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A B S T R A C T

Background: While our battle with the COVID-19 pandemic continues, a multitude of Omics data have been
generated from patient samples in various studies. Translation of these data into clinical interventions
against COVID-19 remains to be accomplished. Exploring host response to COVID-19 in the upper respiratory
tract can unveil prognostic markers and therapeutic targets.
Methods: We conducted a meta-analysis of published transcriptome and proteome profiles of respiratory
samples of COVID-19 patients to shortlist high confidence upregulated host factors. Subsequently, mRNA
overexpression of selected genes was validated in nasal swabs from a cohort of COVID-19 positive/negative,
symptomatic/asymptomatic individuals. Guided by this analysis, we sought to check for potential drug tar-
gets. An FDA-approved drug, Auranofin, was tested against SARS-CoV-2 replication in cell culture and Syrian
hamster challenge model.
Findings: The meta-analysis and validation in the COVID-19 cohort revealed S100 family genes (S100A6, S100A8,
S100A9, and S100P) as prognostic markers of severe COVID-19. Furthermore, Thioredoxin (TXN) was found to be
consistently upregulated. Auranofin, which targets Thioredoxin reductase, was found to mitigate SARS-CoV-2
replication in vitro. Furthermore, oral administration of Auranofin in Syrian hamsters in therapeutic as well as
prophylactic regimen reduced viral replication, IL-6 production, and inflammation in the lungs.
Interpretation: Elevated mRNA level of S100s in the nasal swabs indicate severe COVID-19 disease, and FDA-
approved drug Auranofin mitigated SARS-CoV-2 replication in preclinical hamster model.
Funding: This study was supported by the DBT-IISc partnership program (DBT (IED/4/2020-MED/DBT)), the
Infosys Young Investigator award (YI/2019/1106), DBT-BIRAC grant (BT/CS0007/CS/02/20) and the DBT-Well-
come Trust India Alliance Intermediate Fellowship (IA/I/18/1/503613) to ST lab.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

The COVID-19 pandemic has emerged as the biggest global public
health crisis of this century. As of August 4, 2021, more than
200 million infections and 4.2 million deaths have been reported
(https://www.worldometers.info/coronavirus/). The causative agent
SARS-CoV-2 contains a single-stranded positive-sense RNA genome
that encodes 29 proteins [1]. COVID-19 disease is quite heteroge-
neous, and its manifestation ranges from asymptomatic, mild, severe
to lethal, depending on a variety of host, virus, and environmental
factors [2]. Age, sex, ethnicity, and co-morbidities have all been impli-
cated in determining disease outcomes [2, 3]. An effective and early
interferon (IFN) response is critical in resolving viral infections [4],
however, SARS-CoV-2 has multiple strategies to suppress host
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Research in context

Evidence before this study

Some studies have demonstrated the prognostic value of host
factors in COVID-19 patients, primarily in serum samples, how-
ever reliable biomarkers in nasal swab samples remain to be
identified. Also, Auranofin has been described earlier to have
anti-inflammatory and anti-infective properties, however, its
antiviral effect against SARS-CoV-2 in preclinical animal models
and potential mechanism of action was not described.

Added value of this study

The set of genes identified by meta-analysis and validation of
Omics data in COVID-19 patient nasal swabs are all interferon
regulated and may be involved in disease progression. In line
with this hypothesis, we show that S100 family genes have sig-
nificant sensitivity and specificity as COVID-19 prognostic
markers in the nasal swabs. Furthermore, we also demonstrate
TXN as a consistently upregulated host factor, which can be tar-
geted by Auranofin to mitigate SARS-CoV-2 replication. The in
vivo protective action of Auranofin was shown to involve reduc-
tion of IL-6 production and lung inflammation.

Implications of all the available evidence

The current most widely used diagnostic method for COVID-19
makes use of qRT-PCR to quantify viral RNA levels in nasal
swabs. Our findings indicate that measuring S100 family genes
in the same samples by qRT-PCR can inform the severity of the
disease. Furthermore, we demonstrate antiviral efficacy of the
FDA-approved drug Auranofin against SARS-CoV-2 in cell cul-
ture and preclinical hamster model.
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immune responses [5]. Disruption of immune homeostasis and
induction of cytokine storm has been recognized as one of the under-
lying causes of severe COVID-19 [6], yet the molecular mechanisms
underlying immune dysregulations are yet to be defined.

Several research groups have applied tour de force high through-
put methodologies to profile the host responses upon viral infections
[7-14]. This has resulted in a wealth of virus-host interaction Big
Data, which holds the key to novel therapeutic strategies and molec-
ular markers of infection and disease progression. Examining host
response at the primary site of infection in the upper respiratory tract
is crucial to understanding viral pathogenesis. Various studies have
utilized BALF and nasopharyngeal swabs to characterize the changes
in transcripts and proteins during infection to understand COVID-19
pathogenesis [7-13], which have highlighted significantly upregu-
lated genes and biological pathways altered during infection. While
proinflammatory cytokines, chemokines, enzymes in neutrophil-
mediated immunity, and several IFN stimulated genes (ISGs) have
consistently shown up in their analysis, experimental validation and
mechanistic studies are generally lacking [8-13]. A detailed charac-
terization of antiviral responses in the upper respiratory tract of
patients, its variation with age and sex, and association with progres-
sion of disease severity remains to be accomplished.

The goal of our study was to identify genes that are consistently
upregulated during SARS-CoV-2 infection in the upper respiratory
tract of patients and understand their role in viral infection and dis-
ease progression. More specifically, we were interested in secreted
signalling mediators which can serve as markers of disease progres-
sion or druggable proteins that can serve as therapeutic targets. For
this, we surveyed the literature for Omics data from COVID-19 posi-
tive patient's nasal swab and BALF samples and selected 4 transcrip-
tomic and 3 proteomic datasets. We performed a hypergeometric
distribution-based overlap analysis followed by cumulative fold-
change score-based prioritization to shortlist genes. This was fol-
lowed by an examination of selected gene expression levels in nasal
swab/ BALF samples from a cohort of COVID positive, negative, symp-
tomatic, and asymptomatic individuals, ranging from 30-60 years in
age and of mixed gender. Receiver operating characteristic (ROC)
curve analysis of gene expression data in nasal swabs revealed S100
family genes (S100A6, S100A8, S100A9, and S100P) as high confi-
dence markers of disease severity. Among other shortlisted genes,
Thioredoxin (TXN) emerged as a significantly upregulated factor sup-
ported by multiple datasets. Thioredoxin is a proinflammatory pro-
tein that requires to be reduced by Thioredoxin reductase enzyme,
which itself can be targeted by an FDA-approved gold drug Auranofin
[15]. We tested the antiviral efficacy of Auranofin in cell culture and
preclinical Syrian hamster challenge model and found that it can
reduce SAR-CoV-2 replication over one order of magnitude at a well-
tolerated non-toxic dosage. We also establish its mechanism of pro-
tection, which is through suppressing the expression of proinflam-
matory cytokine IL-6 expression. This drug is already in clinical use
for inflammatory diseases and can have clinical implications in
COVID-19 treatment based on our data.

