Zhang et al. Human Genomics (2021) 15:53

https://doi.org/10.1186/5s40246-021-00350-3 H u ma n G e n O m ics

PRIMARY RESEARCH Open Access

Check for
updates

Identification of subgroups along the
glycolysis-cholesterol synthesis axis and the
development of an associated prognostic
risk model

Enchong Zhang'", Yijing Chen®?*", Shurui Bao”, Xueying Hou?, Jing Hu?, Oscar Yong Nan Mu’,
Yongsheng Song' and Liping Shan'"

Abstract

Background: Skin cutaneous melanoma (SKCM) is one of the most highly prevalent and complicated malignancies.
Glycolysis and cholesterogenesis pathways both play important roles in cancer metabolic adaptations. The main
aims of this study are to subtype SKCM based on glycolytic and cholesterogenic genes and to build a clinical
outcome predictive algorithm based on the subtypes.

Methods: A dataset with 471 SKCM specimens was downloaded from The Cancer Genome Atlas (TCGA) database.
We extracted and clustered genes from the Molecular Signatures Database v7.2 and acquired co-expressed
glycolytic and cholesterogenic genes. We then subtyped the SKCM samples and validated the efficacy of subtypes
with respect to simple nucleotide variations (SNVs), copy number variation (CNV), patients’ survival statuses, tumor
microenvironment, and proliferation scores. We also constructed a risk score model based on metabolic
subclassification and verified the model using validating datasets. Finally, we explored potential drugs for high-risk
SKCM patients.

Results: SKCM patients were divided into four subtype groups: glycolytic, cholesterogenic, mixed, and quiescent
subgroups. The glycolytic subtype had the worst prognosis and MGAM SNV extent. Compared with the
cholesterogenic subgroup, the glycolytic subgroup had higher rates of DDR2 and TPR CNV and higher proliferation
scores and MK167 expression levels, but a lower tumor purity proportion. We constructed a forty-four-gene
predictive signature and identified MST-321, SB-743921, Neuronal Differentiation Inducer Ill, romidepsin, vindesine,
and YM-155 as high-sensitive drugs for high-risk SKCM patients.

Conclusions: Subtyping SKCM patients via glycolytic and cholesterogenic genes was effective, and patients in the
glycolytic-gene enriched group were found to have the worst outcome. A robust prognostic algorithm was
developed to enhance clinical decisions in relation to drug administration.
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Background

Skin cutaneous melanoma (SKCM) is a highly aggressive
malignancy, and the mortality rate increases dramatically
following metastasis [1]. In its early stage, melanoma can
be successfully treated with surgery; however, once it
has metastasized it needs to be treated with drugs [2].
Adjuvant systemic therapy is widely used in melanoma
patients, especially those with stage III/IV. Immune
checkpoint inhibitors and BRAF-targeted therapies have
shown efficacy in curbing metastatic melanoma [3], but
they often fail in many SKCM patients due to drug in-
sensitivity and resistance, which is attributed to the het-
erogeneity of melanoma [4].

Building molecular subtypes and a risk model algorithm
for SKCM could be an effective solution to determining
clinical pathways. In this respect, the Cancer Genome
Atlas (TCGA) group established a framework for classify-
ing genomes into four subtypes: mutant BRAF, mutant
RAS, mutant NF1, and Triple-WT (wild-type) [5]. An-
other study identified two immune subtypes that have op-
posite immune states and developed a prognostic five-
immune-associated gene signature [6]. In addition, a two-
gene immune-related signature consisting of CCL8 and
DEFB1 was constructed in 2020 [7], and the six genes
(SH2D3A, TMEMZ201, LZTS1, CREGI1, NIPA1l and
HIST1H4E) model developed by another team are
projected to play a vital role in the prognosis of uveal
melanoma [8]. However, studies focusing on glycolysis-
cholesterogenesis-related subtypes and associated prog-
nostic models in melanoma are currently lacking.

Metabolic activity is pivotal to the developmental pro-
gress of tumors, and it contributes to tumor plasticity.
The characteristics of tumor heterogeneity are reflected
in cellular and metabolic aspects, including the differen-
tial tumor microenvironment (TME) and variable bio-
logical pathways [9, 10]. Altered metabolic activities
influence tumor progress, reflect the associated progno-
sis, and influence the drug therapeutic effect [11]. Evi-
dence has shown that glycolysis contributes to the
disease progress of melanoma and that restricting glyco-
lytic activity acts as a therapy, preserves immune cell
function, and improves the immune checkpoint blockage
effects [12]. The research of Andreas Koc et al. showed
that the expression level of Cyclin D1, which acts as an
outcome biomarker in melanoma and indicates its pro-
liferative and invasive extents, is associated with glucose
transporter isoform 1 (GLUT1), glycolysis-related genes
hexokinase 1 (HK1), lactate dehydrogenase A (LDH-A),
and monocarboxylate transporters 1 (MCT1) [13]. Many
malignancies, such as lung, gastrointestinal, and pancre-
atic cancer, harbor KRAS and defunctional TP53 onco-
genes, both of which induce glycolytic pathways in
malignancies [14—17]. Unlike healthy tissues, most can-
cer cells mainly produce energy through glycolysis at a
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high rate, and at the same time metabolite pyruvate is
converted to lactic acid followed by fermentation in
cytosol. This process is known as the Warburg effect; it
is a hallmark of tumor evolution and it impacts drug
efficacy [18].

