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Mitochondrial apoptosis regulates survival and development of hematopoietic cells. Prominent roles of some Bcl-2-family members
in this regulation have been established, for instance for pro-apoptotic Bim and anti-apoptotic Mcl-1. Additional, mostly smaller
roles are known for other Bcl-2-members but it has been extremely difficult to obtain a comprehensive picture of the regulation of
mitochondrial apoptosis in hematopoietic cells by Bcl-2-family proteins. We here use a system of mouse ‘conditionally
immortalized’ lymphoid-primed hematopoietic progenitor (LMPP) cells that can be differentiated in vitro to pro-B cells, to analyze
the importance of these proteins in cell survival. We established cells deficient in Bim, Noxa, Bim/Noxa, Bim/Puma, Bim/Bmf, Bax,
Bak or Bax/Bak and use specific inhibitors of Bcl-2, Bcl-X; and Mcl-1 to assess their importance. In progenitor (LMPP) cells, we found
an important role of Noxa, alone and together with Bim. Cell death induced by inhibition of Bcl-2 and Bcl-X; entirely depended on
Bim and could be implemented by Bax and by Bak. Inhibition of Mcl-1 caused apoptosis that was independent of Bim but strongly
depended on Noxa and was completely prevented by the absence of Bax; small amounts of anti-apoptotic proteins were co-
immunoprecipitated with Bim. During differentiation to pro-B cells, substantial changes in the expression of Bcl-2-family proteins
were seen, and Bcl-2, Bcl-X, and Mcl-1 were all partially in complexes with Bim. In differentiated cells, Noxa appeared to have lost all
importance while the loss of Bim and Puma provided protection. The results strongly suggest that the main role of Bim in these
hematopoietic cells is the neutralization of Mcl-1, identify a number of likely molecular events during the maintenance of survival
and the induction of apoptosis in mouse hematopoietic progenitor cells, and provide data on the regulation of expression and

importance of these proteins during differentiation along the B cell lineage.
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INTRODUCTION

Mitochondrial apoptosis regulates many biological processes and
is very important for differentiation and regulation of survival in
hematopoietic cells [1]. Mitochondrial apoptosis is regulated by
the Bcl-2-family, comprising three groups of proteins that can be
distinguished by their structure and by their function. The pro-
apoptotic group of Bax and Bak serve as the effectors, initiating
the activation of effector caspases in the cytosol. The five anti-
apoptotic proteins, Bcl-2, Bcl-X,, Bcl-w, Mcl-1 and A1, inhibit
apoptosis by binding pro-apoptotic family proteins. The third
group, known as BH3-only proteins and made up by eight
members, are the initiators of apoptosis. BH3-only proteins trigger
apoptosis through one of two mechanisms, by inhibiting anti-
apoptotic Bcl-2-proteins and/or directly activating Bax/Bak. At
least three BH3-only proteins, Bim, tBid (the active form of Bid)
and Puma, can directly activate, while all BH3-only proteins
(including Noxa, Bad, Bmf, Bik and Hrk) can inhibit anti-apoptotic
Bcl-2-proteins [1, 21.

These basic operative principles of mitochondrial apoptosis
seem unequivocal. It has however been notoriously difficult to
move towards a detailed understanding of the events of the
initiation of apoptosis and the chain of events from the receipt of

a pro-apoptotic stimulus, over the activation of one or more BH3-
only proteins and over the potentially necessary neutralization of
anti-apoptotic Bcl-2 proteins to the activation of Bax or Bak or
both. It is experimentally extremely challenging to control for the
multitude of proteins and potential activation steps. Very likely,
the apoptotic process is further regulated differently in different
cell types. Gene-deletion experiments with mice and analysis of
cell populations in physiological or near-physiological conditions
have provided information on the roles of Bcl-2-family proteins,
for instance by measuring cell differentiation and population size
in vivo or by testing of apoptosis induced by lack of signaling
input in vitro. Cell biological and biochemical studies mostly in
tumor cell lines have yielded results in terms of interaction
between Bcl-2-family members and sometimes activation studies.
The relatively recent development of specific inhibitors of anti-
apoptotic Bcl-2-members has facilitated the study of mitochon-
drial apoptosis.

Mitochondrial apoptosis is a major regulator of homeostasis of
immune cell populations [3]. Loss of individual anti-apoptotic
proteins causes cell death in some cell populations [4], and at least
some Bcl-2-like proteins can compensate for each other [5]. In
terms of BH3-only proteins, the loss of Bim has the most severe
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effect, leading to enhanced apoptosis resistance in several cell
types [6, 7]. Some role has also been attributed to other BH3-only
proteins, and loss of Puma [8], Bmf [9] or Noxa [10, 11] on a Bim-
negative background has been found to have varying effects. The
knowledge of the exact molecular function of Bcl-2-family proteins
and how they neutralize or activate other family members to
trigger apoptosis is far from comprehensive.

