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Gut microbiome-mediated metabolism effects on
immunity in rural and urban African populations
Martin Stražar1, Godfrey S. Temba2,3, Hera Vlamakis 1, Vesla I. Kullaya3,4, Furaha Lyamuya 2,

Blandina T. Mmbaga 5, Leo A. B. Joosten 6,7, Andre J. A. M. van der Ven6, Mihai G. Netea 6,7✉,

Quirijn de Mast 6,7 & Ramnik J. Xavier 1,8,9✉

The human gut microbiota is increasingly recognized as an important factor in modulating

innate and adaptive immunity through release of ligands and metabolites that translocate into

circulation. Urbanizing African populations harbor large intestinal diversity due to a range of

lifestyles, providing the necessary variation to gauge immunomodulatory factors. Here, we

uncover a gradient of intestinal microbial compositions from rural through urban Tanzanian,

towards European samples, manifested both in relative abundance and genomic variation

observed in stool metagenomics. The rural population shows increased Bacteroidetes, led by

Prevotella copri, but also presence of fungi. Measured ex vivo cytokine responses were sig-

nificantly associated with 34 immunomodulatory microbes, which have a larger impact on

circulating metabolites than non-significant microbes. Pathway effects on cytokines, notably

TNF-α and IFN-γ, differential metabolome analysis and enzyme copy number enrichment

converge on histidine and arginine metabolism as potential immunomodulatory pathways

mediated by Bifidobacterium longum and Akkermansia muciniphila.
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The complex relationship between humans and commensal
gut microbes is vital to maintaining intestinal homeostasis,
and disruption of this symbiosis can drive inflammation

and development of inflammatory disease. Lifestyle and beha-
vioral changes resulting from unprecedented economic develop-
ment and migration are major contributors to shifts in the
intestinal ecosystem1–5. These environmental changes exert a
more rapid impact than host genetic determinants of microbiome
composition6, and are increasingly attributed to a rise in auto-
immune diseases including rheumatoid arthritis, multiple
sclerosis, type 1 diabetes, or inflammatory bowel disease. The
urbanization gradient, which refers to the variation of environ-
mental factors with migration and development, has wide-
ranging impacts on factors that affect host-microbiome interac-
tions and overall health. These include diet and healthcare access,
as well as early life factors such as delivery mode, breastfeeding,
and antibiotic use that affect neonatal microbial colonization7.
Large population studies indicate that the full landscape of
microbial diversity is still underexplored3, particularly in indus-
trializing countries1–3.

The host immune system and the microbiota interface through
microbial ligands or metabolites8,9, which regulate gut perme-
ability, mucus layer integrity, or polarization of T cells to their
subtypes10. The latter can be induced ex vivo by common gut
colonizers including E. coli11, S. aureus12, or C. albicans13,
inducing detectable changes in monocyte- and lymphocyte-
produced cytokine expression. Studies in humans14 and
antibiotic-treated and germ-free mice15,16 identified microbial
stimuli and vaccines that modulate immune responses. For
example, functional metagenomic studies in cohorts of healthy
individuals of Western European ethnicity identified associations
between expression of host pro-inflammatory cytokines and
microbial tryptophan and palmitoleic acid metabolic pathways17.
Training of the innate immune system in childhood can be
affected by differences in structures of lipopolysaccharide cell wall
components from E. coli and Bacteroides18. Alterations in
microbial metabolite pools (acylcarnitines, bile acids, and short-
chain fatty acids) can also predict inflammatory bowel disease
types19,20. However, the molecular mechanisms and metabolites
through which microbial species affect cytokine responses in vivo
remain unknown.

Identifying precise immunomodulatory pathways has been
challenging due to limited computational tools and reference
genomes21, requiring cohorts harboring large microbial diver-
sity. African populations encompass a diversity of lifestyles and
opportunities to detect ecological niches5,22,23, as well as a
pervasiveness of autoimmune diseases24 and epidemics25,26.
Leveraging the diversity of these populations to dissect the
dynamics of competitive microbial interactions that have led to
the evolution of complex molecules that allow bacteria to
interact with host immunity and utilize it to their own
advantage27–29 might unveil promising therapeutic strategies or
dietary interventions.

Here we present a Tanzanian cohort with paired stool meta-
genomics, plasma metabolomics, and ex vivo blood stimulations
with eight microbial stimuli, covering a range of immune system
modalities, and we compare it with a cohort of Dutch volunteers.
Subjects from the Tanzanian cohort hail from both urban and
rural settings, representing a range of lifestyles, diet, and micro-
bial exposures that reveal a gradient of microbial compositions.
The consequent variation in cytokine responses, most notably
TNF-α and IFN-γ, is linked to 34 immunomodulatory microbes
with increased effects on independently measured circulating
metabolites. Multiple lines of evidence converge to histidine and
arginine metabolism as microbially-mediated immunomodula-
tory pathways.

Results
Tanzanian gut microbial compositions diverge from Western
populations along the urbanization gradient. The presented
Tanzanian (TZ) cohort consists of 70 subjects from rural (median
age 39.6) and 253 from urban areas (TZ, median age 27.6), with a
well-balanced gender distribution (Fig. 1a). A participant survey
comprised 54 anthropometric and lifestyle-related variables,
including diet, antibiotics courses, animal exposure, pollution,
and quality of drinking water (Supplementary Data 1-2). The
individuals were subjected to stool metagenomic sequencing,
plasma metabolomic profiling, and ex vivo stimulation of whole
blood with a panel of well-studied microbes.

Reference-based stool metagenomics revealed 415 species from
154 genera (Metaphlan30). Only 212 species were present in at
least 10 individuals, implying that approximately half of the
species are rare and highly specific. A previously published cohort
of 471 individuals from the Netherlands (NL) detected 407 species
from 134 genera, yielding less taxa despite having 1.5 times more
samples17. Both TZ and NL cohorts were profiled using marker
gene-based method Metaphlan and showed a comparable
number of reads mapping to both marker genes and UniRef90
gene families (Supplementary Fig. 1a-c). As the TZ cohort yielded
more reads on average, the smaller proportion of reads mapping
to marker genes may be attributed both to presence of yet
uncatalogued taxa and difference in sequencing protocols.