The Mitochondrial pyruvate complex (MPC) can
counteract the influence of glycolytic activity by trans-
porting pyruvate to mitochondrion, and loss-of-function
MPC is related to fast cancer cell growth and a poor
outcome [19]. In the metabolic process, pyruvate, which
is an intermediate molecule of the tricarboxylic acid
cycle (TCA cycle), provides precursor citrate for further
adipogenesis, including synthetic cholesterol and free
fatty acids [20]. Evidence has shown that cholesterol, to-
gether with its metabolites and precursors, regulates
tumorigenesis and promotes biological process, such as
oncogene-driving pathways, ferroptosis, and TME in ma-
lignancies [21]. In this respect, cholesterol inhibitors, in-
cluding statins, are utilized in tumor therapies [22].
However, the role of cholesterogenesis in cancer remains
arguable, and the efficacy of statins in regulating cancer
has shown mixed effects. In addition, distinct responses
exist due to tumor heterogeneity [23, 24]. However, the
expression levels of mitochondrial pyruvate complex 1
(MPC1) and mitochondrial pyruvate complex 2 (MPC2)
regulate malignancy outcomes [25], and this indicates
the distinct performance of pyruvate flow in differenti-
ated malignancy types. In this respect, it also shows that
balanced glycolytic and cholesterogenic pathways jointly
modulate tumor progression.

Based on previous studies of melanoma subtypes [5,
6], we aimed to define new subtypes from a metabolic
perspective by using different metabolic levels. We used
a large-patient cohort from TCGA (https://www.cancer.
gov/about-nci/organization/ccg/research/structural-
genomics/tcga) to explore novel subclassifications in
melanoma based on glycolysis-cholesterogenesis differ-
ential expressed genes, and we then compared the
characteristics of the discovered subtypes and further
validated the subtyping efficacy and reproducibility. We
determined that the subtype with the highest glycolysis
and lowest cholesterol synthesis had the worst prognosis.
We subsequently explored the nature of the glycolytic
subgroup and finally developed a risk prognostic model
based on the glycolytic subgroup to provide a quantita-
tive method that involves an enhanced biological under-
standing and which can be used to develop clinical
strategies for SKCM management.

Results

The identification of four metabolic subgroups along the
glycolysis-cholesterol synthesis axis

The gene expressions of 366 SKCM tumor samples ob-
tained from the TCGA were used to screen the co-
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expressed glycolytic and cholesterogenic genes. Consen-
sus clustering was conducted on 72 genes in the glyco-
lytic pathway and 25 genes in the cholesterogenic
pathway. According to the results, the best grouping
scheme was obtained with 6 (k = 6) gene clusters (Fig.
1A), where the method used to determine the optimum
k value is provided in the work of Wilkerson et al. [26].
Hierarchical clustering was then conducted based on the
consensus matrix generated. As shown in Fig. 1B, genes
in C5 (defined as glycolytic co-expressed genes) all
belonged to the glycolytic pathway and genes in C6 (de-
fined as cholesterogenic co-expressed genes) all
belonged to the cholesterogenic pathway. The median
expressions of these glycolytic and cholesterogenic co-
expressed genes were then acquired from 366 SKCM
tumor samples, and four metabolic subgroups were sub-
sequently identified based on the median expressions
(Fig. 1C). The expressed levels of these selected genes
were visualized across four subgroups (Fig. 1D), and
principal component analysis (PCA) was used to
illustrate the difference between the four subgroups
(Fig. 1E).

The results showed that patients in the glycolytic sub-
group had the worst prognosis (Fig. 1F and G), which in-
dicates that SKCM with higher glycolysis and lower
cholesterol synthesis may have more aggressive charac-
teristics. The clinically relevant information relating to
the four subtypes is presented in Table 1. We found that
the overall survival (OS) rates and progress-free intervals
(PFIs) differed significantly among patients in the differ-
ent four subtypes (log-rank test, P = 0.024 and < 0.001).
There were no statistical differences between the other
clinical characteristics of patients, but this result could
relate to the large number of categories used with re-
spect to certain characteristics.

Differences in somatic mutations across the metabolic
subgroups

As shown Fig. 2A, we found that greater numbers of
simple nucleotide variations (SNVs) of MGAM occurred
in the glycolytic subgroup. MGAM is a member of the
glycoside hydrolase family 31, and it is involved in gal-
actose metabolism and metabolic pathways [27]. No
studies to date have revealed a correlation between the
SNVs of MGAM and the progress of the cancer, and we
thus considered that to evaluate MGAM in cancer, gly-
colysis might be a good entry point. We therefore se-
lected genes that had significantly different copy number
variation (CNV) statuses across the metabolic sub-
groups. Of these, DDR2 and TPR were filtered out for
their high CNV frequencies in both the glycolytic and
mixed subgroups. DDR2 promotes the migration and in-
vasion of metastatic melanoma cells [28], and DDR2 in-
hibition makes tumors vulnerable to anti-PD-1
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immunotherapy [29]. TPR can promote cell proliferation
in colorectal cancer via binding with GSK3p [30]. In Fig.
2B and E, we found that amplifications or gains of DDR2
or TPR were greater in the glycolytic and mixed sub-
groups (chi-square test P value < 0.05). Not unexpect-
edly, the gene levels of DDR2 or TPR were found to be
higher in the glycolytic or mixed subgroups, as shown in
Fig. 2D and G (Kruskal-Wallis P value < 0.05). There is
thus a relationship between these results and the worse
prognoses of the glycolytic and mixed subgroups, and it
is considered that when conducting research targeting
DDR2 or TPR, the activity of glycolysis should be
studied.

Positive correlation between tumor purity and metabolic
status

According to the results of ESTIMATE, the immune
score and stromal score were negatively correlated with
the metabolic status, as shown in Fig. 3A and B (the
mixed < the cholesterogenic < the glycolytic < the quies-
cent), and the result of the ESTIMATE score showing
the sum of the immune and stromal scores is shown in
Fig. 3C. The results indicate that there is a decrease in
the number of immune cells and stromal cells infiltrated
in the microenvironment of tumor tissue with an in-
crease in the metabolic state. Tumor purity was then
calculated using the ESTIMATE scores, and a higher
metabolic status was found to be associated with higher
tumor purity, as shown in Fig. 3D. This result suggests
that a high metabolic status relates to high tumor tissue
purity. In addition, tumors with high cholesterol synthe-
sis were found to have a higher purity than tumors with
high glycolysis (Fig. 3D).