In this study, we endeavored to obtain information on the role
of Bcl-2-family proteins in mouse lymphoid-primed hematopoietic
progenitor cells (LMPP) and cells differentiating from these
progenitors towards the B cell lineage. LMPP represent a stadium
of hematopoietic differentiation, of committed progenitors with
both myeloid and lymphoid potential [12]. We use a system of
‘conditionally immortalized’ mouse LMPP, which on one hand
behave very similarly to primary cells [13] and which, on the other
hand, permit the cell biological study of mitochondrial apoptosis.
We use cells deficient in pro-apoptotic Bcl-2-family proteins or in
Bax/Bak, and employ Bcl-2-protein inhibitors to test for the role of
these components in apoptosis regulation and to probe some Bcl-
2-protein family interactions. We follow the differentiation to early
B cells in vitro, monitor protein-expression and their changing
importance during differentiation.

RESULTS

Contribution of BH3-only proteins to apoptotic signals in
FLT3-progenitor lines

Hoxb8 is a homeobox family protein that can increase self-renewal
and arrest differentiation in hematopoietic cells [14]. A Hoxb8-
variant that is fused to the ligand binding domain of the estrogen-
receptor can be turned on and off by adding or washing away
estrogen [15]. When this construct is expressed in mouse
hematopoietic progenitor cells, they can be expanded in the
presence of estrogen while taking away estrogen, i.e., turning off
Hoxb8, induces their differentiation. Depending on the growth
factor added during initial establishment of the progenitor lines,
cells can be generated that are committed to macrophage or
neutrophil lineages [15] or that maintain both myeloid and
lymphoid differentiation potential (termed multipotent progenitor
(MPP) cells or lymphoid-primed MPP (LMPP) cells [13]; these cells
are expanded in FLT3-ligand (FLT3L) and will here be referred to as
FL-P cells).

We established FL-P cell lines, wt and with deficiency in pro-
apoptotic Bcl-2-family proteins, by transducing bone marrow from
the respective gene-deficient mice with the Hoxb8-ER construct and
expanding the cells in medium containing FLT3L. We established FL-
P lines deficient in Noxa, in Bim or in Bim plus one of the BH3-only
proteins Puma, Noxa or Bmf. The anti-apoptotic proteins Bcl-X,, Bcl-2
and Mcl-1 were easily detectable in the cell lines, and there was little
difference between the cells of the various genotypes with the
exception of higher Mcl-1-levels in Noxa-deficient cells (Supplemen-
tary Fig. STA). These higher levels were seen in both Noxa-single and
Bim/Noxa-double-deficient cells and were not surprising because
Noxa is a known antagonist of Mcl-1 and induces its proteasomal
degradation [16]. Bim was easily detectable by western blotting, and
the Bim levels in FL-P cells were slightly higher than in MEFs
(Supplementary Fig. S1B), while Puma was clearly more highly
expressed in FLP cells than in MEFs (Supplementary Fig. S1C). Mouse
Noxa is not easily detectable by western blotting but we did obtain
a signal in FLP cells, where expression was somewhat lower than in
committed Hoxb8 neutrophil progenitor cells (Supplementary Fig.
S1D). We were unable to detect Bmf by western blotting in LMPP.
FL-P cells underwent apoptosis upon treatment with the topoi-
somerase ll-inhibitor etoposide. Bim-deficiency provided some
protection, additional loss of Bmf had no effect but additional loss
of Puma did. Noxa-deficient cells showed substantial protection, and
Bim/Noxa double-deficient cells were strongly protected (Supple-
mentary Fig. S2A, B). This pattern reflects the expected roles of BH3-
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Fig. 1 Role of BH3-only proteins in factor-withdrawal-induced

apoptosis in FL-P cells. FL-P cells of the indicated genotypes were
incubated in the presence or absence of growth factor (FLT3L) for
14 h, and cell viability was assessed by propidium iodide staining
and flow cytometry. Shown are the mean values/SD of dead cells in
three independent experiments; significance was tested by
unpaired t-test.

only proteins in DNA-damage induced apoptosis. The loss of either
Bax or Bak provided no protection but in the absence of both Bax
and Bak, cells were completely protected against apoptosis
(evidenced by the appearance of active caspase-3) and cell death
(Supplementary Fig. S2C-F).