Through collective global efforts, several COVID-19 vaccines have
become available in an astonishingly short period, although new
virus variants have emerged, some of which can escape vaccine-
mediated immunity [16, 17]. Progress on the development of antivi-
rals and disease prognostic markers has been lagging. Repurposing
clinically approved drugs for use against SARS-CoV-2 has been an
attractive option and has been explored by many research groups
through different approaches [18]. Our study translates COVID-19
virus-host interaction and response Big Data into potential actionable
clinical interventions, including the use of S100 genes as a prognostic
marker in nasal swabs and repurposing the clinically approved drug,
Auranofin for COVID-19 treatment.
2. Methods

2.1. Ethics statement

This study was conducted after approval from Institutional
Human Ethics Committee (Approval Number: IHEC No. 13-
11092020), Institutional Bio-Safety Committee (Approval Number:
IBSC/IISc/ST/17/2020) and Institutional Animal Ethics Committee
(Approval Number: IAEC/IISc/ST/784/2020), following the Indian
Council of Medical Research and Department of Biotechnology rec-
ommendations. For use of human samples, informed consent was
obtained from each participant, before the study. All experiments
involving infectious SARS-CoV-2 were conducted in the Viral Bio-
safety level-3 facility at the Indian Institute of Science.
2.2. Cells and viruses

Authenticated (relevant documentation regarding authentication
by suppliers is available in Supplemental Data) HEK 293T cells
expressing human ACE2 (NR-52511, BEI Resources, NIAID, NIH, RRID:
CVCL_A7UK) and VeroE6 cells (CRL-1586, ATCC, RRID:CVCL_0574)
were cultured in complete media containing Dulbecco's modified
Eagle medium (12100-038, Gibco) with 10% HI-FBS (16140-071,
Gibco), 100 IU/ml Penicillin, 100 mg/ml Streptomycin and 0.25mg/ml
Amphotericin-B (Penicillin-Streptomycin-Amphotericin B,
ICN1674049, MP Biomedicals) supplemented with GlutaMAXTM

(35050-061, Gibco). SARS-CoV2 (Isolate Hong Kong/VM20001061/
2020, NR-52282, BEI Resources, NIAID, NIH) was propagated and
titered by plaque assay in Vero E6 cells as described before [19].
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2.3. Omics data collection and processing

Transcriptomics and protein abundance data from COVID-19
patient's naso- and oropharyngeal swabs, bronchoalveolar lavage
fluid (BALF), and other respiratory specimens were chosen from
PubMed, BioRxiv, and MedRxiv using different combinations of key-
words like "COVID-19, SARS-CoV-2, Transcriptomics, Proteomics,
BALF, swab". Studies dealing with gene expression profiles of SARS-
CoV-2 infected non-human cell lines and tissues were not considered.
The SARS-CoV-2 and COVID-19 collections in the EMBL-EBI PRIDE
proteomics database [20] were retrieved and used without any modi-
fication. In the NCBI GEO database [21], the following combination of
terms was used to collect relevant datasets: ((covid-19 OR SARS-
COV-2) AND gse [entry type]) AND "Homo sapiens"[porgn:
_txid9606]. The retrieved datasets were then filtered by their date of
publication to collect the studies published between the 1st of January
2020 and the 15th of September 2020. The filtration of datasets was
carried out using two parameters, fold-change, and its significance
value. Genes and proteins with a fold-change value of � 1.5 and q-
value � 0.05 were chosen for the overlap analysis. The raw p-value
was used for filtering in cases where the adjusted p-value was not
provided, albeit with a more stringent cut-off of � 0.01. The UniProt
IDs in filtered protein abundance datasets were converted to their
corresponding primary Gene Symbols using UniProt [22].
2.4. Gene set overlap analysis

The GeneOverlap class of R package "GeneOverlap" [23] was used
for testing whether two lists of genes are independent, which is rep-
resented as a contingency table, and then Fisher's exact test was used
to find the statistical significance. Genes with less than 0.01 overlap
p-value were selected for further analysis. The number of background
genes for proteome-proteome pairwise study and the transcriptome-
proteome pairwise study was 25,000, i.e., the number of protein-cod-
ing genes in Hg19. For the transcriptome-transcriptome overlap
study, the number of background genes was taken to be the union of
total expressed genes in both the datasets considered.
2.5. Gene ontology, Interferome, cellular and tissue localization analysis

Enriched GO terms were obtained by express analysis on Meta-
scape [24] and plotted using ggplot2 [25]. The database Interferome
v2.01 [26] was queried using gene symbols for identifying inter-
feron-regulated genes (IRGs) in normal samples of the respiratory
system from both in vitro and in vivo experiments in humans. For cel-
lular localization, each gene was queried on UniProt annotation [27]
and Human Protein Atlas ver20.0 [28, 29] and then manually anno-
tated. The single-cell expression data of transcripts was also obtained
from Human Protein Atlas ver20.0 (Available from http://www.protei
natlas.org/). They were further filtered to obtain cells that are associ-
ated with the immune system or respiratory tract.
2.6. Virus-Host protein-protein interaction network analysis

The interaction data for the selected 46 genes were retrieved from
publicly available interaction datasets [14]. The retrieved information
was then used to generate a network map. Cytoscape v3.8.0 [30] was
used to construct the interaction network for virus-host protein-pro-
tein interaction (PPI). STRING database within the Cytoscape store
was used to query the proteins to elucidate the interactions between
the proteins significantly altered during SARS-CoV-2 infection. The
resulting STRING interaction network (confidence �0.999 for all the
proteins and confidence �0.90 for NAMPT; max number of interac-
tors = 10) was merged with the virus-host PPI on Cytoscape.
2.7. qRT-PCR based measurement of cellular gene expression for patient
samples

Nasopharyngeal swabs were collected from COVID-19 patients
and healthy individuals for diagnostic purposes by hospitals from
Bengaluru Urban city and brought to COVID-19 Diagnostic Facility at
the Indian Institute of Science in viral transport media (VTM). RNA
from patients was isolated using kits recommended and provided by
the Indian Council of Medical Research. Samples were chosen to have
an almost equal number of patients falling into categories of age, sex,
COVID-19 status, and symptomatic status (Table 1). Demographic
information was not used as an inclusion criterion. Although a priori
sample size determination was not conducted, the number of sam-
ples were chosen based on technical constraints and previous publi-
cations [31, 32]. The de-identified patient data is available upon
request (see Data Sharing statement).

Equal amounts of RNA were converted into cDNA using Prime
ScriptTM RT Reagent Kit with gDNA Eraser (Perfect Real Time)
(RR047A, Takara-Bio) and then diluted with 80ml nuclease-free
water. The gene expression study was conducted using PowerUpTM

SYBRTM Green Master Mix (A25778, Applied BiosystemsTM) with
18srRNA as the internal control and appropriate primers for the
genes (Supplementary Table 3).

2.8. Cytotoxicity assay

HEK-ACE2 cells were seeded in a 96-well cell culture dish pre-coated
with 0.1 mg/mL poly-L-lysine (P9155-5MG, Sigma-Aldrich) and 24 hr
later, treated with 0, 1, 2, and 4 mM Auranofin (A6733, Sigma-Aldrich)
in triplicates. Cells were incubated at 37°C, 5% CO2, and 48 hr later, cyto-
toxicity was measured using AlamarBlueTM Cell Viability Reagent (DAL
1025, Thermo Fisher) as per manufacturer's instructions.