Glycolytic subgroup has a higher proliferation level

As shown in Fig. 4A, the proliferation score was posi-
tively correlated with the median expression of choles-
terogenic genes (rho = 0.38, P < 0.05) and glycolytic
genes (rho = 0.44, P < 0.05), and a higher proliferation
score level was found in the glycolytic subgroup, as
shown in Fig. 4B (Kruskal-Wallis P < 0.05). Similarly, the
expression level of MKI67 was positively correlated with
the median expression of cholesterogenic genes (rho =
0.37, P < 0.05) and glycolytic genes (rtho = 0.61, P <
0.05), as shown in Fig. 4C. Furthermore, the glycolytic
group was found to have a higher expression level of
MKI67, as shown in Fig. 4D (Kruskal-Wallis P < 0.05).
These findings confirm that tumors in the glycolytic
subgroups identified have greater proliferation abilities.

Gene expressed networks and biological activities related
to glycolysis and cholesterol synthesis

In this study, four metabolic subgroups were identified
via different metabolic statuses, as represented by the
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Fig. 1 Stratification of SKCM tumors based on expression of glycolysis and cholesterogenic genes. A The CDF curve under different values of k.
The value of k represents the number of clusters during the consensus cluster. When the optimal k value is reached, the area under the CDF
curve will not significantly increase with the increase of k value. B Heatmap depicting consensus clustering solution (k=6) for glycolysis and
cholesterogenic genes in SCKM samples (n=469). C Scatter plot showing median expression levels of co-expressed glycolytic (x-axis) and
cholesterogenic (y-axis) genes in each SKCM sample. Metabolic subgroups were assigned on the basis of the relative expression levels of
glycolytic and cholesterogenic genes. D Heatmap depicting expression levels of co-expressed glycolytic and cholesterogenic genes across each
subgroup. E PCA showed that patients in the different subtgroups were significantly different from each other. F Kaplan-Meier survival curves for
patients in the different subgroups. Log-rank test P values are shown. The clinical outcome endpoint is OS. G Kaplan-Meier survival curves for
patients in the different subgroups. Log-rank test P value is shown. The clinical outcome endpoint is PFI. SKCM, skin cutaneous melanoma; CDF,
cumulative distribution function; PCA, principal components analysis; OS, overall survival; PFl, progression-free interval. And P < 0.05 is defined as

median expression of glycolytic and cholesterogenic
genes. WGCNA was then conducted to find more genes
related to glycolysis and cholesterol syntheses and to
conduct subsequent research. According to Fig. 5A,
when the soft threshold was equal to 3, the gene net-
works satisfied both a high degree of internal connectiv-
ity and a high gene similarity. The gene networks with
similarity were then merged and six networks repre-
sented by different colors were finally identified (Fig.
5B). The relationships between the gene networks and
the median expressions of cholesterogenic and glycolytic
genes were then explored, and the turquoise and yellow
networks were found to be most related to cholesterol
synthesis and glycolysis, respectively (Fig. 5C). The gene
significance and module membership of genes in the
turquoise and yellow networks are shown in Fig. 5D and
E, and the values of these variables exhibit strong posi-
tive correlations. It is considered that gene significance
could reflect the representativeness of a gene in the cor-
responding phenotype, and that membership could rep-
resent the correlation between a gene and its networks.

The genes in the turquoise and yellow networks were
used in a KEGG enrichment analysis (P < 0.05). As
shown in Fig. 6A, glycolysis and cholesterol synthesis are
related to cellular processes, human disease, and genetic
information processing (level 1 of the KEGG functional
category). Furthermore, the p53 signaling pathway, cell
cycle, cellular sentence, and homologous recombination
are enriched in glycolysis, whereas the adherence junc-
tion, platinum drug resistance, and proteoglycans in can-
cer are enriched in cholesterol synthesis.

Development of a prognostic risk model

Patients in the glycolytic subgroup were found to have
the worst prognosis, and we thus used the genes in the
yellow network, which are most related to glycolysis, to
train the risk model. The C-index was set as the refer-
ence in the cross validation to select the optimum least
absolute shrinkage and selection operator (Lasso) model
for the training group. As shown in Fig. 7A, the 44-
genes risk model had the highest C-index, and Fig. 7B

shows the changes in the coefficients of different genes
during the cross validation.

It was then possible to calculate the risk score of each
patient to evaluate their risk level using the following
equation,

. 44 . .
Risk score = g (coefficient, x expression of gene, ),
n=1 n

and the genes and their coefficients are shown in
Table 2. Patients in the training group, internal valid-
ation group, and the GSE19234 data set were then
ranked in an ascending order of risk score. Due to batch
effect across different platforms, the median of the risk
scores of each group was selected as the cut-off value to
divide patients into high risk and low risk (Fig. 7C—H).

The global expression levels of the 44 genes are shown
in Fig. 7I-K. In the training group and internal valid-
ation groups, the high-risk patients had the worst prog-
nosis for OS and PFI (Fig. 8A-D). In the GSE19234
group, the high-risk patients also had the worse progno-
sis for OS (Fig. 8E). In all these groups, the model
showed a good predictive ability for OS or PFI (AUC >
0.65), as shown in Fig. 8F-I. Unlike our model, Liao’s
immune-related model was unable to distinguish be-
tween high-risk and low-risk patients using an external
dataset (GSE19234) (Fig. 9A, log-rank P = 0.876) [7],
and their model provided a comparatively poorer per-
formance in terms of calculating the AUC (Fig. 9B, 5
years AUC of Liao’s model = 0.44). To validate our
model’s ability to obtain an independent prognostic fac-
tor, univariate and multivariate Cox regression analyses
were conducted in the filtered international validation
group (n = 92, patients with too many missing values of
clinical information were removed) (Table 3), and we
found that pathological T, pathological N, pathological
M, and the risk model were able to independently pre-
dict a patient’s prognosis.

