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Abstract

Global warming poses major challenges for plant survival and agricultural productiv-

ity. Thus, efforts to enhance stress resilience in plants are key strategies for

protecting food security. Gene regulatory networks (GRNs) are a critical mechanism

conferring stress resilience. Until recently, predicting GRNs of the individual cells that

make up plants and other multicellular organisms was impeded by aggregate popula-

tion scale measurements of transcriptome and other genome-scale features. With

the advancement of high-throughput single cell RNA-seq and other single cell assays,

learning GRNs for individual cells is now possible, in principle. In this article, we

report on recent advances in experimental and analytical methodologies for single

cell sequencing assays especially as they have been applied to the study of plants.

We highlight recent advances and ongoing challenges for scGRN prediction, and

finally, we highlight the opportunity to use scGRN discovery for studying and ulti-

mately enhancing abiotic stress resilience in plants.
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1 | INTRODUCTION

Complex traits are coordinated across diverse cell types and tissues

by hormones, metabolites, and mechanical forces in order to generate

a coherent plant-scale response to the environment (Duran-Nebreda &

Bassel, 2019). Underpinning these plant-scale traits is the regulation

of gene expression which occurs principally independently in each cell

in the plant body. Gene regulatory networks (GRNs) are used to repre-

sent condition specific interactions of regulators of gene expression

with the expression of target genes (Sullivan et al., 2014; Wilkins

et al., 2016).

There is ample evidence, through direct measurement of tran-

scription factor binding and target gene regulation, that GRNs func-

tion as a mechanism of plant resilience. For example, the regulation of

submergence tolerance in rice (Xu et al., 2006) and nutrient signalling

in Arabidopsis (Para et al., 2014; Taylor-Teeples et al., 2014) are regu-

lated by GRNs. In the last decades there have been major advances in

global GRN prediction methods that aim to map all transcription

factor-target gene interactions from genome-scale data sets. For

example, Weighted Gene Correlation Network Analysis (WGCNA)

(Langfelder & Horvath, 2008) predicts GRNs from expression data;

ConnecTF (Brooks et al., 2020) and TF2Network (Kulkarni,

Vaneechoutte, Van de Velde, & Vandepoele, 2018) predict GRNs

using transcription factor binding sequence information; and Arbore-

tum (Roy et al., 2013) integrates genomic and transcriptome data from

evolutionarily diverse taxa to predict GRNs.

Because gene regulation occurs principally within single cells,

many advances in GRN prediction algorithms have been developed in
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prokaryotic (Arrieta-Ortiz et al., 2015; Greenfield, Hafemeister, &

Bonneau, 2013), single-celled eukaryotic organisms (Jackson, Castro,

Saldi, Bonneau, & Gresham, 2020; Thompson et al., 2013) or isolated

eukaryotic cell types (Ciofani et al., 2012; Miraldi et al., 2019) where

populations of synchronized cells could be studied in bulk. Translation

of GRN prediction methods for use in multicellular organisms like

plants has been more difficult because measurements of bulk tissues

on which GRN prediction are based, report aggregate genome-scale

measurements taken across cells with diverse regulatory states.

Recent technological developments such as high-throughput

partitioning of individual cells in aqueous reaction droplets coupled

with synthesis of massive, unique barcode libraries have facilitated

unbiased sampling of the transcriptomes and chromatin at the reso-

lution of the single cell (Hashimshony, Wagner, Sher, & Yanai, 2012;

Macosko et al., 2015; Zheng et al., 2017). The majority of single cell

RNA-seq (scRNA-seq) studies in plants have examined developmen-

tal processes including Arabidopsis roots (Denyer et al., 2019; Jean-

Baptiste et al., 2019; Ryu, Huang, Kang, & Schiefelbein, 2019; Shulse

et al., 2019; Wendrich et al., 2020; Zhang, Xu, Shang, &

Wang, 2019) and maize shoot apices (Satterlee, Strable, &

Scanlon, 2020) and anthers (Nelms & Walbot, 2019). The principal

aim of these studies has been to identify different cell types and cell

states within otherwise well-characterized developmental trajecto-

ries. The value of single cell scale understanding of molecular mecha-

nisms for plant research has been recognized and is an area of

community interest (Rhee, Birnbaum, & Ehrhardt, 2019). The

increasing resolution, capture rates, and available assays for single

cell sequencing technologies have opened the possibility of studying

single cell gene regulatory networks (scGRNs) in plants (Aibar

et al., 2017; Jackson et al., 2020; Matsumoto et al., 2017; Van de

Sande et al., 2020).

One major goal of GRN discovery in plants is to enhance stress

resilience, because resilience is a key strategy for protecting food

security during global warming. High temperatures, for example,

impact human and environmental health through myriad avenues

including increased demands for agricultural inputs (e.g., water, pesti-

cides, fungicides) and through yield loss caused by environmental

stressors (e.g., heat, drought, flooding) (Zampieri, Ceglar, Dentener, &

Toreti, 2017). The Earth's surface temperature continues to increase,

with the decade between 2010 and 2019 being the hottest on record

(NOAA National Centers for Environmental Information, 2020).