FL-P cells are cultured in FLT3L and die rapidly upon its
withdrawal. Wt cells showed about 50 % of cell death at 8 h and
90 % cell death by 14 h post-withdrawal (Fig. 1, Fig. S2G, H). Bim-
deficient cells were substantially protected. Additional lack of Bmf
afforded no additional protection. Loss of Puma on a Bim-deficient
background did provide additional protection. Isolated loss of
Noxa reduced apoptosis strongly, with cells deficient in Bim and
Noxa showing hardly any apoptosis upon factor-withdrawal
(Fig. 1). Upon growth factor withdrawal, Mcl-1-levels decreased.
In the absence of Noxa, Mcl-1-protein started at higher levels and
did not disappear as quickly. There was no clear increase in Bim-
and a small, inconsistent increase in Puma-levels in these
experiments (Supplementary Fig. S3). As has been recognized
for other immune cell populations, Bim is thus important in FL-P
cells but Noxa makes a substantial contribution to apoptosis in the
situations tested here, and this Noxa-effect likely operates through
antagonism of Mcl-1.

The role of BH3-only proteins in cell death induced by Bcl-2-
family inhibitors

We inhibited individual Bcl-2-proteins alone or in combination and
tested the role of BH3-only proteins. A number of small molecules
have been developed, which variably inhibit the main anti-
apoptotic proteins. The Bcl-2-specific inhibitor ABT-199 [17]
showed high activity and induced cell death at low concentrations
(about 40 % cell death at 50 nM; Fig. 2, Supplementary Fig. S4), but
higher concentrations had only very moderate additional effects.
Only at concentrations of 2-10 uM, cell death increased further
substantially (Supplementary Fig. S4A). The pro-apoptotic activity
at concentrations up to 2uM was almost entirely lost in the
absence of either Bim or Noxa. At high concentrations, cells of all
genotypes died although there was still reduced sensitivity in cells
lacking the combination of either Bim and Noxa or Bim and Puma.
Cell death completely depended on the presence of either Bax or
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Fig.2 Importance of individual BH3-only proteins in apoptosis induced by inhibition of anti-apoptotic Bcl-2-family proeins. FL-P cells of
the indicated genotypes were treated with the indicated Bcl-2-family inhibitors at different concentrations or combinations for 24 h as
indicated; controls were cells incubated with equal concentrations of solvent (DMSO). In the combination with S63845, ABT-199 was used at
1 uM. Cells were analyzed by staining with propidium iodide and flow cytometry, and percentages of dead cells were calculated. Data are
means/SD of three (A) or five (B) independent experiments. Data are individual points of the titrations shown in Supplementary Fig. S4.

Bak as cells double deficient in Bax and Bak were protected
(Supplementary Fig. S4A). It seems likely that ABT-199 at high
concentrations also neutralizes other anti-apoptotic Bcl-2-family
proteins, as has been shown for Bcl-X; [17]. Inhibition of Bcl-X (A-
1155463 [18]) had only a small effect (Fig. 2A). The combination of
Bcl-X -inhibitor and ABT-199 (together inhibiting both Bcl-2 and
Bcl-X.) was roughly additive (Supplementary Fig. S2B), and a very
similar result was seen when both anti-apoptotic proteins were
inhibited with ABT-737 (Fig. 2,Supplementary Fig. S4C). In all cases,
the loss of Bim almost completely protected against apoptosis
induced by these inhibitors (Fig. 2, Supplementary Fig. S4; the
effect of Bim-loss at later time points is shown in Supplementary
Fig. S4H-K). The detection of cells harboring active caspase-3
upon inhibitor treatment correlated with annexin V/Pl-staining,
and the combined loss of Bax and Bak abrogated the appearance
of both stains (Supplementary Fig. S5). There was no appreciable
change in the levels of the detectable anti-apoptotic Bcl-2-family
proteins during treatment with ABT-737 (not shown). Blocking Bcl-
2 and Bcl-X, (and Bcl-w) at the same time therefore is a strong pro-
apoptotic stimulus in FL-P, with Bcl-2 being more important. This
form of apoptosis critically depends on both Noxa and Bim. This
suggests that Bim is in these cells normally sequestered by mostly
Bcl-2 and to a lesser degree by Bcl-X;. Noxa most likely acts by
regulating the abundance of Mcl-1 [19]: in the absence of Noxa,
active Bim is probably not sufficient to overcome the anti-
apoptotic effect of Mcl-1.