2.9. Infection in HEK-ACE2 and VeroE6 cells

Cells were seeded in a 24-well cell culture dish (pre-coated with
0.1 mg/mL poly-L-lysine for HEK-ACE2) and 24 hr later, used for
infection.

HEK-ACE2: Cells were first pretreated for 3 hr with 0, 0.125, 0.25,
0.5, and 1mM Auranofin in quadruplicates. Infection was done with
0.1 MOI SARS CoV-2 in 100 ml inoculum in DMEM supplemented
with 10% FBS for 1hr at 37°C.

VeroE6: Cells were pretreated for 3 hr with 0 and 1 mM Auranofin
in quadruplicates. Cells were infected with 0.001 MOI SARS CoV-2 in
100 mL inoculum in DMEM supplemented with 2% FBS for 1 hr at 37°
C.

For both cell lines, complete medium (DMEM with 2% FBS for
VeroE6) restoring the initial dose of the drug was added to the cells.
After 48 hr, cells were processed separately for plaque assay, western
blot analysis, and RNA extraction using TRIzolTM Reagent (15596018,
Thermo Fisher).

2.10. Western blot

Cells were washed with 1X PBS (162528, MP Biomedicals) and
lysed with 1X Laemmli buffer (1610747, BIO-RAD). Cell lysates were
loaded and resolved using a 10% SDS-PAGE gel, and the separated
proteins were transferred onto a PVDF membrane (IPVH00010,
Immobilon-P; Merck). Blocking was performed using 5% Skimmed
milk (70166, Sigma-Aldrich) in 1X PBS containing 0.05% Tween 20
(P1379, Sigma-Aldrich) (1X PBST) for 2 hr at room temperature with
slow rocking. Primary antibody incubation was performed overnight
(12 hr) at 4°C using SARS-CoV / SARS-CoV-2 (COVID-19) spike anti-
body (180 KDa) (GTX632604, GeneTex, RRID: AB_2864418 or NR-
52947, BEI Resources, NIAID, NIH). Secondary antibody incubation
was performed for 2 hr at room temperature with slow rocking using

http://www.proteinatlas.org/
http://www.proteinatlas.org/


4 A. Biji et al. / EBioMedicine 70 (2021) 103525
Goat Anti-Mouse IgG H&L (ab6789, Abcam, RRID: AB_955439) or
Goat Anti-Rabbit IgG H&L (ab6721, Abcam, RRID:AB_955447). The
blots were developed using Clarity Western ECL Substrate (1705061,
BIO-RAD). Blots were probed for beta-actin (42 KDa) using mouse
monoclonal antibody to beta Actin [AC-15] (HRP) (ab49900, Abcam,
RRID: AB_867494). All antibodies were authenticated by the respec-
tive companies and relevant documentation is available in Supple-
mental Data.

2.11. Plaque assay

Plaque assay to measure infectious virus counts were performed
as described before [19]. VeroE6 cells were seeded in 6-well cell cul-
ture dishes to reach complete confluency the next day. Cells
were washed once with 2 mL warm PBS and incubated with
dilutions of cell culture supernatants in 200 mL complete DMEM for 1
hr at 37°C. The virus inoculum was then removed, and cells
were overlaid with DMEM containing 2% FBS and 0.8% agarose
(MB002, Himedia). After 48 hr incubation, cells were fixed with 4%
formalin, and plaques were visualized by crystal violet (C6158,
Merck) staining.

2.12. Tissue-culture infectious dose 50 (TCID50)

HEK-ACE2 cells were seeded in a 96-well cell culture dish pre-
coated with 0.1 mg/mL poly-L-lysine and 24 hr later, used for
infection. Cells were first pretreated for 3 hr with 1 mM Auranofin
and subsequently infected with two-fold serial dilutions of SARS-
CoV-2 starting at 0.1 MOI. Each condition was performed
in ten wells. Plates were incubated for 48 hr, and the presence or
absence of cytopathic effects were recorded. TCID50 was estimated
using methods described by Reed and Muench [33].

2.13. Cytopathic Effect (CPE) reduction

HEK-ACE2 cells were seeded in a 24-well cell culture dish pre-
coated with 0.1 mg/mL poly-L-lysine and 24 hr later, used for infec-
tion. Cells were first pretreated for 3 hr with 1
mM Auranofin in triplicates and subsequently incubated with 0.1
MOI SARS CoV-2 in 100 mL inoculum for 1 hr at 37°C. Subse-
quently, 400 mL complete medium restoring the prior dose
of the drug was added to the cells. After 48 hr, the percentage of via-
ble cells was measured by Trypan blue (93595, Sigma-Aldrich) dye
exclusion method.

2.14. Animal experiments

Animal Handling: All animal experiments were performed using
10 to 12-week-old male and female Syrian golden hamsters pur-
chased from Biogen Laboratory Animal Facility (Karnataka, India).
The animals were allowed to acclimatize for 3 days at the experimen-
tal location, and given access to pellet feed and water ad libitum.
Males and females were housed separately and maintained on a 12-
hr day/night light cycle at the Viral Biosafety level-3 facility at the
Indian Institute of Science. Hamsters were euthanized by an overdose
of Ketamine (Bharat Parenterals Limited) and Xylazine (21, Indian
Immunologicals Ltd).

Toxicity and Infection assays: Toxicity of 1 and 5 mg/kg bodyweight
Auranofin was tested on Syrian golden hamsters by once-daily oral
administration of the drug in 200 ml PBS. This corresponds to a dos-
age of 1 mg/kg (Hamster) x 0.13 (conversion factor) = 0.13 mg/kg
(Human equivalent dose) and 5 mg/kg (Hamster) x 0.13 (conversion
factor) = 0.65 mg/kg (Human equivalent dose) Auranofin per day
(conversions as desribed in https://www.fda.gov/media/72309/down
load). The total bodyweight of hamsters was monitored for up to
7 days (see Supplementary Fig 8). Infection experiments were
performed by intranasal inoculation of animals with 105 PFU SARS-
CoV-2 in 100 mL PBS. The animals were anesthetized using intraperi-
toneal injections of Ketamine (150 mg/kg) (Bharat Parenterals Lim-
ited) and Xylazine (10 mg/kg) (21, Indian Immunologicals Ltd)
cocktail before infection. Prophylactic treatment involved oral
administration of Auranofin (5 mg/kg/day) 3-, 2-, and 1-day before
infection and followed by virus challenge at day 0. The therapeutic
treatment regimen used oral administration of Auranofin (5 mg/kg/
day) starting at 24-hr post-infection (hpi), followed by 2- and 3-days
post-infection (dpi). Total body weight was recorded each day during
the entire course of the experiment until the animals were sacrificed
at 4 dpi. Viral RNA load in lung tissue specimens was detected by
qRT-PCR. Sample size for hamster experiments were chosen based on
previous studies [34, 35].

2.15. RT PCR for viral copy number calculation

For qRT-PCR, total RNA was isolated using TRIzolTM Reagent
(15596018, Thermo Fisher) as per manufacturer's instructions and
equal amounts of RNA was used to determine viral load using
AgPath-IDTM One-Step RT-PCR kit (AM1005, Applied Biosystems)
using primers and probes targeting the SARS CoV-2 N-1 gene (For-
ward primer: 50GACCCCAAAATCAGCGAAAT30 and Reverse primer: 50

TCTGGTTACTGCCAGTTGAATCTG30, Probe: (6-FAM / BHQ-1)
ACCCCGCATTACGTTTGGTGGACC). Viral copy number was estimated
by generating a standard curve using SARS-CoV-2 genomic RNA stan-
dard.