Essentially every biological process can be directly affected by heat

because fundamental molecular processes and structures are sensi-

tive to temperature change, including DNA and chromatin organisa-

tion, membrane fluidity, formation and stability of protein complexes,

and transcription and translation (Vu, Gevaert, & De Smet, 2019).

That said, not all tissues or developmental processes are equally sen-

sitive to high temperature stress. Developing floral organs and fruits

appear to be especially sensitive to high temperature in many plants,

including rice (Shi, Ishimaru, Gannaban, Oane, & Jagadish, 2015),

wheat (Narayanan, Prasad, Fritz, Boyle, & Gill, 2015), quinoa

(Lesjak & Calderini, 2017; Tovar et al., 2020), and sorghum (Sunoj

et al., 2017). High temperatures can affect flower and fruit

development through chromatin remodelling leading to delayed

flowering (del Olmo, Poza-Viejo, Piñeiro, Jarillo, & Crevillén, 2019), by

disrupting meiotic events in male gamete production (De Storme &

Geelen, 2020), and by decreasing pollen production and reception

(Prasad, Boote, Allen, Sheehy, & Thomas, 2006), all of which can lead

to a decrease in overall yield (Zhao et al., 2017). Understanding the

cell-scale regulatory mechanisms that contribute to plant resilience to

climate stressors, including high temperatures and drought, are criti-

cal for guiding genetic innovations that will contribute to food secu-

rity in the future.

In this article, we report on recent advances in experimental and

analytical methodologies for scRNA-seq and other single cell genomic

assays especially as they have been applied to the study of plants. We

highlight recent advances and ongoing limitation for scGRN predic-

tion, and finally, we highlight the opportunity to use scGRN discovery

for studying and ultimately enhancing high temperature and other abi-

otic stress resilience in plants.

2 | SINGLE CELL SEQUENCING IN PLANTS

The scientific value of single cell genomic resolution is recognized

across biological systems, such as: diversity of gene expression pat-

terns between cells and cell-types; identification of rare cell types or

cell states; functional characterization of cells (Rhee et al., 2019; Stu-

art et al., 2019). Although, low throughput single cell sequencing tech-

nologies have existed for some time, the focus of this article is on

high-throughput systems that have developed over the last 5 years

(Macosko et al., 2015; Zheng et al., 2017).

The most popular single cell library construction tools follow a

similar workflow (Figure 1). Briefly, cells are dissociated from one

another, then a microfluidics system is used to encapsulate each indi-

vidual cell within a droplet that contains a system for labelling tran-

scripts with distinct barcodes which identify the cell from which the

transcript originated and frequently also with a unique molecular

identifier (UMI) sequence which can be used to identify sequencing

reads corresponding to unique transcripts within the cell. The

sequencing libraries are then prepared in bulk and the libraries are

sequenced in bulk on a high throughput sequencing platform. The

combined sequencing read data are then partitioned into single cell

transcriptomes based on the occurrence of the barcode sequences,

and then UMI are used to quantify individual transcripts within

each cell.

In the last 2 years, single cell sequencing technologies, which

were initially developed for use with mammalian cells, have been

translated for use in the study of plant biology. Unlike animal cells,

plant cells have rigid cell walls which must be disrupted to release pro-

toplasts or nuclei for single cell sequencing; they have chloroplasts

which can impact chromatin assays; and, they have abundance of sec-

ondary metabolites which can affect the efficiency and output of

molecular assays. For these reasons, the majority of the first wave of

high-throughput, single cell assays have focussed on the Arabidopsis

root for which well-established protoplasting protocols, an absence of
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chloroplasts, and decades of experience with cell-type transcriptome

assays exist (Denyer et al., 2019; Jean-Baptiste et al., 2019; Ryu

et al., 2019; Shulse et al., 2019; Wendrich et al., 2020; Zhang

et al., 2019).

2.1 | Cell type inventories

The drive to functionally classify and characterize cells is fundamental

to biology. Ideally scRNA assays would capture every transcript for all

cell types in a tissue, to provide a complete and accurate census of

gene expression and cell demographics at the moment of sampling.

Current scRNA assays do not offer this level of resolution. For

scRNA-seq studies in Arabidopsis, the proportion of inputted cells for

which high-quality single cell sequence data is generated is between

20 and 50% in papers that reported these data (Denyer et al., 2019;

Zhang et al., 2019). Though these figures varied between projects

(Table 1), the number of transcripts captured was typically less than

10,000 per cell and represented fewer than 5,000 genes. It is unclear

if the relative proportion of each cell type was accurately represented

by the scRNA-seq data or if some cell types were more likely to be

lost during sample preparation. Studies which included biological repli-

cates showed that the proportion of cells in each cluster was generally

conserved across replicates (Ryu et al., 2019; Shulse et al., 2019). Cre-

ating accurate cell type inventories from scRNA-seq data requires rec-

ognition of these limiting features of the data.