Because at least most mammalian cells die when Bcl-2/Bcl-X,.
and Mcl-1 are inhibited, this suggested that an essential function
of Bim was the neutralization of Mcl-1, upon displacement from
Bcl-2. Consistent with this interpretation, inhibition of Mcl-1 (using
563845 [20]) induced cell death that was Bim-independent. Loss of
Noxa provided some protection, presumably through the higher
Mcl-1-levels, and the combined loss of Bim and Noxa or Bim and
Puma protected the cells substantially (Fig. 2B, Supplementary Fig.
S4D). Combination treatments with ABT-199/737 and $63945 were
also consistent with the interpretation that Bim was required for
Mcl-1-neutralization: increasing concentrations of the Mcl-1-
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inhibitor increasingly removed the requirement for Bim (Fig. 2B,
Supplementary Fig. S4E). We further tested for the individual
requirement of Bax and Bak. Upon ABT-737-treatment, loss of
either alone provided no protection (Fig. 3A). Because this form of
apoptosis depends on Bim, this suggests that Bim can in these
cells activate both proteins, either through antagonizing Mcl-1 or
through direct activation. Intriguingly, Mcl-1-antagonism-induced
apoptosis received some contribution from Bak but was entirely
dependent on Bax (Fig. 3B, Supplementary Figs. S4F, G, S4H-M for
later time points). In this situation, Noxa contributes suggesting
that Mcl-1 can block both Bax and Bak. Because this form of
apoptosis also requires Puma (presumably together with Bim), the
results further indicate that Puma can activate Bax but not Bak in
this situation; this may be the result of a reduced availability or
ability of anti-apoptotic proteins to inhibit Bax.

We then tested binding of Bim to anti-apoptotic Bcl-2-proteins
by immunoprecipitation. Bim was precipitated efficiently;
although Mcl-1, Bcl-2 and Bcl-X were all found in the IP-product
to some extent, a very substantial part of these proteins remained
in the supernatant (Fig. 3C). Inclusion of ABT-737 or $63845 shifted
Bim away from the respective targets and to the untargeted
binding partners although this shift was incomplete (Fig. 3C).

Dynamics of Bcl-2-family expression during early B cell
differentiation

We used the Hoxb8-model to differentiate the LMPP (FL-P) cells to
early B cells (here termed FL-D cells). Because it was difficult to
separate the cell populations for our purposes, we replaced the OP9-
feeder cells of the original protocol [13] with the soluble factors
FLT3L, IL.-7 and SCF. When transplanted into mice, FL-P-cells
differentiate into fully mature B cells that have been re-isolated
from the spleen. By about day 11 after Hoxb8-inactivation, most cells
expressed markers of pro-B cells (CD191B2201CD931CD24™) as well
as the surrogate light chains (CD179a/b); some cells also expressed
BP-1 (early pre B cells) but not intracellular heavy chain. Developing
B cells undergo heavy chain rearrangement during the transition to
pro-B cells and VDJ-rearrangement before becoming pre-B cells.

SPRINGER NATURE
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Fig. 3 Role of Bax vs. Bak and interactions of Bim in FL-P cells. A, B FLP-cells of the indicated genotypes were treated with Bcl-2-family
inhibitors at the concentrations indicated (controls were incubated with DMSO) for 24 h and analyzed by propidium staining and flow
cytometry. Shown are mean values/SD of three independent experiments. Data are individual points of the titrations shown in Supplementary
Fig. S4. C Immunoprecipitation of Bim and Bim-interacting Bcl-2-family proteins. FL-P cells (wt) were incubated with 1 uM ABT-737 or 3 uM
$63845 plus 20 uM z-VAD-fmk or DMSO for 4 h. Input and unbound are equivalent protein amounts; eluate was the complete IP-product.
Proteins were separated by SDS-Page and transferred to a PVDF membrane. Membranes were probed for Bcl-2 proteins as indicated. Blots are
representative of three independent experiments.
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Fig. 4 Changes in expression of Bcl-2-family proteins and Bim-interactions during differentiation of early B cells. A Western blot analysis
of endogenous Bcl-2 protein levels in wt Hoxb8-FLT3 cells differentiating in vitro. FL-D cells were cultured in the presence of IL-7, FLT3L and
SCF for 14 days. Samples were taken every two days, lysed and analyzed by SDS-PAGE and western blotting. Membranes were probed for Bcl-2
family proteins as indicated. Shown are two different membranes from the same cell lysates. B Analysis of Bim-interacting Bcl-2-family
proteins. FL-D cells (differentiated for 14 d as above) were incubated with either 1 uM ABT-737 or 3 uM S63845 in the presence of 20 uM z-
VAD-fmk or DMSO. Bim was immunoprecipitated (isotype, isotype control antibody). Samples were processed for western blotting. Input and
unbound are equivalent protein amounts; eluate was the complete IP-product. Membranes were probed for Bcl-2 proteins as indicated. All
blots are representative of three separate experiments.
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experiments. Data are individual points of the titrations shown in Supplementary Fig. S7. Supplementary Information is available at Cell Death

and Differentiation’s website.