Relative abundances of shared phyla differentiated TZ and NL
individuals (Fig. 1b). This manifested through a reduction in
Actinobacteria (7.6% in TZ vs. 18.3% in NL, PFDR= 9.39E−39)
and an increase in Bacteroidetes (23.1% vs. 18.2%, PFDR= 2.30E
−08), Firmicutes (63.6% vs. 58.7%, PFDR < 1.12E−05) and
Proteobacteria (3.1% vs. 0.5%, PFDR= 1.30E−36). Residency
was differentiated further by Actinobacteria (6.3% rural vs. 8.1%
urban, PFDR=0.241) and Verrucomicrobia (0.2% vs. 1.1%, PFDR
= 0.241). Verrucomicrobia is rare in traditional populations1 and
their 5.5-fold increase in urban TZ suggests a continuum of gut
compositions ordered from rural, through urban Tanzania, and
toward Western Europe.

Seeking confirmation of the manifested urbanization gradient,
we profiled samples using 176 shared species between the two
cohorts which showed comparable detection rates in the three
subgroups (Supplementary Fig. 1d). A t-SNE plot based on
species profiles confirmed cohort divergence, with rural samples
in particular showing strong polarization (Fig. 1c). The observed
projection was in turn not visibly driven by age, sex, or number of
marker genes (Supplementary Fig. 1e). We performed two
Wilcoxon rank-sum tests for each species to find simultaneous
changes in abundance between (1) rural and urban and (2) urban
and NL samples. This revealed eight species changing along the
gradient (Fig. 1e, Supplementary Data 3, PFDR < 0.05, see the
“Methods” section). The two alternative orderings of tests (urban-
to-rural-to-NL or rural-to-NL-to-urban) did not yield any
associations (Fig. 1d). While sex and age expectedly had
significant effects on the microbial compositions (explained
variance 2.3% and 1.7%, respectively, PERMANOVA, Supple-
mentary Fig. 1f), the rural-to-urban-to-NL had a comparably
stronger effect (explained variance 16.6%, Supplementary Fig. 1f),
increasing our confidence in the perceived rural-to-urban-to-NL
gradient.

Species more abundant in rural populations were Eubacterium
biforme and highly abundant Prevotella copri, which is char-
acteristic for African populations22, in particular hunters1. Six
species increased toward the NL population, including Akker-
mansia muciniphila and Bifidobacterium longum, the latter 97%
prevalent in NL but only 61% in TZ (Supplementary Fig. 2,
Supplementary Data 4). Another characteristic Firmicute for NL
was Subdoligranulum, which is related to Faecalibacterium
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prausnitzii31. To our surprise, a comparison between entire
cohorts (NL versus TZ, without urban/rural separation) yielded F.
prausnitzii as the strongest from 43 enriched species in TZ,
suggesting that phylogenetically similar microbes can show
reverse abundance trends in geographically distant locations.

Functional differences resulting from differential abundance
were supported by pathway profiling using Humann2. Twenty-
one MetaCyc pathways showed differential copy numbers, sixteen
of which were enriched in TZ (Supplementary Fig. 3). These were
dominated by branched-chain amino acids valine and isoleucine
biosynthesis, previously observed to be active in P. copri and

associated with insulin resistance32. The Dutch samples showed
an enrichment of lactose and galactose degradation, potentially
reflecting different dietary habits.

Potential adaptations below species level were investigated with
phylogenetic strain analysis (Fig. 1f; Supplementary Fig. 4;
Supplementary Data 5; “Methods”). Seventeen species and two
genera showed significant strain-level divergence between rural,
urban, and NL samples (PERMANOVA, P < 0.05). These include
the aforementioned Akkermansia, differentially abundant Rumi-
nococcus bromii and Lactobacillus ruminis, but also five taxa not
detected with differential abundance (PFDR > 0.05, Supplementary
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Data 5): Ruminococcus obeum, Roseburia hominis, Clostridium sp
L2 50, Streptococcus salivarius, Coprococcus sp ART55 1. These
genetic differences complement differential abundance and
highlight an alternative route for functional effects to take place.

The rural microbiome traits can also be seen with eukaryotes,
which are rarely detected but have large potential to affect
microbial ecosystems22. Twenty-two samples contained at least
one of three detected fungal taxa: Saccharomyces cerevisiae,
Naumovozyma, and Eremothecium, the latter two only classified
at the genus level (Fig. 1g). While half (11) of these cases were
rural (P= 0.002, Chi-square test), the remaining 11 urban cases
also showed strong rural resemblance. Seventeen out of 22 cases
had less than half the expected Actinobacteria abundance
(median 1.4% compared to average 6.3% in rural). Finally, since
only 4 NL samples yielded any fungi, the mycobiome presents
another understudied facet of gut diversity.

Environmental, socio-economic, and dietary factors shape the
gut microbiota. Differences in living standards and lifestyles
across Tanzania determined great within-cohort microbial
diversity. Species-level relative abundances were used to sum-
marize Tanzanian metagenomes and revealed three main clusters
driven by environmental and anthropometric factors (Fig. 2a–c,
“Methods”). The largest (cluster 1) was dominated by Bacteroides
and contained younger, urban females (Fig. 2d). The second
cluster (2) revealed typical profiles from the non-urban areas: it
contained the majority of rural samples (42/70), dominance of
Prevotella, increased exposure to cattle, and smoky fuel. This
group also included almost all the cases (18 out of 22) where
Ascomycota were detected. The remaining cluster (3) contained
urban males, was dominated by Ruminococcus and Prevotella, and
was least exposed to animals.

Beyond clustering, the identified factors each significantly
shifted the composition of at least one phylum. Women had a
larger proportion of Actinobacteria and Verrucomicrobia, while
men had an increase in Bacteroidetes (PFDR < 0.25, Fig. 2e,
Supplementary Data 6). Urbanization and presence of fungi
affected these same three phyla, as presented above.

A dietary survey revealed how frequencies and types of
consumed food and drinks differentiate between urban and rural
samples, determine fungal presence and shape the clustering
(Fig. 2f, Chi-square/Kruskal–Wallis test, P < 0.05, Supplementary
Data 7). Urbanization was aligned with most dietary variables
(six), where rural samples were increasingly likely to consume
vegetables, ugali (maize porridge), and sweet tea. Alcohol intake
was affecting all three aspects and revealed banana brew (a
popular indigenous alcoholic beverage in the Kilimanjaro area
made from fermented bananas and finger millet) as a potential
cause of fungal gut colonization. Taken together, the detected
environmental and dietary effects may both affect the micro-
biome or reflect the lifestyle differences to various degrees.

