR model

SVM hyperparameter optimization

GS works on the basis of constructing a grid with all the c

and g value points partitioned in a certain area, as shown in

the three dimensional (3D) view in Fig. 4c. K-fold cross-

validation approach is then used to assess prediction

accuracy on the basis of a given c and g category. The best

results of optimization were obtained when c = 4 and

g = 0.036 were used to obtain the best precision of SVM

regression results with a lower mean square error (MSE).

In this study the root mean square (RMSE) was applied for

comparison, thus the MSE was recomputed where the

RMSE = HMSE

In the PSO process, the number of iterations was set at

200 with the learning factor cl and c2 set at 1.5 and 1.7,

respectively. From Fig. 4b PSO showed a faster conver-

gence rate with the best optimization results and lower

MSE achieved when c = 0.52 and g = 0.1.

In GA selection of the c and g, the number of iteration,

population size, cross probability and mutation probability

was set as 200,20, 04 and 0.02 respectively. From Fig, 4a,

the convergence rate of GA was slower than PSO and

became stable in the 17th generation and arrive at a lower

MSE. GA requires a complete evaluation of all the items in

one generation, and the best optimization results were

achieved when c = 16.75 and g = 0.023

Table 2 highlights statistical measurements computed

using GA-SVMR, GS-SVMR and PSO-SVMR train and

test data. We improved again the RMSE of our support

vector regression model with GA, GS and PSO optimiza-

tion, respectively.

GA-SVMR shows a slightly higher RMSE 0.02896 and

0.03671 log CFU/g for the train, cross-validation and test

data respectively. The correlation coefficients of GA-

SVMR (Rc2, RCv
2 , RP

2) were slightly higher compared with

the other models (GA-SVMR[ PSO-SVMR[GS-

SVMR[ SVMR). From the results is observed that the

efficiency and accuracy of the models rely on better SVM

and kernel parameter selection. The overall performance of

GA-SVMR model (Rc2 = 0.9910, RCv
2 = 0.964, RP

2-

= 0.989) performed better compared with the other models

with a higher RPD of 14.11. Validation of model was

subsequently performed using independent test data

(Table 3). The aim of model validation is to compare

model predictions with a real-world and unknown dataset

for model accuracy and predictive ability assessment. Test

data is used to assess the final chosen model and estimate

Table 2 Prediction accuracy of

SVMR optimized by PSO, GA,

and GS on S. Typhimurium
contaminated pork e-nose

dataset

Model Calibration Cross validation Prediction RPD

RMSEC RC
2 RMSECV RCv

2 RMSEP RP
2

PSO-SVMR 0.065 0.991 0.183 0.962 0.145 0.986 14.11

GA-SVMR 0.036 0.991 0.163 0.964 0.137 0.989 14.93

GS-SVMR 0.058 0.986 0.177 0.959 0.148 0.966 13.82

SVMR 0.136 0.968 0.217 0.937 0.162 0.949 12.63
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the error of prediction. Test data will not be used until after

the end of the model construction and selection process.

Test results inform you how good your model is able to

generalize; i.e. how great your model is performing for

fresh data. The test data consisting of 45 samples inocu-

lated at * 102(15 samples), * 104 (15 samples), and *
107 (15 samples) CFU/ g was used. The quantification of

regression correlation values (R2 values) and root mean

squares error of prediction (RMSEP) was used to measure

the multivariate model. Evidently, the predictive perfor-

mance of Prediction set (0.989) was higher than that of

independent testing data (0.9825), presumably because the

samples attributed to testing data did not belong to the

same set and were not used in the calibration model

development at all.

E-nose nose has been widely used to compare in the

past, volatile profiles to microbial counts, especially in the

prediction of total viable counts. This study shows

improved predictive ability of bacterial population in a

food matrix and broth culture as compared to similar

studies by Timsorn et al. (2016) (R2 = 0.94) and Siripa-

trawan (2008) (R2 = 0.96).E-nose has demonstrated to be

an effective microbiological screening tool, while the test

is limited by the production of volatile metabolites, which

can occur after a few hours of growth.

Conclusion

The study presented was developed to identify the volatile

compounds common to Salmonella Typhimurium inoculate

in pork muscle. Results showed that the presence of

Fig. 4 Graph for optimizing SVM parameters by genetic algorithm, particle swarm algorithm and Grid search

Table 3 Prediction accuracy of SVMR optimized by GA on S.
Typhimurium contaminated pork E-nose independent dataset

Model Prediction RPD

RMSEP RP
2

GA-SVMR 0.1958 0.9825 13.24

3868 J Food Sci Technol (October 2021) 58(10):3861–3870

123



Salmonella Typhimurium could be classified and quantified

by a fast and simple analysis of the relative content of their

volatile compounds using an electronic nose and GC-IMS

Previous research on the use of an electronic nose in

meat products for the identification of bacterial foodborne

pathogen had not been released. As a non-destructive

technique, we show the electronic nose’s experimental

conditions and parameter settings to obtain better response

values. E-nose sensor response curve is first combined with

PCA model for detection of bacterial presence/absence as

well as discrimination of bacterial concentrations in meat.

The finding also shows that the e-nose, combined with

machine learning algorithms and metaheuristic optimiza-

tion techniques, is capable of quantifying bacterial con-

centrations in a food matrix, and is an efficient tool for

rapid detection and quantification of bacteria pathogens in

meat samples. Furthermore, E-nose can be incorporated as

a process analytical technology (PAT) through the devel-

opment of mini sensors for onsite process monitoring of

bacterial pathogens in the meat industry. Potential tech-

nology improvements currently under study, the incorpo-

ration of sensors that are much more sensitive, can lead to a

reduction in detection limits and thus the detection time.
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