Predicted use of drugs based on prognostic risk model
We used compound data from CTRP and PRISM data-
bases to predict which potential drugs could be
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Table 1 Correlations between the four metabolic subtypes and clinical characteristics in the TCGA cohort
Mixed (n=123) Cholesterogenic (n=55) Glycolytic (n=76) Quiescent (n=90) Total (n=344) P value
Age
Mean (SD) 575 (154) 546 (17.1) 61.1 (144) 57.5(16.5) 578 (15.8) 0.159°
Median [MIN,MAX] 57 [15,90] 56 [19,82] 63 [18,90] 7 18,90] 58 [15,90]
Gender
Female 44 (35.8%) 18 (32.7%) 29 (38.2%) 38 (42.2%) 129 (37.5%) 0.668°
Male 79 (64.2%) 37 (67.3%) 47 (61.8%) 52 (57.8%) 215 (62.5%)
Race
Asian 5 (4.1%) 2 (2.6%) 2 (2.2%) 9 (2.6%)
White 118 (95.9%) 5 (100.0%) 74 (97.4%) 88 (97.8%) 335 (97.4%)
Pathological T
T0 11 (8.9%) 4 (7.3%) 3 (3.9%) 5 (5.6%) 3 (6.7%) 04°
T1 4(11.4%) 8 (14.5%) 6 (7.9%) 8 (8.9%) 6 (10.5%)
T2 29 (23.6%) 11 (20.0%) 17 (22.4%) 15 (16.7%) 72 (20.9%)
T3 7 (22.0%) 2 (21.8%) 25 (32.9%) 18 (20.0%) 2 (23.8%)
T4 2 (34.1%) 20 (36.4%) 24 (31.6%) 44 (48.9%) 130 (37.8%)
Tis 1(1.3%) 1(0.3%)
Pathological N
NO 7 (62.6%) 35 (63.6%) 39 (51.3%) 46 (51.1%) 197 (57.3%) 0.693°
N1 2 (17.9%) 10 (18.2%) 14 (18.4%) 8 (20.0%) 64 (18.6%)
N2 3 (10.6%) 5(9.1%) 1 (14.5%) 2 (13.3%) 41 (11.9%)
N3 11 (8.9%) 5(9.1%) 12 (15.8%) 14 (15.6%) 42 (12.2%)
Pathological M
MO 122 (99.2%) 51 (92.7%) 72 (94.7%) 87 (96.7%) 332 (96.5%) 0.077°
M1 1 (0.8%) 4 (7.3%) 4 (53%) 3 (3.3%) 12 (3.5%)
Pathological stage
Stage | 34 (27.6%) 10 (18.2%) 13 (17.1%) 13 (14.4%) 70 (20.3%) 0.143°
Stage Il 39 (31.7%) 22 (40.0%) 24 (31.6%) 31 (34.4%) 116 (33.7%)
Stage Il 49 (39.8%) 18 (32.7%) 35 (46.1%) 41 (45.6%) 143 (41.6%)
Stage IV 1 (0.8%) 4 (7.3%) 4 (5.3%) 3 (3.3%) 2 (3.5%)
1/ NOS 1(1.8%) 2 (2.2%) 3 (0.9%)
Overall survival
Survival 60 (48.8%) 26 (47.3%) 32 (42.1%) 58 (64.4%) 176 (51.2%) 0.024° (%)
Death 63 (51.2%) 29 (52.7%) 44 (57.9%) 32 (35.6%) 168 (48.8%)
Progress-free interval
Free survival 37 (30.1%) 1 (20.0%) 16 (21.1%) 43 (47.8%) 107 (31.1%) <0.001¢ (¥)

Death or progression 86 (69.9%) 44 (80.0%)

60 (78.9%) 47 (52.2%) 237 (68.9%)

7, tumor; N, lymph node; M, metastasis; P values were calculated by the Kruskal test?, chi-square test®, or log-rank testS; *statistically significant

administered to patients with high-risk scores. As shown
in Fig. 10A, MST-312, neuronal differentiation inducer
III, and SB-743921 showed high sensitivity for patients
with high-risk scores, and Fig. 10B shows that romidep-
sin, vindesine, and YM-155 were highly sensitive for
patients with high-risk scores.

Discussion

In this research, we explored individual differences in
SKCM from a metabolic perspective. Both glycolytic and
cholesterogenic pathways orchestrate tumor metabolic
adaptations and play roles in cancer progression and
proliferation [31]. A previous study discussed the
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metabolic differential characteristics of pancreatic can-
cer, highlighted the existence of metabolic heterogeneity
in tumors, and determined distinct profiles based on
glycolytic and cholesterogenic genes [32]. We therefore
hypothesized that SKCM could be subclassified based on
glycolytic and cholesterol synthetic genes. A previous
study identified TCGA SKCM subtypes based on gen-
omic mutations [5], whereas our study focused on meta-
bolic function to sub-classify SKCM. The results
supplement those already published on the SKCM sub-
types of TCGA.

We extracted glycolytic and cholesterogenic genes
from “REACTOME_GLYCOLYSIS” (n = 72) and
“REACTOME_CHOLESTEROL_BIOSYNTHESIS” (n =
25) gene sets, respectively, which were obtained from
the Molecular Signatures Database v7.2 [33, 34]. To find
the most representative genes and reduce noise, consist-
ent clustering was used to reduce the number of genes.
Ultimately six gene clusters were obtained (C1-6). C5
and C6 were then designated as the co-expressed choles-
terogenic and glycolytic genes, respectively. Cluster C5
contained 9 cholesterogenic genes, including ACAT2,
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Fig. 6 The results of KEGG analysis in cholesterogenic genes and glycolytic genes. KEGG, Kyoto Encyclopedia of Genes and Genomes. P < 0.05 is
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CYP51A, DHCR24, DHCR7, HMGCR, HMGCS1, IDI1,
MSMO1, and SQLE, and Cluster C6 contained 12 glyco-
lytic genes, including GNPDAI, NUPI88, NUP205,
NUP214, NUP62, NUP85, POMI21, POMI2IC,
PPP2RIA, PPP2R5D, PRKACA, and RAEI. Multiple
genes have been digested in melanoma research and
found to interfere with melanoma proliferation [35-43].
Based on above genes, the samples were divided to four
subtypes: cholesterogenic, glycolytic, mixed, and quies-
cent groups.