Microbiome induces systematic trends in cytokine expression.
Immunological profiles of Tanzanian subjects with different life-
styles and gut microbiota were assessed by cytokine responses of
whole blood samples upon exposure to microbial and fungal sti-
muli. The analysis strategy to identify immunomodulatory
microbes is outlined in Fig. 1a. Cytokine production33 in whole
blood was stimulated by Gram-positive (Staphylococcus aureus and
Streptococcus pneumoniae), Gram-negative bacteria (Salmonella
typhi, Coxiella burnetii, and Escherichia coli), Mycobacterium
tuberculosis, the yeast Candida albicans, as well as Toll-like recep-
tor-3 and -4 ligands. The rural population had lower cytokine
responses overall, as we also recently reported, (Fig. 3a, Supple-
mentary Fig. 5a-b, Supplementary Data 8 and Temba et al.33), most

notably in stimulation of TNF-α with LPS (P < 10−4, Wilcoxon
rank-sum test), S. aureus (P < 10−4), and C. albicans (P < 10−3).
Another notable cytokine was IFN-γ, eliciting stronger responses to
intracellular compared to extracellular stimuli, consistent with its
role in lymphocyte-induced macrophage activation. Delineation of
whole blood leukocyte and differential counts prior to stimulation
revealed positive correlation between monocytes and IL-6, TNF-α,
IL-1β, and IL-10, while IFN-γ expression was more strongly asso-
ciated with lymphocytes (Supplementary Fig. 5c). As the changes in
cytokine levels may stem both from changes in blood cell compo-
sition or altered transcription, the proportional effect of each
mechanism would require targeted experiments. The unstimulated
monocytes and lymphocyte counts were however indistinguishable
between rural and urban samples (Supplementary Fig. 5d), indi-
cating that the main cohort stratification is unlikely to be con-
founded by cellular composition. Together, the variation in cytokine
production suggests that environmental factors may affect the
immune responses.

Cytokine production was significantly correlated between
almost all cytokines and stimuli (71 out of 79 combinations,
Fig. 3a, Supplementary Fig. 5b), except Poly:IC, suggesting that
multiple cytokines can be combined to detect an immune
response to a stimulus and its associations. We designed a log-
linear model to test for a systematic increase in all combinations
of cytokines and stimuli, conditioned on microbial abundances,
age and sex (“Methods”). High cytokine expression levels were
inversely associated with age (P < 10−33) and male gender (P=
0.014). Along with these factors, 34 stringently filtered species
were identified (PBonferroni < 0.005, prevalence >20%, Fig. 3b;
Supplementary Data 9), and split by positive (21) and negative
(13) effects on ex vivo cytokine expression.

Concordant results were obtained with the same method on
the NL cohort which had a similar experimental design including
macrophage stimulations with overlap to the TZ study in four
stimuli, IL-6 and TNF-α17 (Supplementary Fig. 6a). Despite fewer
significant microbes from the NL cohort (Fig. 3c, Supplementary
Fig. 6b), the effects were consistent on average (Fig. 3d; P= 0.042,
Pearson correlation test). Differences may arise due to lower
diversity in NL, less measurements, or even strain-level variation.
Indeed, we observed two immunomodulatory taxa with sig-
nificant strain divergence from NL, showing moderate (Akker-
mansia, Suppl. Fig. 7a, c, P= 0.07) to strong phylogenetic
associations with cytokine responses (Streptococcus salivarius,
Supplementary Fig. 7b, d, P < 10−6).

Overall, intracellular pathogens and cytokines produced by
myeloid cells tended to have a larger number of microbiome
associations, while lymphocyte-derived cytokines showed greater
microbiome dependence in combination with extracellular
stimuli (Fig. 3e, Supplementary Data 10). TNF-α showed the
strongest microbiome dependence when stimulated with C.
albicans. A. muciniphila, and B. longum had the strongest
positive effects, while rural hallmark P. copri showed a reverse
pattern. B. longum and P. copri showed respective positive and
negative regulation of TNF-α, but an inverse pattern in IL-1β
when stimulated by E. coli, C. burnetii, or S. typhi. Despite their
low prevalence, Ascomycota were associated with decreased
response to TNF-α response to C. albicans, suggesting potential
intra-kingdom tolerance (Supplementary Fig. 8). Thus, differ-
ences in intestinal microbiota driven by residency and its
ramifications7 contribute to variability in immune responses.

Pathways with microbial enzymes differentiate the urban and
rural metabolome and associate with cytokine responses.
Urbanization-driven differences in immune responses and the
impact of immunomodulatory species were further investigated
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through circulating metabolites. Untargeted plasma metabolome
profiling using liquid chromatography–mass spectrometry
(LC–MS) identified 1607 mass/charge (m/z) peaks corresponding
to known molecules (Supplementary Fig. 9a). We used database
integration to alleviate the uncertainty in compound identifica-
tion, as correlated abundances of multiple ions can reflect
coherent metabolic pathway activities34. First, co-abundance
clustering was performed as a quality control and revealed 28
metabolite clusters, dominated by fatty acyls, carboxylic acids,
and derivatives, as well as prenol lipids and glycerophospholipids
(Fig. 4a, Supplementary Fig. 9b, Supplementary Data 11; meta-
bolite classes as in HMDB). Second, a total of 632 peaks were
matched to one or more KEGG compound identifiers, which
were linked to 351 KEGG pathway identifiers (Supplementary
Data 12). Finally, to approximate microbial influences on circu-
lating metabolites, we utilized the stool metagenomes and KEGG
Orthogroup annotation to count the number of detected micro-
bial enzymes for each of the 351 pathways. This yielded 325
pathways with at least one microbial enzyme.

The metabolome profiles differentiated the urban and rural
samples (Fig. 4b, Supplementary Data 11), particularly in the
secondary metabolites, as also recently reported by our group33.
Surprisingly, rural samples showed a larger number of increased
metabolite intensities. Pathways with more than ten microbial
enzymes that included differential metabolites included glycer-
ophospholipids, sphingolipid and cholesterol products, and
amino acids including histidine, tyrosine, methionine, and
cysteine (Fig. 4c, Supplementary Data 11). Rural samples had a
higher intensity of potentially dietary-related compounds,
including ascorbic acid (vitamin C), fumaric acid, citric acid,
L-Aspartic acid, as well as formiminoglutamic acid, an inter-
mediate in histidine catabolism.

Correlation analysis revealed 1234 metabolites associated with
cytokine expression (PFDR < 0.05, Spearman correlation, Supple-
mentary Fig. 9c, Supplementary Data 13). TNF-α stimulated by C.
albicans was associated with most metabolites (685), concordant
with the microbiome analysis above. Positive immunomodulatory
effects were mediated by microbially-modified metabolites
including histidine, as well as glycerophospholipids and sphingo-
lipids (Fig. 4d, Supplementary Data 13). Negative effects were
predominantly manifested through products of tyrosine, alanine,
phenylalanine, and cysteine metabolism (Fig. 4e, Supplementary
Data 13).