The cells we use here were mostly at the pro-B cell stage. There was
no major phenotypic change after day 11 (Supplementary Fig. S6)
but the cells kept expanding. The expression of Bim was strongly up-
regulated during the first 4 days and remained at comparably high
levels from then on (Fig. 4A). Puma was strongly up-regulated
around day 10 (late pro B cell stage). The expression of Bcl-X| was
relatively low initially and increased substantially between days 4
and 6. Great dynamic was however seen in the regulation of Mcl-1-
and Bcl-2-expression. Both proteins showed similar expression levels
at progenitor stage and after about 12 days of differentiation. In
between, however, here was a drastic up- and down regulation of
Mcl-1 protein between days 2 and 6. Bcl-2, on the other hand, was
transiently down-regulated between days 4 and 8 (Fig. 4A). The
regulation of Mcl-1 was also seen in Noxa-deficient cells (Supple-
mentary Fig. S7A). We were unable to obtain a clear staining for Mcl-
1, but intracellular staining and flow cytometry of murine bone
marrow confirmed differences in Bcl-2-expression between the
various stages of B cell-development (Supplementary Fig. S7B).

Role of Bcl-2-family members in early B cells

We differentiated the cells to test whether differentiation status
(differentiation from the LMPP to the pro-B cell stage) affected the
role of Bcl-2-proteins in apoptosis sensitivity. It was noticeable that
in differentiated cells more anti-apoptotic protein was co-
immunoprecipitated with Bim (Fig. 4B; compare IP-product with
input in Fig. 4B and Fig. 3C), suggesting that Bim was increasingly
complexed by anti-apoptotic Bcl-2-family proteins. We then tested
apoptosis sensitivity in cells differentiated as above for 14 days

Cell Death and Disease (2021)12:784

(FL-D cells). Cells underwent rapid cell death upon IL-7-withdrawal.
Loss of Bim provided some protection, as found previously for T
cell progenitors [21]. Intriguingly, Noxa had lost all importance
with regard to factor withdrawal during differentiation even on a
Bim-deficient background, but Puma had acquired a prominent
role: in the absence of Bim, Puma-deficiency provided strong
protection, similar to the role previously identified in activated
T cells [22]. The loss of Bmf on a Bim-deficient background also
provided some protection (Fig. 5A).

Although Bcl-2-levels were only slightly reduced in FL-D
compared to FL-P cells, Bcl-2-inhibition had little pro-apoptotic
effect while inhibition of Bcl-X, was a strong pro-apoptotic signal
(Fig. 5B), reflected by a strong up-regulation of the protein (Fig. 4).
Loss of Bim had some protective effect against ABT-737-induced
cell death while Bim/Puma-deficiency gave strong protection
(Fig. 5C). Cell death induced by Mcl-1-inhibition again did not
depend on Bim, but the combined loss of Bim and Puma afforded
some protection (Fig. 5C; Supplementary Fig. S7). Substantial
changes in Bcl-2-protein function during differentiation from
LMPP cells towards B cells thus include the loss of the importance
of Noxa, the gain in importance of Puma, a somewhat smaller
importance of Bim itself in ABT-737-induced apoptosis, and
changes in the relevance of Bcl-2 and Bcl-XL.

DISCUSSION
Information about the relevance to apoptosis-induction in
immune cells had been available for Bim and, in some situations,

SPRINGER NATURE
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for other BH3-only proteins. Our results identify the importance of
Bim specifically for the neutralization of Mcl-1 and assign
functions to Noxa and Puma. They further describe unexpectedly
strong shifts in the expression of especially anti-apoptotic Bcl-2-
family proteins during early B cell differentiation as well as partly
non-redundant roles of Bax and Bak. Stage-specific expression of
Bcl-2-family proteins in culture suggests an intrinsic regulation
and a specific role of the individual members of the family. By
combining the loss of pro-apoptotic with the chemical neutraliza-
tion of anti-apoptotic Bcl-2-family proteins, we obtained informa-
tion about the roles of individual proteins in the network.

Bim is required for full apoptosis in most immune cells. Bim can
principally neutralize all anti-apoptotic Bcl-2-proteins and activate
Bax and Bak directly. What it actually does upon apoptosis
initiation is however not clear. In FL-P cells, Bim was essential to
apoptosis induced by inhibition of Bcl-2 and Bcl-X.. In this
situation Bax and Bak were redundant, suggesting that Bim can
activate either protein. Bim may here either directly activate Bax/
Bak or inactivate Mcl-1. Although it is not possible completely to
exclude either possibility, the finding that the addition of a Mcl-1-
inhibitor induces cell death that is independent of Bim suggests
that the function of Bim is the neutralization of Mcl-1. Isolated
Noxa-deficiency had a surprisingly strong effect in FL-P cells.
Noxa-deficient cells had more Mcl-1-protein, and the higher doses
of Mcl-1-inhibitor could compensate for the loss of Noxa. This
suggests that the role of Noxa indeed is the regulation of Mcl-1-
levels. Mouse Noxa differs from human Noxa especially in that it
has a second BH3-domain, although experiments with truncation
mutants suggest that only the C-terminal BH3-domain is used to
inactivate Mcl-1 [23]. There may be additional functional
differences to human cells [24]. In the absence of Bim, Mcl-1-
inhibition required Puma for efficient apoptosis-induction.
Because of the critical role of Bax for apoptosis-induction by
Mcl-1-inhibition, Puma - perhaps together with Bim - in this
situation very likely can activate Bax. In activated T cells, Puma has
been reported to have a pro-apoptotic role that is only detectable
in the absence of Bim; in developing B cells, Bim- but not Puma-
deficiency could to a degree rescue development. No information
appears to be available in other cell types. More work will still be
required to understand all the mechanics, but the results identify
critical and redundant pairings in the interaction of Bcl-2-family
proteins. The relative importance of anti-apoptotic proteins in
keeping FL-P cells alive runs as Mcl-1-Bcl-2-Bcl-X,.