The first step in creating a cell-type or cell-state inventory is to

distribute cells based on the similarities of their transcriptomes using

dimension reduction techniques like t-distributed Stochastic Neighbor

Embedding (t-SNE) (Maaten & Hinton, 2008) or Uniform Manifold

Approximation and Projection (UMAP) (McInnes, Healy, &

Melville, 2018). Next, an algorithm, such as the Louvain method for

community detection (Blondel, Guillaume, Lambiotte, &

Lefebvre, 2008), is used to identify discrete clusters of like cells within

TABLE 1 Summary of high throughput scRNA-seq assays of Arabidopsis roots

Number of scRNA
Librariesa

Median Number of
Transcripts/Cell

Median Number of
Genes/Cell

Total Number
of Genes Clusters

Ryu et al. (2019) 7,522 ~24,000 ~5,000 >22,000 9

Jean-Baptiste et al. (2019) 3,121 6,152 2,445 22,419 11

Denyer et al. (2019) 4,727 14,758 4,276 16,975 15

Shulse et al. (2019) 12,198 2,291 1,216 25,324 17

Zhang et al. (2019) 7,695 4,556 1,875 23,161 24

Wendrich et al. (2020) 5,145 – 6,781 21,492 14

Farmer, Thibivilliers, Ryu, Schiefelbein,

and Libault (2020)b
10,608 nuclei 1,384 1,126 24,740 21

aThe number of scRNA-libraries is variously reported as the number of transcriptomes, the number of single cells, and the number of STAMPs. In all cases

this is taken to mean the number of single cells for which high quality sequencing data were obtained.
bFarmer et al. used snucRNA-seq in this project. All data in this row relate to single nuclei.

F IGURE 1 General workflow for single cell sequencing assays. (a) Tissues or organs are dissociated into individual cells through the isolation
of protoplasts (small green circles); (b) the protoplasts are loaded into a microfluidics system that encapsulates individual protoplasts (small green
circles) with reagents for labelling transcripts with distinct barcodes (larger multi-coloured circles) which identify the cell from which the transcript
originated, other barcodes such as UMIs may be added through this process as well; (c) the barcoded transcripts are then pooled and sequenced
using a short read technology; (d) sequencing reads are then processed to assign each transcript to a cell of origin based on the barcode sequence
added during library preparation; (e) the transcriptomes of all cells undergo dimension reduction (e.g., tSNE or UMAP) whereby cells with similar
transcriptome profiles will be plotted closer together in two-dimensional space while those with less similar transcriptomes will be plotted farther
apart, and clusters of cells with similar transcriptomes can be identified algorithmically. In this example, each point on the plot represents a single
cell and the colour of the point represents the cluster to which that cell has been assigned. (f) Clusters of cells may be characterized as a known
cell types based on the abundance of known marker genes or on overall similarity to the transcriptomes of established cell types; cell clusters may
also be described as unknown or novel if no known markers match the observed transcriptome profiles. In this example, cells in the reconstructed
tissue are coloured to reflect the hypothetical transcriptome clusters identified in panel (e)

2008 TRIPATHI AND WILKINS



the overall cell populations. Distinct features and structures of

scRNA-seq data however demand caution when interpreting scRNA-

seq results for data driven cell-type classifications. For example, the

proportion of genes with no detectable expression in scRNA-seq data

is much higher than in bulk tissue RNA-seq data (Grabski &

Irizarry, 2020; Hicks, Townes, Teng, & Irizarry, 2018). The higher num-

ber of genes with detected transcripts in the bulk libraries or pseudo-

bulk libraries compared to the median number of genes in the studies

of the Arabidopsis root cells reflect this feature of scRNA-seq data

(Table 1). Though biological variation in number of transcribed genes

per cell and between cell-types is expected, the number of transcribed

genes is lower and variance in the number of transcribed genes is

higher in scRNA-seq experiments than would be expected from bio-

logical variation alone (Buen Abad Najar, Yosef, & Lareau, 2020; Hicks

et al., 2018). Even for genes with transcripts which are definitively

present in the biological sample, the probability of a non-zero read

count is less than one because only a subset of transcripts present in

a cell are ultimately represented in the corresponding scRNA-seq

library (Grabski & Irizarry, 2020). Such elevated proportions of zero-

read genes can lead to overestimation of the distances between cells

with low transcript detection rates during the dimension reduction

phase of analysis. These effects can lead to an inflated number of

predicted cell clusters (Grabski & Irizarry, 2020; Hicks et al., 2018).

Another attribute of scRNA-seq data related to sparsity that may

affect cell-type classification is the now-refuted finding that many

cells in a homogenous population appeared to make one or another

splice variant of a given gene but not both (Shalek et al., 2013; Song

et al., 2017). Subsequent analysis of scRNA-seq studies determined

that this result was principally a technical artefact that could be

explained by low levels of sequencing for single cells (Buen Abad

Najar et al., 2020). Ongoing evaluation of technical sources of varia-

tion in data will be required as more data and new types of single cell

assays become available.

2.2 | Functional classification of cells

The next step in creating a cell inventory is assigning functional roles

to clustered cells. This can be accomplished through comparison of

the whole transcriptomes of the scRNA-seq clusters with curated

expression data sets for specific cell types. Though effective, the

application of this method is generally limited because of the paucity

of transcriptome data sets for most cell types, tissues, and species

(Grabski & Irizarry, 2020). This approach has been used for assigning

cell type identities to scRNA-seq data from Arabidopsis roots (Denyer

et al., 2019; Jean-Baptiste et al., 2019; Shulse et al., 2019; Zhang

et al., 2019) for which curated, cell-type resolution gene expression

data are available (Brady et al., 2006; Li, Yamada, Han, Ohler, &

Benfey, 2016). Even in the case of well-surveyed tissues like the Ara-

bidopsis root, only 8 of the 15 clusters identified by Denyer et al.