Numerous individual molecules associated with cytokine
responses have known immunomodulatory roles (Supplementary
Data 13). For example, itaconate is a host macrophage-produced
inhibitor of inflammation35 that activates Nrf2 via KEAP1. The
former act in a nitric oxide-producing pathway in response to
pathogens. Low concentrations of itaconate, which can be derived
by fungal fermentation36, were associated with increased TNF-α
response to S. enteritidis, E. coli, LPS, S. typhi, S. pneumoniae, and
M. tuberculosis, as well as IFN-γ responses to C. burnetii and S.
typhi, reflecting the expected role of this metabolite in down-
regulation of inflammation. Glyphosate, an environmental
toxin37, was also associated with lower TNF-α stimulation by S.
aureus and E. coli.

Correspondence between metabolomics and immunomodula-
tory species’ enzymes reveals affected pathways. An indirect
validation of immunomodulatory species is performed by gauging
their effects on independently-measured circulating metabolites.
We approximate this effect by computing the maximum Spear-
man correlation between each microbes’ abundance and any one
metabolite intensity. Indeed, the distribution of the approximated
effects proved significantly greater for significant species (Fig. 5a,

Supplementary Data 14), particularly the 21 positive species. This
suggests that the 34 species affecting cytokine expression also
have a greater imprint on the plasma metabolome, which is
consistent with microbiota-affected immune response models38.
In total, 28 MetaCyc pathways entailed at least three metabolites
with significant associations with immunomodulatory species
(Fig. 5b, left; Supplementary Data 13), suggesting possible
mechanisms manifested in multiple interdependent compounds.

We then asked which of the identified 28 pathways might be
significantly encoded in the genomes of immunomodulatory
species (Fig. 5b, right; Supplementary Data 15). We devise a
model of pathway copy number enrichment in positive or
negative species compared to neutral (“Methods”). Ten of the
metabolite-associated pathways were enriched in immunomodu-
latory species’ genomes, where the majority, nine, were encoded
by the positive species. The resulting nine pathways include
microbially-modified amino acids, for example arginine and
histidine, which were also seen in associations with urbanization
and cytokines, as described above.

A detailed look at compounds from the pathways reveals the
following general pattern: negative correlation between positive
species and compounds, positive correlation for negative species,
and mixed effects for neutral species (Fig. 5c, Supplementary
Data 14). The largest number of associations, 15, was contributed
by Bifidobacterium longum, the microbe with strongest positive
immunomodulatory effects as seen above. In histidine metabo-
lism, B. longum showed a negative association with Phosphor-
ibosyl pyrophosphate and D-Erythro-imidazole-glycerol-
phosphate, the latter showing a strong dependence along the
negative-neutral-positive species spectrum.

More than half of the histidine biosynthesis copies were
contributed by positive species, including B. longum and R.
bromii (P < 1.37E−10, Fig. 5d). Conversely, negative immuno-
modulatory species were enriched for histidine degradation (P <
5.6E−10, Fig. 5e), the latter encoded almost exclusively by
Streptococcus parasanguinis. The associations between immuno-
modulatory species and metabolites can thus be traced to
metagenomic pathways, whereas the differential compound
intensity may result from a combination of strain variation (R.
bromii, Akkermansia) or relative abundance alone (B. longum).

Integrative analysis details microbial mechanisms in histidine
and arginine metabolism pathways. We outline histidine
metabolism as a predicted microbial amino acid metabolism
pathway affecting cytokine responses by combining multiple lines
of evidence above. Metagenomics and metabolomics measure-
ments detected 26 enzymes and 9 circulating compounds corre-
sponding to KEGG pathway histidine metabolism (KO00340)
(Fig. 6). Histamine, histidine, and N(pi)-Methyl-L-histidine had
positive effects on TNF-α stimulation with all Gram-positive
bacteria, while L-Aspartate, D-Erythro-imidazole-glycerol-phos-
phate, and 5-Phospho-alpha-D-ribose 1-diphosphate had the
corresponding negative effects.

Enzymes directly involved with histidine were predominantly
encoded by positive immunomodulatory species (hisD, R. bromii,
B. longum; hutH, B. longum; hutC, B. uniformis, and B. longum).
Compounds resulting from histidine catabolism, D-Erythro-
imidazole-glycerol-phosphate and 5-Phospho-alpha-D-ribose
1-diphosphate are directly involved with gene cluster hisA-hisH
encoded both negative immunomodulatory species (E. rectale,
93.7–95.3% samples), but also B. longum (44.9–56.0%) and A.
muciniphila (27.29–32.2%). Since P. copri showed a strong reverse
positive effect on Phosphoribosyl pyrophosphate and D-Erythro-
imidazole-glycerol-phosphate (Fig. 5c, Supplementary Data 14),
but had no enzymes in the histidine metabolism pathway, this
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Fig. 4 Pathways with microbial enzymes differentiate the urban/rural metabolome and associate with cytokine responses. a The intensities of 1607
metabolites were standardized (z-scored) across the samples and projected with t-SNE. K-means cluster was used to discover 28 metabolite clusters
(“Methods”) and annotated with the most prevalent HMDB molecular class. b t-SNE plot of samples metabolome profiles separating urban and rural
samples. c Differentially abundant metabolites between urban and rural samples (Wilcoxon rank-sum two-sided test, PBonferroni < 0.05), stratified by KEGG
pathways. d, e Number of positive and negative effects metabolites on cytokine expression, counted by detected KEGG pathways. Pathways with at least
10 different microbial enzymes in the entire cohort are selected. Metabolite-cytokine correlations are determined by Spearman correlation test subject to
PFDR < 0.05. Source data are provided in the Source data file.
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association may stem from reverse, mutually exclusive abundance
patterns with positive immunomodulatory species.

A pathway that downregulates cytokine production that
emerged from metabolomics and metagenomics was arginine
biosynthesis (KEGG pathway KO00220). Three of its compounds
negatively-associated with relative abundance of B. longum and

TNF-α response to C. albicans: L-Aspartate, fumarate,
N-Acetylornithine. B. longum was also strongly enriched in
pathway copy numbers (P < 0.002, Supplementary Fig. 10a-b),
encoding genes argB, argC, argD, argG, argH, and argJ in the arg
family, previously observed in limiting T-cell functions39. While
B. longum contributed arg genes in 53.8–55.6% samples,
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HISTSYN-PWY: L-histidine biosynthesis

• • •     FDR < 0.05
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A. muciniphila also encoded argB, argC, argD, and argH in
32.9–35.8% of samples (Supplementary Fig. 10c). Genes argD,
argG, and argH are directly involved in reactions with N-
Acetylornithine, L-Aspartate, and fumarate, respectively. While
limited enzymes and compound detection may not allow for
narrowing down of immunomodulatory factors to a single
microbial molecule, the evidence from cytokine expression,
circulating metabolites, and metagenomic pathway copy numbers
suggest an active role of B. longum in histidine and arginine
metabolism.