Unexpectedly, the best prognosis was found in patients
with the quiescent subtype, desert of both two metabolic
pathway-related genes. The glycolytic subtype had the
worst clinical outcomes and a significantly higher
MGAM SNV rate than the others. MGAM (maltase-glu-
coamylase) belongs to the glycoside hydrolase family 31
and acts as a target in type II diabetes [44]. A higher ex-
pression of MGAM has been noted in luminal A breast
cancers, and a meta-analysis identified that MCAM mu-
tations are associated with a positive clinical benefit in
non-small lung cancer cases [45, 46]. It is thus a promis-
ing focus for future glycolytic and cancer investigations.

As mentioned in the results, the CNV statuses of DDR2
and TPR were more significant in the glycolytic and
mixed subtypes, which also support their association
with a poor prognosis. It is of note that both higher
glycolytic and cholesterogenic gene expressions indi-
cated higher proliferation scores, although the slope of
the glycolytic gene expressions was steeper.

Following subclassification and subsequent analyses,
we succeeded in constructing four subtypes based on
genes related to glycolysis and cholesterol synthesis
pathways and ultimately recognized the glycolytic sub-
type as the group with the highest risk. We then tried to
investigate further by analyzing the subclassifications,
and we determined an optimum method for translating
the results by constructing a risk predictive model.

The risk score modifier consisted of 44 genes relating
to the glycolytic subtype, as it was found to have the
worst prognosis. After conducting a literature review, we
discovered that the roles of many genes in the classifier
have been investigated with respect to melanoma and
have been found to influence tumorigenesis. To be spe-
cificc, CDCA8 was positively related to the risk scores,
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HR 95% ClI P value Lasso coefficient
KIFC1 17 (1.1-26) 0016 0.345468464
GPR19 16 (1.1-24) 0.016 0272311029
SLC45A3 16 (11-2.2) 0.016 0645641342
TYMS 15 (0.98-2.2) 0.064 0.525818769
PLK1 15 (1-2.3) 0.029 0.111452595
IQGAP3 1.5 (1-23) 0.027 034671539
CDCA8 15 (0.98-2.2) 0.06 1.060191747
UHRF1 14 (1-2.1) 0.047 0464561353
RRM2 13 091-1.9) 0.15 0208350724
CCNA2 13 (0.87-1.9) 0.21 0.218089206
CEP55 13 (0.85-1.8) 026 0276731331
TK1 13 (0.89-2) 0.17 —0.870357919
PBK 1.2 (0.82-1.6) 039 004492278
DIAPH3 12 (0.86-1.8) 025 0546604919
SHCBP1 1.2 (0.79-1.8) 041 0462985398
DEPDC1B 12 (0.8-1.8) 0.35 0.501249454
MELK 12 08-1.7) 042 —-0.311001546
BZW2 1.2 (081-1.9) 032 0.068764877
TFRC 11 (0.83-1.6) 043 0.066927634
PRR11 1.1 (0.76-1.6) 059 -0.193881148
CDC6 1.1 (0.76-1.7) 0.51 —-0.27245389
NUSAP1 1.1 (0.72-1.6) 0.68 —0.059609277
E2F7 1.1 (0.76-1.6) 0.58 —0.984225964
ESCO2 1.1 (0.68-1.8) 071 0514700781
INCENP 1.1 (067-1.7) 0.74 —0.484422932
BRIP1 11 0.7-1.8) 061 —0.123046978
CDCA7L 1 (0.84-1.3) 071 -0.016050038
RCOR2 1 (0.77-1.3) 0.97 —0.183697727
NCAPG 1 (0.72-14) 09 —0.041934418
GPC2 1 (0.73-1.5) 0.85 0.279342277
PGM1 1 0.7-14) 0.99 0.048131126
C3orf52 1 (0.68-1.6) 0.88 0372435672
LMNB1 0.99 (0.67-1.5) 0.94 —0.388549559
BRCA1 0.98 (0.62-1.5) 0.93 —0.041497529
ATAD2 0.95 (0.63-1.4) 0.79 0.323810656
EZH2 093 (0.61-1.4) 0.75 —0.289895316
TTK 0.92 (0.63-1.3) 0.66 -0.623252924
SMC2 0.82 (057-1.2) 029 —-0.120862539
LBR 0.8 (0.56-1.1) 022 —-0486321723
HMGB2 0.79 (0.54-1.2) 0.23 —0.222782483
oDbC1 0.78 (0.58-1.1) 0.12 —0.502894698
SASS6 0.76 (0.48-1.2) 022 0.033157158
PSRC1 0.7 047-1) 0.08 —0.63407795
USP1 067 (0.47-0.95) 0.024 —-0.981142492

Forty-four genes were selected by Lasso, and univariate Cox regression was performed on them. HR, hazard ratio; Cl, confidence interval; Lasso, least absolute

shrinkage and selection operator



Zhang et al. Human Genomics (2021) 15:53

Page 13 of 20

A Progression-free interval
Risk level= high-risk > =1.97(155)
1.00 low-risk < -=1.97(155)

p(Log-rank) < 0.001

E|(Cox) <0.001
azard Ratio = 4.7

95% Cl: 3.4 -6.5

Percent survival
o
a
[=]