2.16. Histopathology of Lung tissue

Lung tissue specimens of hamsters were fixed in 4% paraformalde-
hydein PBS, and embedded in paraffin blocks. Tissue sections of 4-
6 mm thickness were stained with Hematoxylin and Eosin (H&E) for
examination by light microscopy as previously described [36].

2.17. Graphical representations and statistical analysis

Statistical analyses and overlaps were performed in the R statisti-
cal environment version 4.0.3 via RStudio version 1.3.1093. All statis-
tical tests are two-sided unless specified otherwise. Plots were made
using the ggplot2 package in R [25] and GraphPad Prism v8.0.2. In
boxplots, the hinges of boxes represent the first and third quartiles.
The whiskers of the boxplot extend to the value which is 1.5 times
the distance between the first and third quartiles. Each data point in
the boxplot represents one of the triplicates in qRT-PCR for a particu-
lar gene in a particular patient sample. Heatmaps were generated
using the R package Complex Heatmap with Euclidean method used
for clustering [37]. Receiver Operating Characteristic (ROC) curve
analysis and Optimal cut-off determination were performed using
the online tool easyROC (ver. 1.3.1) [38].

2.18. Role of funding source

Only financial support was provided by the funders. They have not
participated in study design, data collection, data analyses, interpre-
tation, or writing of the report.

3. Results

3.1. Compilation and overlap analysis of published transcriptomics and
proteomics data from COVID-19 patient samples revealed 566
upregulated host factors

We started the study by compiling the host factors that are consis-
tently and significantly upregulated in the upper respiratory tract of
COVID-19 patients. For this 'top-down' approach to narrow down
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Fig. 1. Meta-analysis pipeline for gene prioritization and associated pathway analysis. a) Workflow used to obtain prognostic markers and therapeutic targets from proteomics and
transcriptomics datasets. b) Triangular heatmap showing pairwise overlaps between transcriptomic and proteomic datasets. The number within each box denotes the number of
genes that showed up between the corresponding intersections. The colour of a box denotes the significance of overlap determined by Fisher's exact test. c) Gene ontology of all
genes (566) in the significant intersections obtained during the overlap analysis plotted with the number of genes in each term on the X-axis, proportion of genes enriched com-
pared to the total number of genes in each term as the size of dots and the colour representing log10 p-adj value (q-value) of enrichment (calculated by a hypergeometric test with
Benjamini-Hochberg correction). d) Venn diagram showing the number of genes that are induced by Type I, II, or III interferons. The analysis was performed on Interferome v2.01
using the union of significant intersections (566).
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severity markers and drug targets from genome-wide data, we
decided to use published transcriptomics and proteomics datasets
derived from nasal swab or BALF samples of COVID-19 patients. We
chose four transcriptomics (T), and three proteomics (P) datasets, and
further analyses were performed according to a rationally designed
workflow (Fig. 1a). All datasets included differentially expressed
genes in infected patients with healthy individuals as control (see
Supplementary Table 1). The selection criteria (described in materials
and methods) included at least 1.5-fold gene upregulation at both
mRNA and protein levels. The filtration of data was carried out to sort
only significantly upregulated genes from all the datasets (see Sup-
plementary Table 2). A pairwise overlap analysis was performed on
the filtered genes/proteins from each study and significantly overlap-
ping genes (p-value < 0.01 calculated using Fisher's exact test)
between T1-T3 (14), T1-T4 (9), T1-P3 (2), T3-T4 (504), T3-P1 (10), T3-
P2 (8), T3-P3 (17), T4-P1 (8). T4-P3 (15) and P1-P3 (3) were deter-
mined (Fig. 1b, Supplementary File 1). This method was adapted
from similar overlap analysis conducted previously to compare



Fig. 2. Cumulative score ranking, pathway, and interactome analysis of selected host factors. a) Venn diagram of genes obtained from significant intersections among proteomic or
transcriptomic datasets after pairwise overlap analysis. b) Genes in the Venn diagram that were found in at least one proteomic dataset with their log2FC values in the datasets
where they are present. Boxes colored in white denote that the gene is not present in the filtered dataset. c) Genes arranged in descending order of cumulative scores obtained as a
sum of log2FC values in the datasets where they are present. d) Venn diagram showing the number of interferon-induced genes performed using Interferome v2.01 for 46 selected
genes. e) Gene ontology of 46 genes plotted with the number of genes in each term on the X-axis, the proportion of genes enriched compared to the total number of genes in each
term as the size of dots and the color representing log10 p-adj value (q-value) of enrichment (calculated by a hypergeometric test with Benjamini-Hochberg correction). f, g) Virus-
host protein-protein interactions among SARS-CoV2 proteins and significant genes in the overlap analysis that shows up in at least one proteomic dataset modeled using Cytoscape
v3.8.0. Red: SARS-CoV-2 proteins, Green: Host proteins (primary interactor), blue: STRING interactors (other cellular proteins interacting with the primary interactors).
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multiple virus-host interaction datasets and to obtain the significance
of intersections [39]. Union of significant intersections after the over-
lap analysis results in 566 genes (Fig. 1b). To reiterate the functional
characteristics of the differentially expressed genes (DEGs), we exam-
ined the biological processes and signaling pathways they are
involved in. Pathway enrichment of 566 genes from the union of all
significant intersections from overlap analysis showed enrichment of
biological processes like protein elongation, interferon (IFN) signal-
ing, chemotaxis of granulocytes, and inflammatory pathways
(Fig. 1c). The antiviral response to respiratory viral infections, includ-
ing SARS-CoV-2, is driven by interferons (IFNs) [40]. Hence, we
examined the shortlisted set of genes for their potential regulation by
different categories of IFNs, using the Interferome tool [26]. We found
that out of 566 genes, 76 were regulated by type I IFN, 148 genes by
Type II IFN, 190 genes were regulated by both type I and type II IFN,
while 16 genes were commonly regulated by all the three classes of
IFNs (Fig. 1d). These 16 genes are well-characterized interferon-stim-
ulated genes (ISGs), which include direct antiviral effector ISGs (IFITs,
MX1, OAS3, and OAS1), as well as positive regulators (STAT1) of IFN
response [41]. This indicated an active IFNmediated innate antiviral
response in the upper respiratory tract cells during SARS-CoV-2
infection and highlighted potential antiviral factors.