Discussion
Repercussions of urbanization, including changes in diet,
increased hygiene, and antibiotic usage, can have positive short-
term, but unknown long-term effects on health. Traditional, rural
populations can be seen as examples of past habits regarding diet,
medication, and environmental exposure. Our gradient analysis
shows a progression in intestinal microbial compositions and
exposing prominent shifts in a number of taxa. Rural samples
show a steady increase in Prevotella copri, which is implicated in
decreased cardiometabolic disease risk and insulin resistance32,40.
Conversely, while the abundance of A. muciniphila is linked to
obesity-risk genes variants and protective obesity effects41,42,
Verrucomicrobia are rarely found in African traditional
populations1. Since Western fiber-poor diets promote mucin
degraders43 and a thinner mucus layer is characteristic in
inflammatory environments44, the presence of A. muciniphila is
consistent with increased pro-inflammatory cytokine expression
in urban individuals (Supplementary Fig. 5). Even though the
rural lifestyle can be perceived as healthier in general, the bene-
ficial effects and survival of individual microbes are context-
specific and require targeted experiments.

Urban samples were more similar to Dutch samples, which
might reflect a transition to Western-type diet, different hygiene,
and microbe exposure22. The gradient was also noted in an inde-
pendent strain-level analysis, uncovering 19 diverging genomes that
may bring additional gene- or SNP-level phenotypes beyond the
scope of this study. Interestingly, rural samples harbored a notable
proportion of fungi. Since fungi were significantly depleted in urban
samples and barely detected in the Dutch cohort (analyzed with the
same metagenomics protocols), it suggests the potential increased
susceptibility to fungal colonization or favorable growth conditions
in Tanzanian intestinal ecosystems. Recent parasitological data has
also revealed that gut eukaryotes impact bacterial diversity in West
African rural populations22, uncovering another previously unex-
plored microbial influence.

Given all of the above, it is unsurprising that urban and rural
populations have contrasting metabolomic and immune profiles.
This may be in part, but not entirely, attributed to genetics45. As
we have recently reported that these rural and urban populations
from Tanzania do not represent two distinct genetic clusters33,
most differences likely stem from the environment. The most
strongly influenced cytokines were TNF-α, IFN-γ, and IL-1β,

while IL-6 and IL-10 were affected to a lesser degree. The most
affected stimulation by the urban-rural axis, metabolites, and
immunomodulatory species was TNF-α with C. albicans, which
also had the highest explained variance from the microbiome in
the Dutch cohort46. Recently, it was shown that Bacteroides
thetaiotaomicron and Lactobacillus reuteri shape the mucosal
localization of C. albicans47. Hence, the variation in immune
response to this commensal fungus may stem from direct physical
interaction in the mucus layer. Pathway analysis of this same
cytokine response also uncovered S. cerevisiae enzymes in
sphingolipid metabolism, opening the possibility of interesting
inter-kingdom effects.

A wide panel of stimuli and a number of measured cytokines
allows us to assess a range of immune system modalities, as well
as increase the statistical power. Several microbes have previously
been reported as modulating the immune system, the metabo-
lome or both. Positive immunomodulators B. longum and A.
muciniphila produce inosine and their colonization affects out-
comes in cancer immunotherapy48,49. Isolates from the Egger-
thella genus were recently shown to promote accumulation of
Th17 cells in a highly strain-specific manner50,51. Increases in R.
bromii, E. rectale, and Roseburia occur with a plant-based diet in
humans. Expansion of Bilophila, which has been linked to an
increase in Th1 cytokines and susceptibility to colitis in mice52, is
linked to high-fat animal diet53,54. In addition, some of the spe-
cies we identified have been linked to inflammatory intestinal
disease. These include Prevotella copri, which shows an increased
and steady abundance in Crohn’s disease (CD), and Klebsiella
pneumoniae which plays a role both in dysbiotic ulcerative colitis
and CD19. While strongly significant, a number of Firmicutes
might also reflect the general propensity of the urban samples to
express higher levels of cytokines.

Circulating metabolites had strong associations with cytokine
responses, and were more affected by independently identified
immunomodulatory species, confirming the intricate connection
between microbial metabolism in the gut and the immune system.
It is important to note that the high correspondence between
molecules of the same class may reflect both genuine metabolic
flow and a potential bias in detection of molecules with similar
physico-chemical properties. We used pathway enrichment con-
sidering all possible identities for a compound, which can alle-
viate some of the errors coming from identification uncertainty if
each compound were considered in isolation55. Also, any mole-
cule on a pathway might contribute to the phenotype, as do many
currently unknown intermediates56–58. In addition, our study
sampled microbes residing in the gut, while metabolites were
measured directly in the circulation. The effects of microbial
abundance on plasma metabolite levels are limited and hold only
for certain metabolite classes59, which was evident in our joint
metagenomic/metabolomic analysis that was skewed toward
essential amino acids and their derivatives. Associations between
microbes and metabolites can arise from indirect modification,
for example in the case sphingolipids, which showed strong

Fig. 5 Integrative analysis of metabolomics and metagenomics uncovers histidine and arginine metabolism pathways. a Distribution of per-species
effects on the plasma metabolome. Species are stratified by immunomodulatory effects derived from the log-linear model described above. For each
species, the maximum absolute Spearman coefficient with 1607 measured metabolites is chosen and the significance threshold is determined subject to
PFDR < 0.05. b Metabolites affected by immunomodulatory species, organized by MetaCyc pathways. The bars show the number of significant correlations
per species type (left, Spearman correlation test, PFDR < 0.05) and significant effects from pathway copy number model (right, *P < 0.1, **P < 0.01, ***P <
0.001). Species colors as in (a). c Pathways with significantly enriched copy numbers in positive or negative species and significant correlations with
plasma metabolites (Spearman correlation, PFDR < 0.05). d Copy numbers of histidine biosynthesis pathway (MetaCyc, HISTSYN-PWY) and e histidine
degradation III pathway (PWY-5030) detected in the metagenome of negative (blue), neutral (gray), and positive (red) species. Source data are provided
in the Source data file.
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immunomodulatory effects, and are produced by host and gut
eukaryotes60,61, but modified by Bacteroides56,57.