10 15 20 25
Time(years
survival intrain

B  Progression-free interval
Risk level™ high-risk > -1.89(62)
1.00 low-risk < —1.89(62)
p?Log—rank =0.028
EICox) =0.034
_ 075 azard Ratio = 1.5
e 95% Cl: 1 -2
s
>
Z 050
c
8
9]
Q0.25
0.00
0 10 20 30
Time(years)
F survival intest
1.00 /
’
7/
o ’
= 7
=0.75 ,
o ’
% ’
] ’
=0.50 ’
d
’
’
’
0.25
L7 AUC
P 5 year AUC: 0.804
’
0.004
0.00 0.25 ('):Slo b 0.135 1.00
ROC intraint o Ve
1.00 v
’
’
g ,
= ’
80.75 ,
o ’
9 ’
2 ’
~0.50 ,
’
’
’
0.25 7 AUC
ud Vear AUC: 0.671
v
0.00§ ¥
0.00 025 0.50 0.75 . 1.00
False Positive ROC intest

C Overal survival
Risk level= high-risk > -1.97(155)
low-risk < -1.97(155)
p}Log—rank < 0.001
E{COX) <0.001
azard Ratio = 3.5
95% Cl:24-5

1.00

o
3
3

Percent survival
o
(&)}
o

0.25
0.00
0 :H)me(ye.arsg_o 30
. survival intrain OS
D Overal survival
Risk level= high-risk > -1.89(62)
low-risk < -1.89(62
1.00 p Log—rank( =)0.013
Cox) = 0.01
azard Ratio = 1.7
0.75 95% Cl: 1.1 -2.5

Percent survival
o
o
S

o
i
3]

l

30

©
o
S

0 10 20
Time(years)
survival intest OS

N
=}
S
N\

7’
4
g 4
= 4
2075 ,
4
e ’
=] 4
~0.50 ,
4
4
4
0.25 ’
L7 AUC
s 5 year AUC: 0.737
4
0.00f ¥
000 025 050 075 1.00
[ roETERBEYe
1.00 v
4
4
2 ’
207 Ve
5075 ,
o 4
0] e
=1
= 4
£0.50 ,
4
4
4
0.25 ’ AUC
§’ 85ear AUC: 0.685
7
0.00§ #
000 _025_ 050 0.5 1.00

False Positive ROC intest OS

Fig. 8 Verification of the effectiveness of the model. A-E Kaplan-Meier curve for survival analysis. F-J The ROC curve of 5-year follow-up time.
A, C, F, H The results in the training set. B, D, G, | The results in the internal validation set. E, J The results in GSE19234. The clinical outcome
endpoint in A, B, E, F, G, J was PFI. The clinical outcome endpoint in C, D, H, I was OS. AUC, area under curve; PFl, progression-free interval; OS,
overall survival. And P < 0.05 is defined as statistically significant

E Overal survival
Risk level™ high-risk > -6.72(22)

1.00 low-risk < ~6.72(22)

Percent survival
I o
[$)) ~
o (4]

o
N
3

p(Log-rank) = 0.004

EICOX) =0.004
azard Ratio = 1.7

95% Cl:1.2-2.5

0

—

. 10
wmetearel

o
o
S

15

1.00 /
V4
4
g 4
=2 /7
= 0.75 ,
g e
3 ,
=0.50 ’
d
7/
/7
0.25 7 ALG
L’ Y Vear AUC: 0.787
7
0.00f ¥
000 025 050 075  1.00
False Positive
ROC GSE19236




Zhang et al. Human Genomics (2021) 15:53

Page 14 of 20

A Overal survival
Risk level == high-risk > -2.09(22)

\

low-risk < -2.09(22)
1.00

©
3
3

o
153
<)

Percent survival

p(Log-rank) = 0.876
p(Cox) =0.004
Hazard Ratio = 1.7
95% Cl: 1.2 -25

0.25

0.00

0 5 10 15
Time(years)

Fig. 9 The comparison between our model and Liao’s immune-related model. A Kaplan-Meier curve for Liao’s immune-related model in
GSE19234 (n = 44). The clinical outcome endpoint was OS. B The ROC curve of 5-year follow-up time for our model and Liao’s immune-related
model in GSE19234 (n = 44). AUC, area under curve; OS, overall survival. And P < 0.05 is defined as statistically significant

0.8
N

Sensitivity
0.6

0.4

0.2

7
== AUC of our model at 5 years: 0.76
@ AUC of IRGS model at 5 years: 0.44

00 02 0.4 06 08 10
1-Specificity

and it was previously validated as being associated with
tumor proliferations in melanoma by Chao et al. [47].
Similarly, DEPDCIB SHCBPI1, RRM2, PLK1, and UHRFI
have been found to promote melanoma proliferation
and could be potential targets for treatment [48-52];
their coefficients were all positive, which implies that
they had an additive effect on the risk scores.

The model was further validated using both internal
and external validation processes. Potential drugs for
high-risk patients were then investigated, and MST-312,
neuronal differentiation inducer III, SB-743921, romi-
depsin, vindesine, and YM-155 were finally identified as
high-sensitivity drugs for patients with high-risk scores.
In this respect, MST-321 (telomerase inhibitor) induces
apoptosis in multiple malignancy cells, such as myeloma
cells and breast cancer cells [53, 54]. Neuronal Differen-
tiation Inducer III is a neuronal differentiation inducing
compound that can inhibit brain tumors through indu-
cing brain stem cells differentiation [55], and SB-743921
(Molecular Formula: C31H33CIN203-HCI) acts as a
potent and active KSP (kinesin spindle protein) inhibitor

that inhibits multiple tumor growth and induces apop-
tosis [56, 57]. The efficacy of romidepsin, vindesine, and
YM-155 in targeting melanoma has been previously vali-
dated [58-60]. Therefore, all these drugs could be con-
sidered for use in the clinical management of high-score
SKCM patients.

With respect to its heterogeneity and plasticity, SKCM
is a complicated disease and therapy intolerance and in-
sensitivity may influence therapeutic efficacy. Our study
provides a novel subclassification of SKCM and an asso-
ciated risk score signature based on metabolic genes that
could enhance biological understanding and clinical
strategies.