Fig. 3. qRT-PCR validated expression profile of selected genes in different categories of COVID-19 cohort. a) qRT-PCR was performed on RNA isolated from COVID-19 patients for 14
genes and average log2FC values (with respect to Negative Asymptomatic group) of PCR triplicates are shown in a heatmap. Each column represents a patient. The bottom annota-
tion shows the Ct value for the viral gene encoding Envelope (E) protein with a corresponding legend on the top. Black boxes denote 'value unknown/undetermined'. b) Differences
between groups for each gene were computed and the log10 (p-value) of comparisons is shown in the heatmap. The comparisons are Negative asymptomatic vs Positive symptom-
atic (NA-PS), Negative symptomatic vs Positive symptomatic (NS-PS), and Positive asymptomatic vs Positive symptomatic (PA-PS). *P < 0.05; **P < 0.01; ***P < 0.001; ****P <

0.0001; ns � not significant (Kruskal-Wallis test followed by post hoc Dunn's test with Bonferroni corrections for multiple comparisons). c) log2FC values are grouped based on age
groups 30-40, 41-50, and 51-60. Each row represents the average of log2FC values for patients falling into the particular age group and respective disease status. d) log2FC values are
grouped according to sex. Each row represents the average of log2FC values for patients falling into the particular sex and respective disease status.
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3.2. Rank ordering and shortlisting of upregulated host factors
highlighted host factors regulating the antiviral and inflammatory
immune response in COVID-19 patients

Since proteome dictates the outcome inside a cell, soluble factors are
key in shaping the antiviral response. We focused on genes supported
by orthogonal transcript (T) and protein (P) abundance data. For this,
we chose genes from the union of intersections of T-T, T-P, and P-P over-
laps, which was reported at least in one of the proteomics studies. This
narrowed down the list to a total of 46 genes that were intersecting in
T-P (26), P-P (2), TT-TP (16), TP-PP (1), and TT-TP-PP (1) overlaps
(Fig. 2a and 2b, Supplementary File 1). A cumulative score for the 46
selected significantly upregulated genes was calculated using the sum
of their log2 fold-change values in the parent datasets and ranked
(Fig. 2c). The enrichment of these 46 genes in each of the datasets,
where the expression is reported, is shown in Fig. 2b. Many of these
genes are directly regulated by different classes of interferons. 15 genes
are regulated by IFN-I, while 8 genes by IFN-II. 20 genes are regulated
by both type-I and type-II IFNs, while only 2 genes by all the three types
of IFNs (Fig. 2d). Most of the IFITs and other ISGs that were earlier
determined in our analysis to be regulated by all the three types IFNs
are no more in the list since those ISGs were only reported upregulated
at transcriptome level (only in T-T overlap) and hence were lost when
the genes were filtered for their upregulation at the protein level, leav-
ing behind only MX1 and OAS3 (Fig. 1c and 2d). The biological functions
of the selected 46 genes were also investigated to understand their roles
in COVID-19 pathophysiology. The enriched pathways were mainly
related to innate immune response and defense against microbes along
with inflammatory and immune signaling, neutrophil degranulation,
and cellular response to TNF and interferon-gamma (Fig. 2e).

Further, to understand the potential role of shortlisted genes in
COVID-19 pathophysiology, their interactions with SARS-CoV-2 proteins
were inspected by analyzing the publicly available SARS-CoV-2 cellular
interactome data [14]. For this, host protein-protein interactions were
retrieved from the STRING database [42] and merged with the virus-
host protein-protein interactions giving a discrete picture of how the
viral proteins target various cellular processes during infection. Other
than NAMPT, UQCRC2, and RAB5C, it was mainly proteins associated
with ribosomes that were primary interactors to the SARS-CoV-2 pro-
teins (Fig. 2f and 2g). We also examined the intracellular, cellular, tissue,



Fig. 4. ROC analysis of genes in COVID-19 positive patients to identify prognostic markers. a) ROC curve for Ct value of genes in COVID-19 positive patients. The black dashed line
corresponds to no prognostic potential where True positive rate (Sensitivity) and False positive rate (1-Specificity) are equal. b) The AUC value for each ROC curve along with the p-
value (calculated non-parametrically (DeLong's estimate) using the Wald test statistic). c) Boxplot of Ct values (technical replicates) for significant S100 family of genes in Positive
asymptomatic (PA) and Positive symptomatic (PS) patients. The red dashed line shows the optimal Ct cut-off determined by the ROC01 method (also shown in the label in each
graph). d) Optimal Ct cut-off, sensitivity, and specificity values for significant S100 family of genes.
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and organ-specific expression for shortlisted genes using publicly avail-
able data [28, 29]. Many upregulated proteins were predicted to localize
in the intracellular organelles like endoplasmic reticulum, mitochondria,
Golgi complex, and endosomes (see Supplementary Fig 1a), while 19
genes were predicted to be secretory. A thorough analysis of the list of
46 selected genes using Human Tissue Atlas revealed that they are
expressed in the respiratory tract and in immune effector cells known
to survey infection sites (see Supplementary Fig 1b). The relative expres-
sion levels show that genes associated with protein synthesis (ribo-
somal proteins and elongation factors) are highly expressed compared
to any other genes and are enriched across all the tissues in the map
(see Supplementary Fig 1b).

3.3. qRT-PCR based validation in a cohort of COVID-
19 positive/negative, symptomatic/asymptomatic individuals reveals
differential upregulation of selected genes in a disease-specific manner

For validation using qRT-PCR and further analysis, we selected genes
with a cumulative score greater than 10, except for IGHM due to the
lack of compatible primers (Fig. 2c). Also, we considered genes belong-
ing to the S100 family that came up within 46 shortlisted genes, since
they are known regulators of inflammation [43, 44]. Furthermore, we
also selected TXN since it was supported by multiple lines of evidence
and appeared in the TT-TP-PP overlap in our study (Fig. 2a). The COVID-
19 patient cohort used for qRT-PCR of genes included 63 individuals
(both males and females, aged 30-60 years), out of which 16 each were
COVID-19 positive symptomatic (PS), COVID-19 negative asymptomatic
(NA), COVID-19 negative symptomatic (NS), and 15were COVID-19 pos-
itive asymptomatic (PA) healthy category (Table 1). Total mRNA from
the nasal swab was isolated and the upregulation of 14 selected genes
was verified by qRT-PCR. The log2 fold-change expression with respect
to the average of the negative asymptomatic group (Fig. 3a, see Supple-
mentary Fig. 2) was calculated and plotted on a heatmap (Fig. 3a), which
depicts the mRNA enrichment of the selected genes in different patient
samples and categories. Next, we determined the correlation between
the viral RNA load in COVID-19 patients (qRT-PCR of viral envelope (E)
gene) and log2 fold-change of selected host genes in the patient sam-
ples. It was observed that the threshold cycle (Ct) value for the E gene