The listed limitations require careful treatment of individual
associations and combining multiple measurements in order to
identify causal mechanisms. Differential metabolites between
urban and rural samples, associations with cytokine expression
and immunomodulatory species abundance, and metagenomic
pathway enrichment, all point to histidine metabolism. The

published analysis on the 500 FG cohort showed congruent
results in several amino acids, including inosine, methionine and
also histidine17. In particular, histidine can be decarboxylated in
both mammalian and gut bacterial cells to form histamine, which
engages with receptors H1R-H4R and supports Th1 and Th2 cell
polarization62. We detected both histamine and histidine as
having positive associations with cytokine expression as well as
being encoded by positive immunomodulatory species. An

Fig. 6 Detected enzymes, metabolites, and associations in the histidine metabolism pathway (KEGG KO00340). Colored nodes represent detected
microbial enzymes (squares) and compounds (circles), with significant correlations with cytokine responses in red (positive) and blue (negative). Enzymes
detected in stool microbiomes are shown as colored squares, with contribution from negative (blue) or positive species (red) quantified as a fraction of
total RPKM in the cohort per species type. Percentages in squares show prevalence of enzyme encoded by each species. Source data are provided in the
Source data file.
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additional mechanism supported by our data was arginine
metabolism, where B. longum and A. muciniphila encoded arg, a
conserved group of enzymes that modify the host arginine as a
survival mechanism63. This gene family is associated with reg-
ulation of host T-cell functions by myeloid suppressor cells39.
Our data offer a complementary, functional view and confirms
that histidine and arginine metabolism are influenced by
microbes in vivo and might in turn affect circulation and immune
responses.

Multi-omics data derived from diverse cohorts increase sta-
tistical power to detect causal immunomodulatory mechanisms.
Concurrently, improved computational tools are required to
explore the vast space of unknown metabolites, where small
molecular changes can have huge downstream consequences.
Taken together, mechanistic understanding of microbial meta-
bolism and its downstream consequences on the immune system
can uncover new personalized or population-specific therapeutic
interventions.

Methods
Sample handling and sequencing. Sample processing and whole blood stimula-
tions and whole blood counts were performed at Kilimanjaro clinical research
institute (KCRI), Moshi, Tanzania. Plasma samples for metabolomics, supernatants
of the whole blood stimulations, and stool for metagenomics were transported to
Radboud University Medical Center (Radboudumc) on dry ice.

Stool samples were stored at −80 °C prior to nucleic acid extraction using the
AllPrep 96 PowerFecal DNA/RNA kit from QIAGEN (custom product # 1114341).
This method pairs bead-beating on a Tissuelyser II (QIAGEN) with a 96-well
AllPrep protocol and is available through QIAGEN. Bead-beating is performed
twice at 20 Hz for 5 min each round with a rotation of the plate in between rounds.
Purified DNA was stored at −20 °C. Metagenomic sequencing libraries were
prepared from 2 ng of input DNA using the Nextera XT DNA Library Preparation
kit (Illumina) according to the manufacturer’s recommended protocol. Prior to
sequencing, libraries were pooled by collecting equal volumes of each library. Insert
sizes and concentrations for each pooled library were determined using an Agilent
Bioanalyzer DNA 1000 kit (Agilent Technologies) prior to sequencing on an
Illumina NovaSeq 6000 with 151 bp paired-end reads to yield ~10 million paired-
end reads per sample. Data were analyzed using the Broad Picard Pipeline which
includes de-multiplexing and data aggregation (https://broadinstitute.github.io/
picard).

Metagenomic data processing. Samples that were included in the metagenomic
analyses were required to have at least 4 million sequencing reads, resulting in
315 samples (n= 315). Reads were first processed using KneadData (http://
huttenhower.sph.harvard.edu/kneaddata). This included quality-trimming (trim-
momatic parameters: MAXINFO:90:0.5), read-filtering based on a minimum read
length of 60 bp, and removal of potential human contamination by filtering reads
that aligned to the human genome (reference genome hg19). Quality-controlled,
paired-end reads were aligned against a database of unique clade-specific marker
genes using Bowtie2 and taxonomic profiles were inferred with MetaPhlAn 2.264.
For subsequent analysis, we used species, genus, and phylum compositions,
represented as relative abundances of taxa within each sample.

Functional profiling was performed using HUMAnN2 (http://huttenhower.sph.
harvard.edu/humann2). Briefly, reads are mapped against a customized database of
functionally annotated pangenomes, only considering organisms that were
identified during the taxonomic profiling step. Functional annotation of the protein
sequences in the pangenomes to their respective UniRef90 family is provided with
the software. Reads that cannot be mapped are subsequently aligned against the
complete UniRef90 database. The proteins are further mapped to KEGG
Orthogroups (KOs). The community totals are computed for each protein family
(RPK) and converted into relative abundances. For subsequent downstream
analysis, these tens of thousands of gene families were further grouped into broader
functional categories: MetaCyc metabolic pathways. This process yielded
212 species present in at least 10 samples, 82 genera, 7658 KOs, and 486 MetaCyc
pathways.

Metagenomics statistical analyses
Differential abundance of taxa. The factors that affected microbiome compositions
as a whole were identified with PERMANOVA (R package vegan, function adonis,
significant level P < 0.001). Differential abundance of phyla, species, and metage-
nomic pathways between Tanzanian and Netherlands cohorts, as well as urban and
rural samples were computed with R package Maaslin 2, version 1.0.0 (https://
huttenhower.sph.harvard.edu/maaslin/). The recommended multiple testing-
adjusted significance value of PFDR < 0.25 was applied. We considered only the
species detected in both cohorts in the following differential abundance tests. The

species changing according to the rural-urban-Netherlands gradient were deter-
mined by using Wilcoxon rank-sum test twice. Significance was determined as
larger of the P-values when comparing species relative abundance difference
between (1) rural versus urban and (2) urban versus Netherlands samples. The
species were further filtered subject to prevalence >20% and PFDR < 0.05. The two
alternative orderings (urban-rural-Netherlands and rural-Netherlands-urban) were
tested in the same manner.

Dimensionality reductions. All ordination plots were derived using Jensen-Shannon
divergence (R package philentropy, version 0.4) on relative abundance of 212
profiles (TZ samples only) or 178 shared species (TZ and NL samples combined).
The distance matrix was projected to two dimensions using Multidimensional
scaling (TZ) or t-SNE (TZ and NL). Number of clusters was determined based on
the Jensen-Shannon divergence and a consensus hierarchical clustering with R
package pvclust, version, using 100 bootstrap runs. The number of clusters was
determined when two subsequent height cutoffs differed by less than twofold,
yielding three clusters C1, C2, and C3.

