Table 3.
Accuracies and hyper-parameters of single dynamic learning networks.
| Activation function | Accuracy and hyper-parameters | Mapping function type | ||
|---|---|---|---|---|
| Linear | Tanh | Sinh | ||
| Case 1 | Testing accuracy (%) | 98.3333 | 97.2222 | 96.6667 |
| Training time (s) | 6.0156 | 2.3906 | 1.4688 | |
| Threshold | 0.2506 | 0.3270 | 0.2947 | |
| Training rounds k | 159 | 59 | 31 | |
| NDLA coefficient | 0.01 | 0.02 | 0.04 | |
| Hidden neurons n | 50 | 55 | 60 | |
| Case 2 | Testing Accuracy (%) | 98.3333 | 97.2222 | 97.7778 |
| Training time (s) | 17.5000 | 2.7344 | 6.2344 | |
| Threshold | 0.2154 | 0.2711 | 0.2935 | |
| Training rounds k | 290 | 40 | 109 | |
| NDLA coefficient | 0.01 | 0.04 | 0.01 | |
| Hidden neurons n | 42 | 40 | 41 | |