Fig. 5. Auranofin inhibits SARS-CoV-2 replication in cell culture. a-c) HEK-ACE2 cells were pre-treated with the indicated amount of drug for 3 hr, infected with 0.1 MOI SARS-CoV-
2, and incubated for 48 hr. a) Viral RNA copy number in cells was determined by qRT-PCR. b) Cell lysates were analyzed by western blot, probed for spike (180 kDa) and beta-actin
(42 kDa). c) Cell culture supernatant was collected from virus control and 1mM drug-treated, and infectivity titers were measured using plaque assay. d). HEK-ACE2 cells were
infected with serial dilutions of SARS-CoV-2 in the presence or absence of 1 mM Auranofin and TCID50 was estimated 48 hr post-infection. e-f) HEK-ACE2 cells were pre-treated
with 1mM drug for 3 hr and then infected with SARS-CoV-2 at 0.1 MOI for 48 hr. e) Fold change of viable cells was measured by trypan blue dye exclusion and data was analyzed by
normalizing the values to uninfected cell control. f) Brightfield images of representative images (scale bar - 200 mm) g-i) VeroE6 cells were pre-treated with 1mM of Auranofin for 3
hr and then infected with SARS-CoV-2 at 0.001 MOI for 48 hr. g) Viral RNA copy number was measured by qRT-PCR. h) Cell lysates were analyzed by western blot and probed for
spike (180 kDa) and beta-actin (42 kDa). i) Infectivity titers were measured by plaque assay with cell culture supernatant. For all comparisons, *P < 0.05; **P < 0.01; ***P < 0.001;
****P < 0.0001; ns � not significant (using t-test with Bonferroni corrections for multiple comparisons wherever necessary). Error bars represent mean + standard error.
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was negatively correlated with log2 fold-change of genes showing that
viral load and expression levels of the selected genes are positively cor-
related (see Supplementary Fig 3). Furthermore, the upregulation of
selected host genes was more pronounced in positive symptomatic
patients than positive asymptomatic individuals (Fig. 3a, see Supple-
mentary Fig. 3). A comparative heatmap in Fig. 3b gives an insight into
the genes that can be considered as COVID-19 disease and/or severity
marker. While all the upregulated genes except SERPINB3 indicate
infection (Fig. 3b; NA-PS), only a few genes showed significant upregu-
lation in a COVID-19 specific manner (Fig. 3b; NS-PS).

Multiple genes from the S100 family, including S100A8, S100A9,
S100A6, and S100P, and few other genes such as ASS1 and SERPINB3
were significantly upregulated in positive symptomatic patients when
compared to other three categories (NA, NS, PA), suggesting their poten-
tial diagnostic and prognostic value (Fig. 3b, NS-PS). Expression of neu-
trophil defensin alpha 3 (DEFA3) was upregulated in some of the
positive symptomatic patients but remained undetermined in many
cases. Furthermore, we examined the influence of age and sex on the
upregulation of selected genes in patient samples by categorizing them
based on age groups [30-40, 41-50 and 51-60] and gender (male and
female) (Fig. 3c, Fig. 3d, see Supplementary Fig 4 and Supplementary Fig
5). The qRT-PCR data revealed that all the selected genes were induced
in positive symptomatic patients, irrespective of age or gender. How-
ever, closer examination of the heatmap reveals S100 family genes
(S100A8, S100A9, and S100P) being upregulated to a higher level in the
30�40-year age group andmale individuals (Fig. 3c, 3d).



Fig. 6. Auranofin inhibits SARS-CoV-2 replication in the preclinical hamster challenge model. a) Scheme for animal experiments involving 10�12-week-old hamsters (n=4). b) Total
RNA was isolated from the lung tissue of infected animals and viral RNA copy number was measured by qRT-PCR. c) Body weight of hamsters was measured from D0 to D4, consid-
ering weight on D0 as 100% (n=4). Differences between test groups and control groups were computed using the t-test with Bonferroni corrections for multiple comparisons. d)
H&E-stained section of lung tissue from indicated group of animals. The areas marked in the circle show following (1) Normal healthy alveolar lining and morphology (2) Alveolar
damage, cellular infiltration, inflammation (3,4) Protected alveolar morphology and reduced infiltration, inflammation. (scale bar - 200mm). e) IL-6 mRNA levels were determined
by qRT-PCR from total RNA isolated from the lungs of hamsters. Comparisons against the "vehicle control infected" infected groups are shown above bar plots. The bracket within
the figure shows other significant comparisons. Differences were computed using the Kruskal-Wallis test followed by a post hoc Dunn's test with Bonferroni corrections for multiple
comparisons. n=4 for hamster experiments except in healthy uninfected group where n=2. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; ns � not significant. Error bars repre-
sent mean + standard error.
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3.4. ROC analysis of mRNA expression of shortlisted significant genes in the
COVID-19 cohort unveils the prognostic potential of the S100 family of genes

The COVID-19 symptomatic group of patients included individuals
with breathing difficulty, fever, hospitalization, and SARI (severe acute
respiratory infections), whereas asymptomatic patients had none of
these features (Table 1). To evaluate the prognostic value of selected
genes in differentiating asymptomatic vs symptomatic COVID-19 cases,
we conducted a non-parametric ROC curve analysis [38] for the 11 genes
that were significant after comparison between positive symptomatic
and asymptomatic groups (Fig. 3b, PA-PS). For this, we used their Ct val-
ues for COVID-19 positive cases to plot the curve and the area under the
curve (AUC) was computed (Fig. 4a). All genes were found to signifi-
cantly differ (AUC > 0.5) from the line where True positive rate = False
positive rate, indicating their potential to differentiate between asymp-
tomatic and symptomatic individuals (Fig. 4b). The optimal Ct value cut-
off was determined for significant genes using the ROC01 method which
finds the point in the ROC curve closest to (0,1) corresponding to 100%
specificity and sensitivity. Since the prognostic marker should correctly
identify symptomatic patients from asymptomatic ones, we looked at
the genes with maximum sensitivity while not compromising on speci-
ficity at the optimal cut-off. S100A8 (Cut-off = 9.964663, Sensitiv-
ity = 0.938, Specificity = 0.688) had the highest sensitivity at the optimal
cut-off. Other S100 family members like S100A9 (Cut-off = 8.533607,
Sensitivity = 0.854, Specificity = 0.729), S100A6 (Cut-off =8.472503, Sen-
sitivity = 0.745, Specificity = 0.718) and S100P (Cut-off = 11.23458, Sensi-
tivity = 0.812, Specificity = 0.622) also showed good prognostic potential
(Fig. 4c and 4d). Genes like LCN2 (Cut-off = 11.23362, Sensitivity = 0.744,
Specificity = 0.756), AGR2 (Cut-off = 11.19266, Sensitivity = 0.775, Speci-
ficity = 0.708) and ASS1 (Cut-off = 12.70913, Sensitivity = 0.7, Specificity
=0.771) were also found to have desired sensitivity and specificity values
(see Supplementary Fig 6).



Table 1
Summary of individual and different categories in the COVID-19 cohort used for qRT-PCR based validation analysis. All samples were collected from Bangalore Urban
area for diagnostic purposes.

Patient Status Number of patients Average age Number of males Number of females Number in the age
group 30-40

Number in the age
group 41-50

Number in the age
group 51-60

Negative
Asymptomatic

16 43.9 8 8 6 5 5

Negative
Symptomatic

16 41.7 12 4 9 4 3

Positive
Asymptomatic

15 44.3 7 8 6 5 4

Positive
Symptomatic

16 45 8 8 5 5 6
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3.5. Thioredoxin reductase inhibitor drug Auranofin significantly
mitigates SARS-CoV-2 replication in vitro, and in vivo in the hamster
challenge model