Strain divergence analysis. Strain divergence analysis. Strain-level profiling was
obtained by collecting raw metagenomic reads from both TZ and NL cohorts
(796 samples in total) and running Strainphlan65 with default parameters. A total
of 68 taxa had sufficient read coverage to derive phylogenetic trees. For each taxon,
its strain divergence was estimated by explained variance of residency (rural, urban,
NL) in underlying phylogenetic distance matrix using PERMANOVA66.

Associations between microbiome and metadata. Cluster assignment was compared
to categorical variables using the Chi-square test and threshold P < 0.05. Age was
converted to three equal-frequency bins. Significant changes in phylum abundance
were estimated using the R package Maaslin 2 (version 1.0), treating each variable
as a fixed effect and applying the recommended threshold PFDR < 0.25.

Dependence of 17 dietary variables was compared with the microbiome clusters
C1–C3, residency, presence of fungi. Chi-square test (P < 0.05) was used for
categorical variables (alcohol, milk, meat, and consumed intestine type) and
Kruskal–Wallis (P < 0.05) for variables quantifying weekly consumption of various
types of food (meat, ugali, rice, banana, wheat, potato chips, fish, beans, vegetables,
fruits) and drink (carbonated soda, sweet tea, milk).

Linear models of cytokine responses. Immunomodulatory species were selected by
using the measured expression of five cytokines (c; IL-6, TNF-α, IFN-γ, IL-1β, and
IL-10), stimulated with nine stimuli (s; LPS, S. aureus, S. pneumoniae, S. typhi, S.
enteritidis, C. burnetii, E. coli, M. tuberculosis, and C. albicans; Poly:IC excluded),
and stool samples of subjects (i= 1, 2,…, 299; subjects with at least one cytokine
response and microbial profile measured). The data consist of 12,348 observations
(out of possible 5 × 8 × 299= 13,455 due to missing measurements). The cytokine
expressions yc,s,i were fit using the log-linear model:

log yc;s;i ¼ β0 þ βc;s þ βaagei þ βssexi þ βmmicm;i þ εc;s;i: ð1Þ
with the following parameters: εc,s,i is the unexplained variance, β0 the intercept,

βc,s the interaction between cytokine c and stimulus s, and βa, βs, and βm
coefficients for age, sex, and microbe abundance, respectively. The subject-specific
variables are agei (continuous), sexi (discrete), and micm,i the relative abundance of
the microbe m, converted to ranks (where no abundance amounts to rank 0 and
maximum abundance to rank 298). Despite the observations not being entirely
independent (each subject can be repeated in multiple cytokines and stimuli) we
chose to treat them as such rather than average across cytokines and stimuli,
treating them as separate experiments that bear additional information about the
immune response. We alleviate the effect of potential sample-specific (latent)
factors by using a stringent multiple testing threshold stated below. A comparison
with linear mixed effect models yielded consistent results (see the code repository).

To account for co-abundance effects, the model was fit once for each microbe,
using the R function lm. We tested 111 microbial species with at least 20%
prevalence (m= 1, 2,…,111). The species were deemed immunomodulatory if βm
had a significant contribution after stringent multiple testing adjustment
(PBonferroni < 0.005, T-test). Based on significance and sign of corresponding βm,
species were categorized as positive (implying an increase in overall cytokine
response), negative (decreased cytokine response), or neutral (non-significant).

The same approach was used to test for immunomodulatory species in the 500
FG cohort, which had 473 samples and macrophage expressions of IL-6 and TNF-
α, stimulated with LPS, C. albicans, M. tuberculosis, and S. typhi, totaling 3766
observations. We tested 176 species detected in both Tanzania and 500 FG cohorts.

Linear model of metabolic pathway copy number contribution. Metabolic pathway
modules encoded by microbial species were quantified by Humann267 and encoded
as MetaCyc identifiers, yielding 486 pathways (p= 1, 2,…, 486), contributed by 212
different microbes (m= 1, 2,…, 212) in 315 samples with detected pathways (i= 1,
2,…, 315). Microbial species were further categorized on their immunomodulatory
effect (e) as positive (21 species), negative (13), and neutral (178), as
described above.

Pathway abundance in each subject is quantified as the number of complete
“copies” of the pathway encoded by each species, normalized by pathway length as
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described previously67, and represented here as yp,m,i. The variation in yp,m,i was fit
using the log-linear model

log yp;m;i ¼ β0 þ βd þ depi þ βmmicm;i þ βe effm þ εp;m;i: ð2Þ
with the following parameters: εc,s,i is the unexplained variance, β0 the intercept,

βd the subject sequencing depth, βm microbe abundance, and βe the microbes’
immunomodulatory effect. The subject-specific variables are represented as depi,
the logarithm of total number of reads detected in subject i, and micm,i the relative
abundance of the microbe m in subject i. The immunomodulatory effect effm, is a
categorical variable associated with each microbe m, where neutral is taken as the
reference value (absorbed by the intercept).

The model is fit independently for each pathway p. We use the T-test to
quantify the significance of the βe coefficients. These reveal an over- or under-
representation of gene copies mapping to pathway p in positive or negative species.

Untargeted plasma metabolomics. Plasma for metabolomics was transported to
General Metabolics, LLC (Boston, USA) on dry ice and measured as previously
described68. Briefly, untargeted liquid chromatography–mass spectrometry
(LC–MS) was used to measure metabolites from plasma samples using a high
throughput flow-injection mass spectrometry technique. This platform consists of
an Agilent Series 1100 LC pump coupled to a Gerstel MPS2 autosampler and an
Agilent 6550 Series Quadrupole Time-of-flight mass spectrometer (Agilent, Santa
Clara, USA) equipped with an electrospray source operated in negative and positive
mode. With this platform 50–1000, ion m/z (mass‐to‐charge ratio) can be detected
with a flow rate of 150 μL/min and 1.4 Hz in 1 min cycle time.

Data were further analyzed by performing centroiding on a high-performance
computing cluster using the bioinformatics function in Matlab R2018a (The
Mathworks, Natick). Centroiding was done once for each sample on the total
profile spectrum obtained by summing all single scans recorded over time and
using wavelet decomposition. A cut-off of 500 ion counts was applied to avoid
detection of too sparse features. Centroid lists from different samples were merged
to a single matrix by binning the accurate centroid masses within the tolerance
given by the instrument resolution (0.001 amu). The functionality of this
proprietary workflow is described in more detail in ref. 68.

A list of putative metabolites was annotated with a series of analysis strategies
including deisotoping, decluttering, adduct detection, and library matching in
KEGG, HMDB, and CHEBI databases. The monoisotopic mass for the neutral
molecule was calculated, and common ESI ions/adducts for the monoisotopic
masses and isotopes were generated. For each measured ion, all possible hits among
theoretical ion masses within a tolerance of 0.003 amu were considered. This
resulted in a data matrix of 323 individual samples and 1607 compounds/
metabolites (peaks mz/rt).