An intriguing result of the IP-experiments was that, despite the
relevance of Bim for apoptosis-induction, relatively little of the anti-
apoptotic Bcl-2-proteins were co-precipitated with Bim; the
inclusion of ABT-737 caused no visible change in the abundance
of Bcl-2 or Bcl-X, in the fraction not bound to Bim (although some
change was seen for Mcl-1). We have to allow for experimental
imperfections in the sense that complexes may to some degree be
sensitive to cell lysis and detergent. It seems a possibility however
that most Bim is actually not bound to anti-apoptotic Bcl-2-proteins,
and may indeed not be active. We have recently described that Bim
can be found in large complexes coordinated by dynein light chain
[25], and these complexes may represent inactive ‘stores’ of Bim.
Isolation and characterization of complexes is an important issue,
which we have not fully addressed in this study. It is a limitation
that we have so far only immuno-precipitated Bim. This showed the
surprisingly low amount of binding to anti-apoptotic proteins.
Reciprocal IPs, for instance of Mcl-1, will be helpful to understand
complex formation within the Bcl-2-family better.

It is notoriously difficult to understand the manifold interactions
of pro- and anti-apoptotic Bcl-2-family members and how they
change during the induction of apoptosis, either through upstream
signals such as factor withdrawal or through the specific inhibition
of Bcl-2-like proteins. Approaches such as quantitative proteomic
analysis of precipitates and cross-linking mass-spectrometry [26] will
in the future be helpful to clarify how these interactions change and
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may even be able to elucidate whether a BH3-only protein acts
through direct activation or through displacement [27]. It may for
instance be possible to discover the shift of Mcl-1 (or other anti-
apoptotic proteins) away from Bim to the binding of Bak.

Comparing early B cells to FL-P cells, Noxa had lost all importance
during apoptosis induced by Bcl-2-family inhibition or factor
withdrawal. Puma, on the other hand, had considerably gained in
relevance, paralleled by the strong up-regulation of the protein. Mcl-
1 still had the most important anti-apoptotic role but Bcl-X, was now
much more important than Bcl-2. Bim itself was expressed more
highly in FL-D cells but its importance in apoptosis induction
appeared somewhat smaller than its role in FL-P cells.

Bmf, finally, is a BH3-only protein that has, based on
experiments with gene-deficient cells, only a limited role in the
cells investigated so far, with the most prominent role reported in
B cells [9]. Our results confirm this role: an effect of Bmf-loss (in
addition to Bim) on factor-induced apoptosis was seen in early B
cells but not in LMPP. Bmf however played no role in regulating
apoptosis induced by Bcl-2-family-inhibitors. Because of the
independence of anti-apoptotic proteins, this is most easily
explained by an upstream regulatory effect of factor-withdrawal
on Bmf-activity.