However, although the results of this study are posi-
tive, certain limitations exist. First, although our research
analyzed a large cohort of patients and verified the effi-
cacy of the method using a dataset from another plat-
form, a long-term prospective investigation is essential
before applying the risk model in a clinical setting.
Second, we used the median expression values for genes
C5 and C6 with a cutoff of 0 to define subtypes with

Table 3 Univariate and multivariate Cox regression for clinical variables and the prognostic risk model in international validation

group
Prognostic index Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value
TCGA SKCM set (n = 92)
Age 1.021 (1.003-1.039) 0.022 1.015 (0.995-1.035) 0.148
Gender 0.837 (0.496-1411) 0.504
Race 1.102 (0.15-8.089) 0.924
Pathological stage 1406 (1.023-1.932) 0.035 0.745 (043-1.292) 0.295
Pathological M 47619 (10.351-219.066) < 0001 21.963 (4.23-114.032) < 0001
Pathological N 1407 (1.081-1.831) 0.011 1.68 (1.114-2.533) 0.013
Pathological T 1.319 (1.1-1.582) 0.003 1.324 (1.058-1.658) 0.014
Risk score 1.699 (1.118-2.582) 0013 1351 (1.112-1.631) 0.027

T, tumor; N, lymph node; HR, hazard ratio; Cl, confidence intervals
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different glycolytic and cholesterogenic levels. However,
the use of other clustering methods, such as K-means or
Mclust, may be beneficial in the future. In addition,
Lasso, smoothing clipped absolute deviation penalty
(SCAD), and minimax concave penalty (MCP) regression
methods are known to be the most effective for selecting
variables. The objective function in Lasso is convex and
easy to calculate, the coefficient of the compression in-
dependent variable is 0, and it has good robustness;
therefore, it is especially practical. Several prognostic re-
search studies have used Lasso when investigating tumor
diseases [61-63]. Therefore, we used Lasso to develop
our prognostic model in this study. However, the other
two algorithms developed since Lasso, SCAD and MCP,
are known to be occasionally better than Lasso when
selecting important features [64]. Therefore, the failure
in our study to use SCAD or MCP to screen the model
is another limitation, and we will use these methods in
future studies. Moreover, we determined several drugs
that are highly sensitive in high-risk patients. Following
a literature review, we found romidepsin, vindesine, and
YM-155 have been shown to have antitumor effects in

melanoma development, whereas investigations using
MST-321, SB-743921 and Neuronal Differentiation In-
ducer III in SKCM are lacking. We therefore believe that
they should be studied in the future.

Conclusion

In this study, a dataset with 471 SKCM specimens was
downloaded from The Cancer Genome Atlas (TCGA)
database. We extracted and clustered genes from the
Molecular Signatures Database v7.2 and acquired co-
expressed glycolytic and cholesterogenic genes. We then
subtyped the SKCM samples, and validated the efficacy of
subtypes with respect to simple nucleotide variations
(SNVs), copy number variation (CNV), patients’ survival
statuses, tumor microenvironment, and proliferation
scores. A survival analysis, SNV, CNV, and tumor envir-
onmental analyses were conducted, and the glycolytic sub-
type was found to have the worst prognosis in all the
above aspects. We also explored the subtyping nature and
built a 44-gene algorithm for predicting the SKCM prog-
nosis in patients, and we validated the risk score signature
in both internal and external independent cohorts. We
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further explored the sensitivity of using certain drugs in
patients with different prognoses, and six drugs were fi-
nally identified to have higher sensitivities in high-risk
SKCM patients (MST-321, SB-743921, Neuronal Differen-
tiation Inducer III, romidepsin, vindesine, and YM-155).

Methods and materials

Data acquisition and processing

We downloaded datasets of SKCM samples from the
TCGA database (https://portal.gdc.cancer.gov/) that in-
cluded the following data: transcriptome profiling (RNA-
seq, n = 471), simple nucleotide variations (SNVs), and
copy number variations (CNVs). Normalization of the
RNA-seq was chosen as the Fragments Per Kilobase Mil-
lion (FPKM), and the FPKM format of the RNA-seq was
transformed into a Transcripts Per Kilobase Million
(TPM) format. Clinical information about SKCM patients
was subsequently downloaded from (https://xenabrowser.
net/datapages/), and survival data were obtained from an
integrated TCGA pan-cancer Clinical Data Resource
(CDR) [65]. According to the CDR, the clinical endpoints
used for SKCM were selected as overall survival (OS) and
progression-free interval (PFI). In addition, a dataset
(GSE19234, n = 44) from the Gene Expression Omnibus
(GEO, https://www.ncbinlm.nih.gov/geo/) with survival
information was selected to validate the risk score model.
In this study, we filtered out patients who had follow-up
times of less than 30 days, and patients for whom survival
information was missing were deleted.

Identification of metabolic subgroups

First, we extracted glycolytic and cholesterogenic genes
from the “REACTOME_GLYCOLYSIS” (n = 72) and
“REACTOME_CHOLESTEROL_BIOSYNTHESIS” (n =
25) gene sets, respectively, where were obtained from the
Molecular Signatures Database v7.2 [33, 34]. A consensus
cluster was then conducted on these genes using the Con-
sensusClusterPlus R package [26]. The number of subsam-
ples was 100, the proportion of items to samples was 0.8,
the proportion of features to samples was 1, and the hier-
archical linkage method for subsampling and the consensus
matrix was Ward. D2. The consensus cluster results pro-
vided the co-expressed glycolytic and cholesterogenic
genes. We also identified four metabolic subgroups based
on the median expression of these two types of co-
expressed genes and defined them as mixed (glycolytic me-
dian > 0, cholesterogenic median > 0), cholesterogenic
(glycolytic median < 0, cholesterogenic median > 0), glyco-
lytic (glycolytic median > O, cholesterogenic median < 0),
and quiescent (glycolytic median < 0, cholesterogenic me-
dian < 0) subgroups. A principal components analysis
(PCA) was then conducted on all of the protein-coding
genes to determine if patients in these four subgroups dif-
fered from each other. Finally, survival analyses were
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conducted based on the OS and PFI clinical endpoints, and
the log-rank test P values were calculated.