Thioredoxin (TXN) was a single hit that appeared in the TT-TP-PP
overlap in our study and remained in the shortlisted gene set at the
end of the meta-analysis. Although its expression upregulation or the
prognostic value was not the highest, it is part of a druggable path-
way. Thioredoxin is known to promote inflammatory cytokine induc-
tion, apoptosis, and regulate redox status, for which it switches
between oxidized and reduced forms through the action of thiore-
doxin reductase, which can be inhibited by an FDA approved orphan
drug Auranofin (2,3,4,6-tetra-o-acetyl-L-thio-b-D-glycopyranp-sato-
S-(triethyl-phosphine)-gold) [15, 45, 46]. We sought to check the
effect of Auranofin on SARS-CoV-2 infection and replication in cell
culture and animal models. To begin, cell viability assay performed in
HEK-ACE2 and VeroE6 cells using increasing doses of Auranofin
showed minimal cytotoxicity at the lowest concentration (1mM) and
had predicted CC50 of 9.659mM (see Supplementary Fig. 7a, 7b). The
effects of increasing doses of Auranofin, up to 1 mM (»0.67 mg/L of
media), was then tested on SARS-CoV-2 replication in vitro. For this,
HEK ACE2 cells were pretreated with the drug, which remained pres-
ent during the entire course of infection. Analysis of viral RNA 48 hr
post-infection showed a reduction of more than one order of magni-
tude, starting at treatment with 0.25 mM Auranofin (Fig. 5a). With a
calculated EC50 = 0.29 mM, the selectivity index (CC50/EC50) of Aura-
nofin was determined to be 33.3. The potent antiviral effect of Aura-
nofin was confirmed by western blot for the full-length viral spike
protein (Fig. 5b). Treatment with 1 mM Auranofin showed a signifi-
cant reduction of infectious virus titer in cell culture supernatants at
48 hr post-infection (Fig. 5c) and this was supported by a »2-log
reduction by TCID50 assay (Fig. 5d). Virus-induced cytopathic
effects (CPE) was also mitigated significantly and cell viability
increased by »6 fold in the presence of Auranofin (Fig. 5e and 5f), as
observed by microscopy and measured by trypan-blue exclusion
assay. Furthermore, the anti-viral effect of Auranofin was also demos-
trated in VeroE6 cells, wherein, analysis of viral RNA 48 hr post-
infection revealed ~1-log reduction in drug-treated cells
(Fig. 5g). This was reflected in western blot analysis of infected cells,
where we observed almost complete inhibition of viral spike protein
expression (Fig. 5h). Plaque assay quantification of infectious virus
particles from cell culture supernatants revealed >1 log reduction in
the presence of Auranofin (Fig. 5i).

Next, we proceeded to confirm the antiviral activity of Auranofin
in Syrian golden hamsters, which are currently considered as the ani-
mal model of choice to evaluate vaccines and antivirals [36]. Aurano-
fin (PubChem CID 6333901) toxicity and bioavailability in rodents
have been described before [47], based on which we first tested its
oral toxicity in hamsters at 1mg/kg and 5mg/kg body weight, which
showed the drug was well tolerated at the tested doses (see Supple-
mentary Fig 8). For infection studies, the drug was orally adminis-
tered in prophylactic and therapeutic formats; before and after
infection, respectively (Fig. 6a). The viral titers in lungs of animals at
Day 4 revealed that both prophylactic and therapeutic administration
of Auranofin with a non-toxic concentration of 5mg/kg body weight
was more effective at mitigating virus replication in lung tissue, com-
pared to the vehicle control group (Fig. 6b). Bodyweight loss results
were also indicative of the same when compared to the virus chal-
lenge group (Fig. 6c). Also, we found that the TXN gene was upregu-
lated in cell culture as well as in the lungs of infected animals
compared to the mock group, which correlates to our findings from
patient sample gene expression data (Fig. S9). Examination of H&E
stained histological sections of the lung showed evident damage of
alveolar epithelial lining and cellular infiltration in infected animal
lungs. The lung damage and inflammation were clearly reduced in
the case of both therapeutic as well as prophylactically treated ani-
mals (Fig. 6d). Furthermore, TXN has been reported to increase proin-
flammatory cytokine induction [48], especially IL-6, which is a well-
established mediator of COVID-19 severity [49]. We tested the effect
of Auranofin on IL-6 production in infected hamster lungs and found
it to be significantly diminished (Fig. 6e). This is likely to be a mecha-
nism of action of Auranofin against SARS-CoV-2 infection and dis-
ease.

4. DISCUSSION

Several studies have analysed changes in global transcriptome
and proteome in COVID-19 patient samples of various kinds [7-13].
These studies have given an overview of the biological processes that
are modulated during SARS-CoV-2 infection; however, translation of
this knowledge into antiviral interventions requires validation and
mechanistic studies. Meta-analysis of virus-host interaction Big Data
is a useful approach to narrow down key host factors and processes
involved in viral replication and pathogenesis [39, 50]. In our study,
we focussed on transcriptomics and proteomics data from COVID-19
positive nasal swab and BALF samples and performed an integrative
analysis to identify host factors involved in SARS-CoV-2 infection and
disease progression. We reasoned that changes at mRNA levels must
also be manifested at the protein level to bring out phenotypic differ-
ences in the infected individuals. Hence, we designed our meta-anal-
ysis pipeline to shortlist genes that were represented in orthogonal
transcriptomics as well as proteomics datasets. Expression of the
genes selected through meta-analysis was examined in nasal swab/
BALF samples collected for COVID-19 diagnosis from a cohort of indi-
viduals that were COVID-19 negative or positive and within those
two categories either symptomatic or asymptomatic. The cohort
design was to ensure the identification of genes that are overex-
pressed in a COVID-19 specific manner and those which indicate dis-
ease severity. The initial compilation of upregulated factors had 566
genes, of which 46 genes passed through the selection pipeline
(Fig. 2b). Most of these genes turned out to be IFN regulated and
among them, the major category was ribosomal proteins (RPs),
including RSP3A, RPL4, RPL5, RPL18, RPL13A, RPS4X, RPL7A, RPS9,
and RPS3 (Fig. 2b). RPs have been reported to be hijacked by different
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viruses, including SARS-CoV-2, during infection to shut off host trans-
lation and facilitate IRES-mediated translation of viral proteins [51-
53]. Inspection for reported interactions between shortlisted RPs
with the SARS-CoV-2 proteins revealed that nsp1, nsp8, nsp9, and
nucleocapsid (N) proteins of SARS-CoV-2 are potential interactors
(Fig. 2f). This suggests extensive targeting of host translational
machinery by multiple SARS-CoV-2 proteins in the upper respiratory
tract cells. Other shortlisted cellular proteins with reported interac-
tions with viral proteins were NAMPT, UQCRC2, and RAB5C (Fig. 2g).
These are involved in cellular processes like ATP production, NAD
synthesis, and vesicular fusion respectively, all of which have been
reported to be influenced during viral infections [54-58].