One of the striking changes during early B cell differentiation was
the transient upregulation of Mcl-1. Mcl-1-expression during B cell
development has been measured before on the mRNA-level [28],
and no similar change had been observed. Because Mcl-1 is strongly
regulated by post-translational signals [29], this is no contradiction
but suggests that the effect is due to signals that regulate protein
stability. During differentiation in the Hoxb8-model the external
stimuli do not change during culture. The data therefore suggest
that Mcl-1-regulation occurs as part of the intrinsic differentiation
program. A likely signaling pathway is the PI3 kinase/AKT signaling
axis, which is a well-established regulator of Mcl-1-stability [30], and
which is active during early B cell development [31]. The signals
regulating expression of the other Bcl-2-family proteins during B cell
development are less clear, but our findings suggest regulation of
these proteins through signals that are generated cell autonomously
as part of the B cell maturation program. A further intriguing aspect
is the difference in susceptibility of FL-P and early B cells when
growth factors are removed: in FL-P cells, Noxa plays an important
role, in the early B cells Puma was much more important. The
different factors to which the cells are ‘addicted’ may play a role. As
in many cases of upstream signals, it is only partially clear how a
signal from cytokine receptors, or the signal of their absence reaches
mitochondria. Most consistent has been the description of the
regulation of Mcl-1-levels through this axis, and indeed this has been
found for both FLT-3 ligand [32] (which we used for the FL-P cells)
and IL-7 (or other signals through the common gamma chain) [33],
the survival stimulus in our B cell cultures. Mcl-1-regulation itself is
very complex and involves transcriptional and post-translational
modifications [34]. Noxa is one major regulatory molecule of Mcl-1-
levels [16], so the regulation of cell death upon FLT3-ligand-
withdrawal in FL-P cells, where Noxa plays a major role, likely occurs
through this pathway. How apoptosis is regulated upon withdrawal
of IL-7 is unclear. Mcl-1 may be degraded by numerous other
mechanisms, and this may for instance allow the activation of Bak
[35]. Differences and potential common regulation in these
situations will require a more detailed study. The significant role
of Puma in apoptosis-induction in early B cells but not in FL-P cells
correlated with its substantial upregulation. This regulation is
intriguing: Puma is best known as a p53-target [36, 37] but can
also be regulated by other transcriptional mechanisms. NF-«kB in
particular can drive Puma transcription [38] and is a likely
contributor during B cell development.

Through the large number of proteins, the differential expres-
sion and over-lapping functions, the regulation of Bcl-2-protein
activity is extremely challenging to map. Our results add
information about the molecular role of these proteins in the
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orchestration of apoptosis in a cellular model that probably
reflects differentiation stages of murine lymphoid cells. To some
extent, they suggest new hypotheses that will need to be tested.
By the broad testing of pro-apoptotic proteins through gene-
deficiency, combined with the specific inhibition of anti-apoptotic
Bcl-2-proteins, they identify molecular roles of individual proteins
as well as combinations of family members. The knowledge of the
roles of individual Bcl-2-family proteins in lymphoid progenitor
cells may inform studies of Bcl-2-family inhibitors on apoptosis
induction in malignant lymphoid cells and eventually the use of
these inhibitors in the clinic [39].

MATERIAL AND METHODS

Generation of FLT3-driven LMPP lines

LMPP cell lines (FL-P) were established from mouse bone marrow of the
respective gene-deficient mice as reported [13] (the single-deficient mice
have been described [6, 9, 40, 41]. The crosses of mice deficient in Bim and
other BH3-only proteins were conducted by Dr Andreas Villunger,
Innsbruck, who kindly provided the bone marrow). Briefly, bone marrow
cells were infected with a retrovirus expressing oestrogen-regulated Hoxb8
(generously provided by Hans Hacker, Salt Lake City). Cells were expanded
in the presence of oestrogen and FLT3L. For Bim-deficient cells, several cell
lines were initially established from several mice and tested for differences
in survival and differentiation; no substantial differences were seen. Cells
were cultured in VLE RPMI medium supplemented with 10% FCS (Gibco),
1% Pen-Strep (), 1% GlutaMax (Thermo Fisher), 50 uM B-mercaptoethanol
(Gibco), 10 uM B-estradiol (Sigma Aldrich) and 5 % FLT3L-containing
supernatant from a transgenic B16 mouse melanoma cell line

In vitro differentiation of early B cells

Hoxb8 FLP cells were washed twice in PBS with 1% FCS to remove
B-estradiol. Cells (4 x 10° cells in 2 ml in 6-well plates) were resuspended in
B-cell medium: DMEM, high glucose, (Gibco) + 10% FCS (Gibco) + 50 uM B-
mercaptoethanol (Gibco) + 1 % Pen-Strep (Gibco) + 1% sodium pyruvate
(Gibco) + 15 ng/ml  recombinant murine IL-7 (Peprotech)+ 30 ng/ml
recombinant murine FLT3L + 7.5% CHO-SCF-containing supernatant and
grown for various times. Cells were resuspended in fresh medium on day 2,
split into two wells on day 3, then split every 2-3 days with addition of
fresh medium. For cell death assays, cells were harvested on day 14 of
differentiation. Live cells were separated using the MACS Dead Cell
Removal kit (Miltenyi Laboratories).