(2019) could confidently be assigned cell types using this method. A

related approach creates an Index of Cell Identity for each cell to

assign a label to cells based on the expression of a set informative

transcripts from curated cell-type specific transcriptome data (Efroni,

Ip, Nawy, Mello, & Birnbaum, 2015).

Another widely used strategy for assigning cell identities is to sur-

vey the expression of previously characterized marker genes across

the cell clusters. This approach is limited by the sparsity of scRNA-seq

data as described above; even if a marker gene is uniformly expressed

in a given cell type it is unlikely to be measured in the majority of

scRNA-seq libraries. This is because only a subset of transcripts pre-

sent in each cell are captured for sequencing, though higher abun-

dance transcripts are more likely to be consistently detected than are

less abundant ones (Zheng et al., 2017). A systematic investigation of

a synthetic scRNA-seq data found that even very well established

marker genes were limited in their use for assigning cell type identities

(Grabski & Irizarry, 2020). Cell type classification based on the expres-

sion of marker genes has been used in plant studies and has been

used to identify cells to the level of cell types if not the level of cell

states. One outcome of scRNA-seq studies has been the emergence

of data-driven, unbiased marker gene selection methods, whereby

genes that are both specific and sensitive to a cluster of cells are

defined for each cluster. These methods have the advantage of being

applicable to cell clusters for which no a priori marker genes are

known and so they can be used to characterize novel cell types or cell

states as well as developing more robust marker sets for cells of

known identity. The application of these methods in plants (Denyer

et al., 2019; Shulse et al., 2019) has led to the identification of new

cell type specific markers for known cell types, many of which are

common between studies.

2.3 | Expansion and diversification of single cell
genome scale assays

In addition to the widely used scRNA-seq assay, a number of other

single cell, genome scale assays have recently become available, only

some of which have been applied to questions in plant biology. These

assays can provide orthogonal functional data which will contribute to

the more accurate assignment of functional cell identities (Stuart

et al., 2019), and ultimately to more accurate predictions of scGRNs

(Jackson et al., 2020).

Single cell Assay for Transposase Accessible Chromatin (scATAC-

seq) has been used to show that regions of accessible regulatory chro-

matin vary between classes of Arabidopsis root cells, thereby indicat-

ing a distinct cell type specific regulatory logic (Dorrity et al., 2020).

This finding was consistent with the cell-type specific ATAC-seq stud-

ies of bulked root hair and non-root hair protoplasts derived from

Fluorescence Activated Cell Sorting (FACS) (Maher et al., 2018) and it

greatly increased the number of cell types for which these data are

available.

Single nucleus RNA-seq (snucRNA-seq) and snucATAC-seq analy-

sis of Arabidopsis roots have identified many of the same cell types

and states as identified using scRNA-seq, and identified several addi-

tional cell states that had not previously been described (Farmer

et al., 2020). Nuclear transcriptome studies have the distinct
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advantages of rapid sample preparation time relative to protoplast-

based protocols, and may be particularly useful for the study of tis-

sues for which protoplast isolation may not be possible or convenient.

Moreover, nuclear assays provide transcriptome data that are distinct

from whole cell assays. Previous studies of the nuclear transcriptome

in rice, showed that the nuclear transcriptome, relative to the cyto-

solic transcriptome, was enriched for regulatory and nascent RNAs

(Reynoso et al., 2018). Similar enrichments were detected in the

snucRNA-seq study of Arabidopsis root (Farmer et al., 2020), but

these gains are made at the expense of the capture of fewer tran-

scripts per cell (Table 2).

Patterns of open chromatin as detected by ATAC-seq are not

direct predictors of transcript abundance in single cell, cell-type

enriched, or bulk tissue experiments (Farmer et al., 2020; Maher

et al., 2018; Wilkins et al., 2016). New techniques that permit simulta-

neous measurement of transcriptome and chromatin accessibility in

the same individual cell (Reyes, Billman, Hacohen, & Blainey, 2019)

may provide clearer insight into the relationship between these geno-

mic features and may assist in refining classifications of cell states and

cell types (Hao et al., 2020). The power of multimodal single cell

'omics technologies, wherein multiple genome-scale measurements

are made on single cells are widely appreciated (Teichmann &

Efremova, 2020) and the expanding diversity of single cell multimodal

assays are reviewed elsewhere (Zhu, Preissl, & Ren, 2020).

Finally, spatially resolved transcriptome analysis, wherein infor-

mation about the physical origins of genomic information is preserved

in the sequence data, has been used to study transcription in plant tis-

sues for which less cell-resolved gene expression data is available,

including the Arabidopsis inflorescence meristem, Populus tremula leaf

buds, and Picea abies female cones (Giacomello et al., 2017). Spatially

resolved scRNA-seq are lower throughput than scRNA-seq assays of

dissociated cells, but they provide information about tissue organisa-

tion which cannot be inferred from dissociated cell data (Rodriques

et al., 2019; Ståhl et al., 2016). With the wealth of single cell assays

available as well as their optimization for use in plants, uncovering

regulatory mechanisms in multicellular organisms is increasingly

tractable.