Subsequent ranking of genes based on cumulative upregulation
score across different datasets, with dual support from transcriptomic
and proteomic evidences, shortlisted 14 high confidence upregulated
genes (Fig 2b). To confirm their upregulation during SARS-CoV-2
infection and the effect of patient age, sex, disease severity on the
same, their expression was measured in a cohort of patients
described earlier (Table 1). The data revealed that 11 genes were
upregulated significantly in the PS category when compared to PA
and hence had prognostic value. Whereas, 8 genes were upregulated
when compared to the NS category, hence had diagnostic value
(Fig. 3b). The data indicated higher levels of selected gene expression
in younger male patients, which is consistent with previous reports
of age and sex-dependent differences in COVID-19 induced gene
expression and disease severity [7, 59]. Among host factors that
appeared at the end of meta-analysis and validation in the COVID-19
cohort, the S100 family of genes (S100A6, S100A8, S100A9, S100A12,
and S100P) emerged as a major group. An upregulation of S100 pro-
teins is reported previously as an indication of viral or bacterial infec-
tions [43]. The extracellularly secreted S100 proteins include
S100A12, S100A8, and S100A9 (see Supplementary Fig 1a), all of
which have been shown to serve as a danger signal and in regulating
immune response [44]. They activate NF-kB signalling through RAGE
and TLR4 pathways stimulating the cells to produce proinflammatory
cytokines at the site of infection [44]. Several studies have explored
serum diagnostic and prognostic markers by evaluating transcrip-
tomic and proteomic changes in mild, severe, and fatal cases of
COVID-19 [60, 61]. An increase in S100A8/A9 (calprotectin) levels in
serum have been correlated with severe forms of the disease [62].
Transcriptomic studies on lung tissue of fatal COVID-19 cases have
also reported an upregulation in S100A12, S100A8, S100A9, and
S100P in patients [63]. In our study, the ROC curve analysis of the PA
and PS group qRT-PCR data showed that all shortlisted S100s (except
S100A12) had significant sensitivity as a prognostic marker of symp-
tomatic COVID-19 (Fig. 4c, d). Overall, taking our data and published
information together, the S100 family of genes can be considered as
reliable prognostic markers of COVID-19 infection and disease pro-
gression. Another host factor LCN2, which came up in our study was
previously shown to be an important biomarker for viral infection
[64], and was also reported to be upregulated in transcriptomic and
proteomic studies in COVID-19 patients [65, 66]. Furthermore, Serine
protease inhibitor (SERPIN) family genes SERPINB3 and SERPINB1
were present among the initially selected 46 upregulated genes. SER-
PINB3 was at the top of cumulative upregulation ranking (Fig. 2c) and
in the COVID-19 cohort, it was significantly upregulated in the PS cat-
egory. It is an inhibitor of papain-like cysteine proteases such as
cathepsin [67], which is required for Spike cleavage during SARS
CoV-2 entry [68]. Interestingly SERPINA1 deficiencies or mutations in
populations were found to be associated with severe forms of COVID-
19 [69]. Taken together, this indicates a potential antiviral role for
SERPINs against SARS-CoV-2, which needs further exploration.

Finally, one gene of interest which passed the rigor of meta-analysis
was TXN. Although its cumulative upregulation or prognostic values
were not very high, we explored its potential as a therapeutic target. Thi-
oredoxin is a small redox protein that plays an active role in keeping the
intracellular compartment in a reduced state, which is important to pre-
vent protein aggregation [70]. The thioredoxin system consists of three
components, namely thioredoxin, thioredoxin reductase, and the reduc-
ing agent nicotinamide adenine dinucleotide phosphate (NADPH). Thio-
redoxin reductase is a homeostatic redox enzyme that can be inhibited
by FDA-approved, gold-containing triethyl phosphine drug Auranofin
[15]. This drug has been shown to have inhibitory activity against rheu-
matoid arthritis, cancer, HIV/AIDS, parasitic, and bacterial infections [71],
albeit with side effects like diarrhea (45-50%), rashes (24%), abdominal
cramping (14%), stomatitis (13%) and nausea (10%) [47]. The drug is sold
under the brand name RIDAURA� in the USA and Goldar in India, where
it cost INR 112 (»1.5 USD) for 10 tablets of 3 mg, making it an economi-
cally viable option. Auranofin is a metallodrug, which may have implica-
tions in its mechanism of action. Another metallodrug, ranitidine
bismuth citrate, was found to exert SARS-CoV2 antiviral activity by
sequestering Zinc ions, necessary for helicase function [72]. A recent
study by Rothan et al. showed Auranofin to inhibit SARS-CoV-2 in Huh-7
cells at an EC50 of 1.4mM [73]. In comparison, our data in HEK-ACE2
cells showed improved antiviral activity at much lower concentrations
of the drug (EC50 of 0.29 mM or 197 mg/L of the medium; selectivity
index - 33.3, versus 4.07), as evidenced by decrease in viral infectious
counts, viral RNA, protein, and cytopathic effects (Fig. 5a-f). This effect
was also confirmed in VeroE6 cells. In terms of gold concentrations, the
EC50 value would be 13.3 mg/L which is dominated by steady-state
serum gold concentrations of 300mg/L after oral administration of 3 mg
dose of auranofin and 500-700mg/L after oral administration of 6 mg in
humans [47]. Since the EC50 value can be easily achieved in humans, it
hints at the translational potential of this study. Furthermore, we went
on to validate the antiviral activity of Auranofin for the first time in the
preclinical hamster challenge model. Results showed a significant reduc-
tion in the lung viral load and rescue of animal body weight, when the
drug was orally administered, which may be attributed to the anti-
inflammatory activity of the compound [74]. Notably, Auranofin has
been shown to decrease proinflammatory cytokines IL-6, IL1b, and
TNFa mRNA levels during SARS-CoV-2 infection in vitro, which are
known mediators of disease severity [73]. In Auranofin-treated animals,
lung tissue damage, cellular infiltration, and inflammation, as well as IL-
6 expression, was significantly reduced compared to control infected
animals. This substantiates our proposed mechanism of action of Aura-
nofin against SARS-CoV-2. Similar immunosuppressive medications like
dexamethasone and IL-6 receptor inhibitor tocilizumab are being used
for COVID-19, which could aid in reducing the inflammation that leads
to poor prognosis in severe COVID-19 cases [75, 76]. Furthermore, TXN
mRNA levels were upregulated in cell culture, hamsters as well as nasal
swabs of COVID-19 patients, which confirms it as a reliable phenotype of
infection and target for therapy. Auranofin also has inhibitory effects on
the PI3K/AKT/mTOR pathway [77], which is required for SARS-CoV-2
viral protein translation [78, 79]. This may also contribute to its mecha-
nism of action, however, that needs to be further investigated.

There are a few limitations to our study, which can be alleviated
with follow-up experiments. This includes a small sample size of
human nasal swabs samples and limited experimentation in the
hamster model. With a greater number of human samples in a larger
cohort, a detailed categorization of patients (such as hospitalized vs.
non-hospitalized, ICU vs. non-ICU, survived vs. deceased) can confirm
the utility of S100 markers in predicting the diseases severity with
high confidence. Also, with detailed experimentation in hamsters,
especially with changing the Auranofin dosage and treatment inter-
vals, a more effective regimen can be identified. Furthermore, a
detailed characterization of the mode of action of Auranofin against
SARS-CoV-2 needs to be conducted. Nonetheless, this study high-
lights the value of comprehensive analyses of Omics datasets to gain
insight into infection biology and identify avenues for potential ther-
apeutic targeting. The selected gene expression data obtained with
the COVID-19 cohort reaffirmed the heterogeneity of individual
immune response, the role of age, sex, and the effect of viral load, all
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of which are in coherence with observations made by other research
groups. We especially uncover the prognostic value of S100 family
genes in nasal swabs, many of which are soluble secretory factors.
They can be easily tested by RT-PCR or ELISA-based methods in nasal
swabs that are routinely collected for diagnostic purposes. Finally,
the identification of Auranofin (already in clinical use for other medi-
cal conditions) as a drug that can be further explored as a potential
COVID-19 treatment option culminates the importance of our study
and meta-analysis approach in translating virus-host interaction Big
Data into clinical interventions.
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