KEGG pathway annotation. A total of 1203 compounds were linked to a KEGG
compound. identifiers, from which of 680 compounds were linked to 351 KEGG
pathways (KOs), containing 10,060 enzymes (KOs).

MetaCyc pathway module annotation. The MetaCyc database downloaded as of
Oct 13, 2020. A total of 336 metabolites, represented as KEGG compound IDs,
were found to participate in 7545 cataloged reactions and 2074 pathway modules.

Metabolomics statistical analysis
Quantification, quality control, and clustering. Metabolite intensity was standar-
dized (z-scored) across samples. Clusters were obtained using k-means. The
number of clusters was determined by optimal matching to the molecular classes
(from HMDB database) using adjusted random index (ARI) measure. Low-
dimensional projection was obtained using t-SNE69.

Correlation analysis. Metabolite intensities were compared to relative species
abundance and cytokine expressions using Spearman correlation subject to PFDR <
0.05.

Whole blood stimulation assays and cytokine quantification by ELISA. Blood
sample collection, processing, and ex vivo cytokine production experiments were
performed at the biotechnology laboratory facility available at Kilimanjaro clinical
research institute (KCRI) in Moshi, Tanzania. A whole blood count with leukocyte
differentiation was measured on a Sysmex XN-450 Hematology Analyzer (Sysmex
Corporation, Kobe, Japan). Whole blood was stimulated with bacterial and fungal
stimuli and TLR3 and TLR4 agonists. The stimulation experiments were performed
as follows: 100 μl of heparin blood was added to a 48-wells culture plate and
subsequently stimulated with 400 μl of stimulus for 48 h at 37 °C and 5% CO2.

The bacterial and fungal stimuli were cultured and frozen at Radboudumc and
then shipped to KCRI. Their respective concentrations were as follows: PHA
(10 μg/ml, Sigma), LPS (100 ng/ml, Sigma), Poly:IC (50 μg/ml, Sas Invivogen),
Mycobacterium tuberculosis (5 μg/ml, H37Rv, in-house), Coxiella burnetii (107

CFU/ml, Nine miles/RSA493), Escherichia coli (106 CFU/ml, ATCC35218, in-
house), Staphylococcus aureus (106 CFU/ml, ATCC29213, in-house), Candida
albicans (106 CFU/ml, UC820, in-house), Streptococcus pneumonia (107 CFU/ml,
TIGR4, in-house), Salmonella typhimurium (106 CFU/ml, Phage type 510, in-

house), and Salmonella enteritidis (106 CFU/ml, in-house). Stimuli were prepared
in RPMI culture medium (Dutch modified, Invitrogen) supplemented with 50 µg/
mL gentamicin, 2 mM Glutamax, and 1 mM pyruvate.

Supernatants were collected and stored at −80 °C until used for ELISA. The
concentrations of cytokines were quantified in the supernatants using ELISA
according to the instructions (given IL-6, IL-1β, IL-10, and tumor necrosis factor
(TNF-α): R&D Systems; interferon (IFN-γ): Sanguin). All samples were measured
using kits of the same lot number.

Description of the study area and population. This study is part of the Human
Functional Genomics Project (www.humanfunctionalgenomics.org). The study
protocol was approved by the Ethical Committees of the Kilimanjaro Christian
Medical University College (CREC) (No. 2443) and the National Institute for
Medical Research in Tanzania (NIMR/HQ/R.8a/Vol. IX/2290 and tNIMR/HQ/
R.8a/Vol.IX/3318). In the Netherlands, the study was approved by the Ethical
Committee of the Radboud University Medical Centre Nijmegen (CMO Arn-
hem-Nijmegen; 2016-2657). A total of 323 Tanzanian healthy individuals aged
between 18 and 65 years living in the Kilimanjaro region in Northern Tanzania
were enrolled between March and December 2017. Participants enrolled at the
Kilimanjaro Christian Medical Center and Lucy Lameck Research Center, in
Moshi municipal, a capital and commercial city of the Kilimanjaro region with
over 200,000 inhabitants. Moshi city comprises diverse ethnic groups, economic
status, and lifestyle, whereby most inhabitants have adopted a Western lifestyle.
People living in the Moshi town (urban area) have access to good sanitation with
universal coverage of chlorinated tap water and toilet facilities. In contrast,
people we designated as living in a rural area represent the rural population of
Tanzania; people live within large family units, whereby the economy depends
mainly on subsistence farming and animal husbandry. Most individuals in the
rural area belong to the Chagga tribe and follow a traditional lifestyle whereby
using pit latrine and consumption of starch and vegetable diet are common.
They also have access to good sanitation and water primarily from the slope of
Mount Kilimanjaro or from wells. In this study, people from both urban and
rural areas were enrolled. Since the rural individuals all belong to the Chagga
tribe, a higher number of urban participants were enrolled to alleviate con-
founding from a potentially different genetic composition between the two sub-
cohorts.

The study information was given through leaflets or announced during the
mass gathering. Volunteers were pre-screened by a member of the study team
before being invited to the study center. Exclusion criteria were pregnancy, a
known acute or chronic disease, use of antibiotics or antimalarials in the previous
3 months, or receiving treatment for tuberculosis infection in the past year. The
eligible individuals who gave written informed consent to participate in the study
were screened for HIV infection (SD BIOLINE HIV-1/2 3.0 kit, Standard
Diagnostics, Kenya, #03FK16) and malaria (Malaria Pf/PAN (HRP2/pLDH) Ag
Combo RDT kit, Accessbio, USA, #RMRM-02571) and random blood glucose
(ACCU-CHECK glucose test strips, Roche Diabetes Care GmbH, Germany,
#07124112036), blood pressure, body weight, and height were measured. We
excluded individuals with a positive HIV or malaria rapid test, a blood pressure
≤90/60 mmHg or ≥140/90 mmHg, or with random blood glucose >8.0 mmol/L.
Demographic data, as well as data on lifestyle, dietary habits, animal exposure, and
disease history were collected using a standardized questionnaire.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The stool metagenomic samples are available in the NCBI BioProject under accession
number PRJNA686265. The mass spectrometry data for untargeted plasma
metabolomics is accessible at http://www.ebi.ac.uk/metabolights/MTBLS2267. The data
frame (R object) storing all the processed data in tabular format is available for download
in the code repository specified below. Source data are provided with this paper.

Code availability
Code to reproduce all the figures in this study is available at https://gitlab.com/xavier-lab-
computation/public/fg300tanzania and https://doi.org/10.5281/zenodo.5015152.
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