Analysis of SNV across metabolic subgroups

SNV data were obtained via the workflow of MuSE Vari-
ant Aggregation and Masking. We extracted the SNV
matrix and divided it into four groups based on the
metabolic subgroups. The genes were then ranked ac-
cording to mutation frequency in descending order, and
the top ten genes were selected to investigate their mu-
tation statuses in the four subgroups via the GenVisR R
package [66].

CNV analysis across metabolic subgroups

First, we conducted the chi-square test on all genes with
CNVs to select genes that had significantly different
CNV statuses across the metabolic subgroups. Genes
with expression levels that were not correlated with their
CNV status were filtered out. Finally, genes with a high
proportion of CNVs in the glycolytic or cholesterogenic
subgroups were selected to reflect the characteristics of
these subgroups.

Analysis of tumor microenvironment across metabolic
subgroups

Kosuke et al. developed an algorithm to determine
tumor purity based on gene expression information [67]
that can be used in the R package, ESTIMATE. The
gene expressions of SKCM patients (n = 467) were input
to ESTIMATE, and four scores were output. In this re-
spect, the immune score reflected the abundance of im-
mune cells around the tumor, the stromal score
reflected the abundance of stromal cells around the
tumor, and the ESTIMATE score was the sum of the
immune and stromal scores, and it was negatively corre-
lated with tumor purity.

Analysis of the relationship between proliferation and
metabolic subgroups

The proliferation score was acquired from the TCGA
cohort research study [68]. The proliferative status was
represented using the proliferation score and the expres-
sion of MKI67, which encodes KI67 and is the most
common marker of cell proliferation. The correlation
between the proliferative status and the median expres-
sion of glycolytic or cholesterogenic genes was explored
using the Spearman’s test, and the ggstatsplot R package
was used to visualize the results of Spearman’s rank cor-
relation. The proliferative statuses across metabolic sub-
groups were visualized using the ggpubr R package, and
the Kruskal-Wallis P values were calculated.
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Weighted gene co-expression network analysis (WGCNA)
All genes were arranged in descending order of variation
between samples, and the top 5000 genes were selected
for analysis using the R package, WGCNA [69]. Accord-
ing to the calculation conducted using this package, the
soft threshold was set as 3. For gene module fusion, the
cutoff value was set to 0.25. The results of WGCNA
showed that gene modules were mostly correlated with
the median expression of glycolytic and cholesterogenic
genes, and this was thus selected for use in further
research.

Enrichment analysis of glycolytic and cholesterogenic
phenotypes

As mentioned in the “Weighted gene co-expression
network analysis (WGCNA)” section, we selected gene
modules that were mostly correlated with the median
expression of glycolytic and cholesterogenic genes. We
then conducted an enrichment analysis on these genes
via the clusterProfiler R package based on the gene sets
within the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database [70, 71].

Construction of a prognostic risk model via lasso

Genes in the yellow module were used to construct the
risk model using Lasso, which is a popular machine
learning method [72], and the glmnet R package was
employed in this respect [73]. The parameters were set
as follow: family = “cox”, type.measure = “C”, and paral-
lel = TRUE, and the other parameters (not mentioned
here) were set as default. Patients from the TCGA were
divided into a training group (n = 310) and an internal
validation group (1 = 124) via the caret R package [74].
The model in the training group was generated by Lasso,
and a survival analysis and time-dependent receiver op-
erating characteristic curve (tdROC) were completed to
validate the effectiveness of this model in the training
group (n = 310), internal validation group (n = 124), and
GSE19234 (n = 44). The proposed model was then com-
pared to the existing one in GSE19234 (1 = 44) in terms
of the survival analysis and AUC using the Survival R
package [7]. As a continuous risk score was obtained
from the model, Cox test and log-rank test P values were
simultaneously obtained. Since the risk scores were
derived from training group, univariate and multivariate
Cox regression analyses of the risk score and other
clinical pathological variables were conducted only in
the international validation group (n = 124). And due
to some patients had too many missing values of
clinical information, the patients in international
validation group were filtered and 92 patients were
screened out.
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Identification of candidate components with higher drug
sensitivity in patients with high-risk score

The study of Paul Geeleher et al. demonstrated a
method using only before-treatment baseline tumor gene
expression data that could be used to predict the chemo-
therapeutic response of patients [75]. They tested a
number of the plethora of common machine learning al-
gorithms, including random forest, PAM, principal com-
ponent regression, Lasso, ElasticNet regression, and
ridge regression. Among these, ridge regression was con-
sistently found to be the best performer, and it was
noted to have the added advantage of being highly com-
putationally efficient. In their method, the ridge regres-
sion tuning parameter was automatically selected, and to
facilitate the use of their method, they developed an R
package named pRRophetic [76]. With the help of pRRo-
phetic R package, we predicted the sensitivity of SKCM
patients from the TCGA to different agents using ridge
regression based on data from CTRP2.0 and PRISM
databases. Both datasets provided the area under the
dose—response curve (AUC) values as a measure of drug
sensitivity, and lower AUC values indicated an increased
sensitivity to treatment. The components with signifi-
cantly lower AUCs in high-risk patients were first se-
lected, a Spearman’s correlation test between the AUC
and the risk score was conducted, and components with
significantly negative rho (rho < - 0.3) were retained.
Results from the CTRP2.0 and PRISM databases are
shown separately.

Statistical analyses
All statistical analyses were conducted using R software
3.6.3. In all analyses, p < 0.05 was considered statistically
significant. All of the R packages used in the various
analytical procedures are listed in the associated corre-
sponding chapters.
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