Cell death assays

FL-P or FL-D cells were plated in 24-well plates (10° cells in 500 ul Hoxb8
progenitor or B cell medium) and treated with etoposide (Sigma Aldrich) or
the inhibitors ABT-737, ABT-199, A-1155463 (Selleckchem) or S53845
(ApexBio) as indicated. For analysis of cell death induced by factor
withdrawal, cells were washed and plated without FLT3L (FL-P-cells) or IL-
7 (FL-D-cells). At various time points, cells were collected in PBS/4% FCS.
Propidium iodide (Sigma Aldrich) was added immediately prior to analysis
by flow cytometry (FACS-Calibur, Becton Dickinson). In some experiments,
annexin V-propidium iodide staining was used for quantification of
apoptosis. Cell were washed with annexin V-binding buffer (eBioscience)
and stained with annexin V-FITC (1:20, BD Pharmingen) and PI (5 ug/ml) for
20 min at 4°C followed by flow cytometry analysis (FACS Calibur). For
staining of active caspase-3, cells were fixed in 2% paraformaldehyde and
permeabilized with 0.5% saponin (Sigma-Aldrich). Cells were incubated with
anti-active caspase-3 (BD Pharmingen) in PBS/0.5%BSA/0.5% saponin for
30 min, stained with anti-rabbit-Alexa-Fluor488 (Dianova GmbH, Hamburg,
Germany) for 30 min and analyzed by flow cytometry (FACS Calibur).
Routinely, three biological replicates were performed. Further replicates
were done depending on the statistical distribution of the values.

Western blotting

FL-P or FL-D cells (5x 10°) were washed and lysed in 100 pl lysis buffer
BOLT lysis buffer, sonicated and loaded on BOLT 4-12% Bis-Tris precast
gels (ThermoFisher). Proteins were transferred to nitrocellulose mem-
branes by wet transfer, and specific proteins were detected with
antibodies against Bim (Cell Signaling, clone C3435), Noxa (Abcam,
polyclonal), Puma (Cell Signaling, polyclonal), Mcl-1 (Rockland, polyclonal
and BioLegend, W16014A [42]), Bcl-2 (BioLegend, 3F11), Bcl-X_ (Cell
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Signaling, 54H6), 3-Actin (Sigma Aldrich, AC-15), GAPDH (Millipore, 6C5), a-
Tubulin (Sigma Aldrich, DM 1A). Secondary antibodies used were goat-anti-
rabbit (Millipore), goat-anti-mouse Millipore or goat-anti-rat (Cell Signaling)
coupled to peroxidase. Signals were detected with ECL Pico/Prime/Femto
using a chemiluminescence detection system (Intas Detection Systems).

Immunoprecipitation

Cell pellets (4.5x 107 cells per sample) were lysed in 750 pl lysis buffer:
20 mM Tris-HCI (Tris, Sigma Aldrich; HCI, Carl Roth), 150 mM NaCl (Carl
Roth), 10% Glycerol (Carl Roth), 1% Triton X-100 (Sigma Aldrich), 1x
protease inhibitor cocktail (Roche) on ice and centrifuged for 10 min at
10.000 X g. Supernatants were transferred to a new tube. Protein
concentrations were measured by Braford assay (BioRad), and 1500 pg of
protein were used for IP. Bim-antibody (Cell Signaling, C3435), or isotype
control antibody (mouse mAb IgG1k, 2.5 mg/ml) Cell Signaling, G3A1) was
added to protein and Agarose G beads (Millipore Sigma, 30 pl slurry per IP).
Samples were incubated for 4h at 4°C with overhead rotation. After
incubation, reactions were centrifuged, unbound fraction was collected. IP-
products were washed 1x with 15 ml washing buffer and subsequently
washed three times with 350 pl washing buffer. Proteins were eluted by
boiling in 3x Laemmli buffer (95°C, 5min). For input and unbound
samples, 50 ug samples (for unbound fraction, 1/30) were used per lane.
Samples were run on SDS-PAGE as above and blotted onto PVDF-
membranes. Detection was carried out as described above.

Flow cytometry

For differentiation of differentiating cells, cells were harvested, washed and
stained with the following antibodies: CD44-APC (BD, IM7), CD25-FITC
(eBioscience, PC61.5), CD93-APC (eBioscience, AA4.1), B220-FITC (BD,
RA3-6B2), CD19-APC (eBioscience, 1D3), IgM-PE (eBioscience,
eB121-15F9), B220-APC (eBioscience, RA3-6B2), Thy1.2-FITC (eBioscience,
30-H12), CD135-APC (BioLegend, A2F10), CD127-PE (eBioscience, A7R34),
BP-1-PE (eBioscience, 6C3), CD24-APC-Cy7 (eBioscience, M1/69), CD43-APC
(BioLegend, S11). For intracellular staining, cells were permeabilized using
0.05 % saponin and stained with antibodies against CD79a-APC
(BioLegend, F11-172), CD79b-FITC (BioLegend, HM79-12), CD179a-BV421
(BioLegend, R3), CD179b-BB700 (BioLegend, LM34). For the Bcl-2-specific
stain, the Foxp3 staining kit (ThermoFisher) was used. As antibody, Bcl-2-
AF647 (BioLegend, 10C4) was used. Analysis was carried out using a FACS
Canto Il cytometer (Beckton Dickinson).
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