3 | USING scOMICS TO STUDY COMPLEX
TRAITS: METHODS FOR scGRN PREDICTION

Transcription is regulated by multiple factors that determine when,

where, and how much of each transcript is synthesized. These factors

include proteins (transcription factors and RNA binding species) and

small RNAs that interact with accessible conserved regulatory DNA

elements (e.g., cis-regulatory elements, and enhancers). A major goal

of transcriptome research is to identify the regulatory mechanisms

that have created the transcriptional or genomic snapshots provided

by sequencing. The diversity of transcriptional states discovered in

scRNA-seq assays provides support for the simultaneous existence of

a diversity of gene regulatory networks (GRNs) between cells. A com-

plete inventory of gene regulatory events in a cell would be represen-

ted by stacks of spatially and temporally resolved GRNs showing all

regulatory interactions and their functional outputs. However, this

level of measurement is not yet achievable thus necessitating the use

of computational methods to predict global GRNs from incomplete

data. In this section, we describe examples of two promising and

widely used algorithms for the discovery of scGRNs and discuss some

of the particular challenges and opportunities related to predicting

scGRNs compared to predicting GRNs in bulk tissue.

3.1 | scGRN prediction

Network prediction methods explore statistical relationships between

genes, and then test which of these statistical relationships have the

highest likelihood of being regulatory (Chan, Stumpf, & Babtie, 2017).

There are many methods that have been developed to accomplish this

task using high-throughput sequencing data (Bonneau et al., 2006;

Castro, de Veaux, Miraldi, & Bonneau, 2019; Kulkarni et al., 2018; Roy

et al., 2013; Van de Velde, Heyndrickx, & Vandepoele, 2014).

Targeted molecular analyses have revealed how enormous the scale

of the task is given the large number of molecular interactors and the

diverse temporal and spatial scales on which the regulation of gene

expression occurs. Many genes are regulated through the transient

interactions between transcription complexes and their targets which

in turn may be controlled through reversible post-translational modifi-

cations of the transcription factors that form them (Para et al., 2014).

Moreover, there is the added complexity that transcriptional reg-

ulators may act synergistically, additively, or antagonistically to modu-

late gene expression. Considering the diverse mechanism of

regulation, it is not surprising that many of the most promising com-

putational approaches for predicting global gene regulatory networks

TABLE 2 Summary of experimental considerations for sgGRN
prediction

Tissue Selection Stress Selection

Does the tissue include diverse

cell types or cell states?

Can enough cells or nuclei be

harvested sufficiently quickly

to perform the assay?

Is the tissue sensitive to the

proposed treatment?

How severe and long lasting will

the stress be?

When will the stress be applied in

development? In the circadian

period?

Will the stress be applied in

isolation, in combination or in

series with other relevant

stressors?

Assay Selection Network Algorithm Selection

Can protoplasts or nuclei be

quickly and efficiently

isolated from the tissue?

Do isolated protoplasts or

nuclei represent the full

diversity of cells in the tissue?

Is knowledge of the spatial

arrangement of cells

important for the analysis?

Is multimodal single cell

sequencing data available either

in data repositories or in the

proposed experiment?

Does the proposed experiment

incorporate time series

sampling?

What complementary data exists

for the tissue and/or

treatment?
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rely on measurements of multiple complementary genome-scale

events (e.g., transcriptome, chromatin accessibility, etc.). The applica-

tion of GRN prediction experience developed for population-based

analysis has contributed to the development of a variety of new and

improved tools to overcome the challenges of single cell analysis

(Aibar et al., 2017; Chan et al., 2017; Jackson et al., 2020; Matsumoto

et al., 2017). These include sparsity of the expression matrices, the

presence of technical noise and transcriptional stochasticity, and the

predicted heterogeneity of GRNs in different cells within an experi-

ment. Different methods have been developed for learning scGRN

that vary in both the input data they require, and on the algorithms

used to link regulators to target genes (Figure 2).

Single-Cell Regulatory Network Inference and Clustering

(SCENIC) uses a three-step workflow to predict GRNs from single cell

data (Aibar et al., 2017; Van de Sande et al., 2020). First it identifies

genes that are co-expressed with transcription factors using GENIE3

(Huynh-Thu, Irrthum, Wehenkel, & Geurts, 2010) or GRNBoost (Aibar

et al., 2017). These algorithms use random-forest regression to deter-

mine which transcription factor's expression profile best explains the

expression profile of each target gene (Figure 2). Because they are

based only on co-expression, these methods are likely to include false

positives and indirect targets in the co-expression clusters (Aibar

et al., 2017). The next step of SCENIC effectively filters these clusters

by determining which of them are enriched for genes with relevant

transcription factor binding sites. Through this process it defines “reg-
ulons” which include transcription factors and target genes that are

both co-expressed and enriched for the cis-regulatory element to

which the predicted regulatory transcription factor may bind. The

third step of this workflow identifies cells in which the “regulons”
defined in step two are active and in so doing identifies GRNs for

each individual cell. This method uses the strengths of scRNA-seq

data, namely the high number of samples to overcome some of weak-

nesses of scRNA-seq data, namely the sparsity of expression data for

each cell.

