Table 5.
Comparison results between B-DDLN and other classifiers for classifying the same extracted image features.
Classifier | Testing accuracy(%) | F1-score | Precision | Specificity | Sensitivity | Kappa value | AUC |
---|---|---|---|---|---|---|---|
B-DDLN1 | 98.8889 | 0.9900 | 0.9900 | 0.9875 | 0.9900 | 0.9775 | 0.9888 |
B-DDLN2 | 98.8889 | 0.9900 | 0.9900 | 0.9875 | 0.9900 | 0.9775 | 0.9888 |
95.5556 | 0.9588 | 0.9894 | 0.9875 | 0.9300 | 0.9107 | 0.9587 | |
Naive Bayesian | 92.7778 | 0.9353 | 0.9307 | 0.9125 | 0.9400 | 0.8536 | 0.9012 |
93.3333 | 0.9406 | 0.9314 | 0.9125 | 0.9500 | 0.8647 | 0.9313 | |
94.4444 | 0.9485 | 0.9787 | 0.9750 | 0.9200 | 0.8883 | 0.9475 | |
Linear | 96.6667 | 0.9697 | 0.9796 | 0.9750 | 0.9600 | 0.9327 | 0.9675 |
Gaussian SVM | 95.5556 | 0.9600 | 0.9600 | 0.9500 | 0.9600 | 0.9100 | 0.9550 |
k- | 95.0000 | 0.9569 | 0.9174 | 0.8875 | 1.0000 | 0.8976 | 0.9437 |
Logistic regression | 90.5556 | 0.9171 | 0.8952 | 0.8625 | 0.9400 | 0.8075 | 0.9012 |
Decision tree | 93.3333 | 0.9394 | 0.9490 | 0.9375 | 0.9300 | 0.8653 | 0.9337 |
Bagging tree | 92.7778 | 0.9366 | 0.9143 | 0.8875 | 0.9600 | 0.8528 | 0.9237 |
Boosting tree | 96.1111 | 0.9648 | 0.9697 | 0.9625 | 0.9600 | 0.9213 | 0.9612 |
The superior performance of the proposed B-DDLN diagnosis model are highlighted in bold.
aB-DDLN in case 1.
bB-DDLN in case 2.
cBack propagation neural network.
dLinear discriminant analysis.
eQuadratic discriminant analysis.
fSupport vector machine.
g-nearest neighbor.