Skip to main content
. 2021 Aug 11;11:16280. doi: 10.1038/s41598-021-95537-y

Table 5.

Comparison results between B-DDLN and other classifiers for classifying the same extracted image features.

Classifier Testing accuracy(%) F1-score Precision Specificity Sensitivity Kappa value AUC
B-DDLN1a 98.8889 0.9900 0.9900 0.9875 0.9900 0.9775 0.9888
B-DDLN2b 98.8889 0.9900 0.9900 0.9875 0.9900 0.9775 0.9888
BPNNc 95.5556 0.9588 0.9894 0.9875 0.9300 0.9107 0.9587
Naive Bayesian 92.7778 0.9353 0.9307 0.9125 0.9400 0.8536 0.9012
LDAd 93.3333 0.9406 0.9314 0.9125 0.9500 0.8647 0.9313
QDAe 94.4444 0.9485 0.9787 0.9750 0.9200 0.8883 0.9475
Linear SVMf 96.6667 0.9697 0.9796 0.9750 0.9600 0.9327 0.9675
Gaussian SVM 95.5556 0.9600 0.9600 0.9500 0.9600 0.9100 0.9550
k-NNg 95.0000 0.9569 0.9174 0.8875 1.0000 0.8976 0.9437
Logistic regression 90.5556 0.9171 0.8952 0.8625 0.9400 0.8075 0.9012
Decision tree 93.3333 0.9394 0.9490 0.9375 0.9300 0.8653 0.9337
Bagging tree 92.7778 0.9366 0.9143 0.8875 0.9600 0.8528 0.9237
Boosting tree 96.1111 0.9648 0.9697 0.9625 0.9600 0.9213 0.9612

The superior performance of the proposed B-DDLN diagnosis model are highlighted in bold.

aB-DDLN in case 1.

bB-DDLN in case 2.

cBack propagation neural network.

dLinear discriminant analysis.

eQuadratic discriminant analysis.

fSupport vector machine.

gk-nearest neighbor.