A second method, called the Inferelator, was first developed for

bulk cell GRN prediction (Bonneau et al., 2006) and has now also been

adapted for use with scRNA-seq data in yeast (Jackson et al., 2020).

This method explicitly incorporates complementary a priori knowledge

into the prediction of the GRNs from scRNA-seq data rather than as a

post hoc filter of co-expression clusters (Figure 2). A key step in the

F IGURE 2 Comparison of SCENIC and the Inferelator, two scGRN prediction algorithms. The SCENIC and Inferelator algorithms both use

scRNA-seq data as their primary input. SCENIC uses a random forest clustering algorithm to identify target genes that are co-expressed with
transcription factors. It then filters the putative regulatory clusters to retain only those whose targets are enriched for the occurrence of a priori
known cisregulatory elements for the relevant transcription factor. Inferelator uses a multi-task learning algorithm to learn scGRNs from
transcriptome and complementary data types that are used to estimate the activity of transcription factors. The Inferelator can accept a wide
variety of complementary inputs including Chromatin Immunoprecipitation - sequencing (ChIP-seq), protein–protein interaction and can explicitly
use time series data. Both algorithms produce a matrix or graph of transcription factor target interactions [Colour figure can be viewed at
wileyonlinelibrary.com]

SINGLE CELL GENE REGULATORY NETWORKS 2011

http://wileyonlinelibrary.com


Inferelator workflow is the estimation of a latent biophysical parame-

ter termed Transcription Factor Activity (TFA). TFA is an estimated

value that represents the effect of a transcription factor binding to

DNA on modulating transcription of its target genes. Estimation of

TFAs requires the construction of known prior transcription factor-

target network(s) (Arrieta-Ortiz et al., 2015; Bonneau et al., 2006;

Ciofani et al., 2012; Wilkins et al., 2016). Prior transcription-factor-

target networks may be constructed using complementary genome

scale features such as open chromatin, protein–protein interaction

networks, cis-regulatory element maps, or validated transcription

factor-DNA interactions. For example, a prior network of regulatory

interactions of transcription factors and target genes could be con-

structed from ChIP-seq or yeast 1-hybrid data for a variety of tran-

scription factors or by known cis-regulatory motifs in regions of open

chromatin. In the case of scGRN, scATAC-seq data could be directly

incorporated into a prior network. The prior network(s) are then used

to estimate the TFA for each transcription factor based on the expres-

sion of the target genes in the prior networks. The Inferelator algo-

rithm then uses multitask learning to infer regulatory interactions

between transcription factors and their target genes based on the pre-

mise that the profile of a target gene can be expressed as the

weighted sum of the TFAs of the transcription factors that regulate

it. For the scGRN application of the Inferelator, the authors have

implemented a multitask learning method through which separate

GRNs can be learned for each cluster of cells identified by the scRNA-

seq analysis.

The use of TFA rather than transcript abundance to infer regula-

tory targets overcomes challenges resulting from the low transcrip-

tional rates of many transcription factor genes. It also incorporates a

measure of the potential consequences of post-translational regula-

tion of transcription factors that may temporally uncouple the produc-

tion of transcription factor message from the generation of active

protein transcription factors. The multitask learning approach also par-

tially overcomes the limitations of sparsity typical of RNA-seq data, by

transferring information from one cell cluster to another.

3.2 | scGRN discovery in plants

Neither the SCENIC nor the Inferelator method have been

implemented with plant data, and they will likely require several

adjustments to overcome obstacles when they are first used in these

systems. First, the DNA binding sequence for most transcription fac-

tors in plants are not known and so the filtering step of SCENIC could

presumably filter out the vast majority of co-expression clusters

because unknown cis-regulatory sequences will not be enriched. Simi-

larly, construction of a robust network prior based on occurrence of

cis-regulatory sequences for the Inferelator may not yet be possible

for many plants as a consequence of the limited knowledge of true

regulatory interactions. Methods that either directly measure tran-

scription factor binding, like DNA Affinity Purification sequencing

(DAP-seq) (Bartlett et al., 2017; O'Malley et al., 2016), or predict them

algorithmically, like cisBP (Weirauch et al., 2014), have greatly

increased the number of transcription factors and plant species for

which DNA binding sequences are available. However, experimentally

validated binding sequence data remains sparse for most plant

species.

A second obstacle is that plant transcription factors exist in large

families wherein many members have identical or as yet

undistinguishable binding sequences (Weirauch et al., 2014; Wilkins

et al., 2016). For this reason, it may not be possible to assign a single

transcription factor regulator to clusters where several members of

the same transcription factor family are co-expressed or to suitably

divide targets between related regulators in a network prior. Third,

transcription and translation of many transcription factors, including

those involved in stress response, are often uncoupled from their reg-

ulatory activity. In these cases, post-translational modifications regu-

late the entry of transcription factors into the nucleus and thereby

their interactions with target genes. For these genes, the utility of co-

expression-based GRN prediction methods may be limited.

Finally, SCENIC uses only transcription factor binding sequences

that are proximal to transcriptional start sites. There is growing evi-

dence of the importance of long-distance regulatory elements, such as

enhancers, playing important roles in plant gene expression (Joly-

Lopez et al., 2020; Ricci et al., 2019). In theory, long-distance regula-

tory sequences can be incorporated into a prior network, but this will

be dependent on greater knowledge of these regulators and their tar-

gets than are presently known in plants. Nonetheless, these methods

will be highly valuable for scGRN prediction in projects for which

scRNA-seq data, thorough genome annotation, and knowledge of cis-

regulatory element sequences are available.

4 | ENHANCING HIGH TEMPERATURE
RESILIENCE BY TARGETING scGRNs

There are a number of outstanding questions for how to optimally use

single cell sequencing technologies for studying stress induced

changes in GRNs in plants: Which tissues will be amenable to differ-

ent single cell platforms and assays; how many cells will be required

to make meaningful inference; and, how many replicates are required

for a robust analysis? These questions are in addition to the universal

problems related to the analysis of single cell data outlined above.

Only a few published scRNA-seq studies have incorporated per-

turbations into their analyses. These include environmental stressors

(heat stress) (Jean-Baptiste et al., 2019), nutrient treatments (Shulse

et al., 2019) and genetic lesions (Denyer et al., 2019; Ryu et al., 2019).

Much remains to be determined with regards to the most effective

ways to use single cell sequencing technologies for learning environ-

mental scGRNs. The goal of this section is to present a pathway for

researchers to begin using single cell sequencing technologies to

enhance crop resilience using the power of scGRN prediction and

targeted genome editing. Below, we identify some of the decisions

that researchers might contend with as they plan and implement

these studies and some of the challenges that lay ahead. Throughout,

we use the example of high temperature stress on the development
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of floral meristems. We have selected this example because high tem-

perature stress is pervasive in agricultural and in less managed ecolog-

ical settings, it is a tractable experimental question, and it is a trait

predicted to involve the activity of many genes.

4.1 | Designing experiments for scGRN prediction

Prerequisite to scGRN prediction is appropriate tissue, stress, and

assay selection. What follows are guiding considerations that may be

useful to researchers planning scGRN discovery projects (Table 2),

and examples of how these decisions could be addressed in the con-

text of high temperature stress on rice flowers.

4.1.1 | Tissue selection

To perform single cell sequencing assays, a sufficient number of high-

quality protoplasts or nuclei must be isolated. For the 10X Genomics

platform, for example, between 500 and 10,000 viable cells or nuclei

are required per replicate. To obtain the desired number of cells, a

large number of individual plants, or organs may be required. Shulse

et al. (2019) used thousands of Arabidopsis roots to generate just over

12,000 scRNA-seq libraries, and Satterlee et al. (2020) used hundreds

of maize meristems to generate just over 250 scRNA-seq libraries.

Based on this, it is anticipated that hundreds of rice floral meristems

would be required to obtain sufficient materials for a scGRN study.

Many scGRN studies will want to examine the variation in regula-

tory interactions across diverse cell types. In these cases it will be nec-

essary to select a tissue type from which a diversity of cells can be

isolated. The Arabidopsis root was a tractable first tissue for scRNA-

seq in part because of the extensive knowledge of the number, diver-

sity, developmental trajectories, and transcriptomes of the diverse cell

types they comprise. For most plant varieties and tissues, cell type

transcriptomes are not available. In these cases, anatomical or histo-

logical evidence of cell types may be used to guide tissue selection for

single cell assays. Rice floral meristems are a suitable tissue in these

regards because there is extensive knowledge of the anatomy and

development of the constituent cell types (Wang & Li, 2005). More-

over, transcriptionally distinct cell populations in micro-dissected

maize floral meristems have been identified (Knauer et al., 2019); tran-

scriptional signatures of these cell types could be useful in character-

izing single cells from rice meristems.

4.1.2 | Stress selection

The duration, timing, and intensity of a stress treatment will elicit dif-

ferent physiological responses from the plant and tissue and will

expose different aspects of stress responsive GRNs. Similarly, stresses

experienced alone, in combination (e.g., simultaneous drought and heat)

or in series (e.g., drought followed by heat) will query different aspects

of plant stress responses. Likewise, transcriptional responses to heat

stress in the field differs from responses in controlled environmental

growth chambers (Plessis et al., 2015; Wilkins et al., 2016). For devel-

oping rice flowers, extensive physiological, agronomic, and anatomical

examinations of heat stress responses have identified sensitive devel-

opmental stages and tissues (Cheabu, Moung-Ngam, Arikit,

Vanavichit, & Malumpong, 2018; Jagadish, Craufurd, & Wheeler, 2007).

Moreover, rice flowers have a noted sensitivity to high nighttime tem-

peratures (Desai et al., 2019). Selecting appropriate sampling times will

have to consider these various aspects of stress response.

4.1.3 | Assay selection

Selecting the appropriate assays to use for scGRN project will be

influenced by technical constraints related to the selected tissue and

treatment. In most cases, transcriptome will be the principal data used

for scGRN prediction, and so the first decision will be whether to

sequence single cells or single nuclei. This decision will be guided in

part by the ability to quickly and efficiently dissociate the tissue for

library preparation. For Arabidopsis roots, which have efficient and

well-established protoplast isolation protocols scRNA-seq has been a

valuable assay. However, for many other tissues, for which protoplast

isolation protocols as less established or which are less amenable to

protoplast isolation, snucRNA-seq may be more appropriate. For

example, protoplasts can be isolated from shoot and floral meristems

in maize, but the protoplast are extremely delicate and are easily rup-

tured in handling (Satterlee et al., 2020). Moreover, it is unclear if pro-

toplasts of all cell types within the meristem are equally susceptible to

rupture, and so bias in the assayed cell types may be introduced at

this stage. As such, in many cases it may be more pragmatic to isolate

nuclei rather than protoplasts for sequencing. However, the number

of reads per cell may be lower and the libraries will be biased for

nascent transcripts over older transcripts when nuclear trans-

criptomes are assayed (Farmer et al., 2020; Reynoso et al., 2018).

In addition to transcriptome data, scGRN prediction will benefit

from inclusion of additional genomic measurements, especially chro-

matin accessibility data. To date, multimodal assays have been applied

to scGRN discovery in mammalian cells only (Hao et al., 2020;

Mimitou et al., 2019); however, the increasing availability of off-the-

shelf multimodal assays will expand their application into plant

research. If little is known about constituent cells in a tissue, there

may be particular value in using a spatial genomics assay. These assays

provide complementary data about arrangement of transcriptome

profiles which could contribute to the accurate description of cell

function.

4.2 | Target selection for genome editing

After predicting the network, the basic steps for using it to engineer

improved crops are prioritizing regulatory interactions, using genome

editing to alter regulatory interactions, and testing plants for improved

resistance to stressor (Figure 3). While most GRN prediction methods
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rank interactions based on metrics such as variance explained, there

are presently no reliable formulas for ranking interactions according to

their likely impact on a physiological process. Prioritization of regula-

tory interactions for experimental characterization may be done

through post hoc assessment of transcription factors and of co-

regulated target genes (Figure 3b). For example, transcription factors

that regulate a large number of target genes or that regulate genes

that are strongly differentially expressed in response to the treatment

may be prioritized. Similarly, regulators of target genes that share a

conserved cis-regulatory element in their promoter sequences, or that

are enriched for a biological process or Gene Ontology (GO) related to

the stress response may be prioritized. In many cases, prioritizing

interactions will require knowledge about the function of some genes

or complementary genome analyses like GWAS or QTL, which can

support educated guesses about which regulatory interactions may

have the greatest impact on stress response.

In the context of single cells, prioritization may be aided by the a

priori knowledge of which cells types are most sensitive to the

stressor and then focusing on regulatory interactions found in these

cell types. Prioritized interactions can then be tested using inducible

genome editing that enable cell type specific genomic changes (Wang

et al., 2020) to determine what contributions they make to stress

resilience (Figure 3c). As additional experiments are performed and

network functions are experimentally characterized, more effective

and established pipelines for target prioritization will be developed.

5 | CONCLUSIONS

Although there are many uncertainties about how to most effectively

predict and engineer gene regulatory networks in single plant cells,

the value of regulatory knowledge at this resolution is unmistakeable.

There will undoubtedly be trial and error as new ways of predicting

and prioritizing regulatory interactions are developed and as higher

throughput genome editing assays come on line. That said, the rapid

uptake of the single cell sequencing technology by the plant science

community as outlined above and the existence of a number of pro-

jects that aim connect different scales of mechanistic knowledge in

plants (Marshall-Colon et al., 2017; Rhee et al., 2019; Zhu et al., 2016)

suggest that progress in this area is forthcoming. In this article, we

have described recent application of single cell sequencing technolo-

gies to plant biology, new developments in scGRN prediction algo-

rithms, and we have proposed a framework for using scGRN

prediction for directing stress resilience studies in crops. While this

workflow was developed around the question of rice response to heat

stress, the framework could equally be used for the study of other abi-

otic stress responses and developmental programs in a variety of

plants and tissues.
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connecting transcription factors to the target genes they regulate. (b) post hoc assessment of the scGRN is used to prioritize regulatory targets
for experimental characterization. This may include the identification of subnetworks that enriched in a cell type of interest; identification of co-
regulated genes that are enriched for biological processes of interest using Gene Set Enrichment Analysis or which are enriched for known cis-
regulatory elements; identification of regulatory interactions with corroborating experimental data, for example ChIP or yeast 1-hybrid data;
identification of co-regulated genes that are strongly differentially expressed in response to the stress treatment; and characterization of

transcription factors (TFs) that regulate many target genes. (c) Experimental characterization of prioritized components of the scGRN can be
undertaken using genome editing approaches such as CRISPR. The coloured bars indicate different genomic regions that are targeted for editing.
We anticipate that editing different interactions in the scGRN will influence plant resilience to varying degrees. (d) The most promising genome
edited lines can then be tested in the field to determine the full effects of the modified scGRNs on stress resilience [Colour figure can be viewed
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