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INTRODUCTION

The scope of the present article is the status of the research,
development, and demonstrations of treatment technologies
for per- and polyfluoroalkyl substance (PFAS)-laden material
that are funded by the Strategic Environmental Research and
Development Program (SERDP) and the Environmental Security
Technology Certification Program (ESTCP). Both SERDP and
ESTCP are US Department of Defense (DoD) programs and are
coordinated with the US Environmental Protection Agency and
the US Department of Energy. The present article is 1 of a
3-part series of Focus articles on the status of research, de-
velopment, and demonstration efforts that will assist project
delivery teams, within the DoD, in their efforts to manage an
expansive portfolio of aqueous film-forming foam (AFFF).
impacted sites. The present article focuses on treatment tech-
nologies, and the second article in the series covers fate and
transport. A third, overview, article briefly summarizes exposure
pathways; analytical and environmental sampling methods; fate
and transport; characterization; bioaccumulation, ecotoxicity,
and ecological risk assessment; and treatment technologies.

The PFAS have been recognized as being one of the most
persistent categories of anthropogenic chemicals found in the
environment. In contrast to chlorinated solvents, these fluori-
nated compounds are largely impervious to common biological
degradation processes and conventional chemical oxidation
processes. They are a concern for the DoD and for municipal
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airports, due to the use of legacy AFFFs. They are also a con-
cern for the community at large, due to the presence of PFAS in
consumer products.

Ex situ groundwater treatment has become a common al-
ternative for managing PFAS-impacted groundwater. Although
existing technologies are acceptable for ex situ treatment of
PFAS-impacted groundwater (e.g., relying on adsorptive media
such as granular activated carbon [GAC]), operation of these
pump-and-treat systems represents a considerable and
growing expense, especially as more of these systems have to
be installed across the United States. Technologies such as
GAC and ion exchange continually generate residuals (e.g.,
spent media) that require off-site treatment and/or disposal.
Large quantities of investigation-derived wastes (IDW) continue
to be generated during characterization of PFAS-impacted
sites. More cost-effective alternatives are needed for disposal
of residuals, and PFAS-laden IDW materials (e.g., drill cuttings,
well development water).

Given the substantial number of pump-and-treat systems
that are currently in operation, sizable cost savings can be re-
alized via development of more cost-effective treatment tech-
nologies. Advances may be realized in many different forms:
improved media for groundwater treatment that require much
less frequent replacement; media with improved capabilities
for removing short-chain PFAS constituents; destruction tech-
nologies to allow for on-site treatment of groundwater, spent
media, regenerant solutions, and/or IDW; and improved de-
struction technologies for off-site treatment of residuals
and IDW.

Development of effective in situ treatment technologies for
PFAS-contaminated groundwater represents another important
goal. Considerable cost savings will be realized if a portion of
the existing pump-and-treat systems can be replaced with
passive, in situ treatment systems.

The treatment technologies we discuss are broadly classi-
fied as either ex situ or in situ (Figure 1 and Tables 1-3). For the
ex situ treatment technologies, the projects are primarily

© 2020 The Authors
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SERDP and ESTCP effort on PFAS remediation
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FIGURE 1: Chronology of Strategic Environmental Research and Development Program (SERDP) Statements of Need (SONs) and Environmental
Security Technology Certification Program (ESTCP) projects related to the remediation of per- and polyfluoroalkyl substances (PFAS). See Tables 1,
2, and 3 for a description of each project. DoD = US Department of Defense; P&T = pump-and-treat; AFFF = aqueous fire-fighting foam.

subclassified under the following categories: aqueous media
treatment, investigation-derived wastes/soils, and residuals.
Residuals includes materials such as spent treatment media
(GAC and ion exchange resin), and concentrated brines de-
rived from regeneration of ion exchange resin. Some of the
treatment technologies under development do not necessarily
fit within a single category (e.g., plasma-based treatment
processes can be applied to aqueous media, IDW water, and
brine regenerant solutions). Also, some of the ex situ treatment
technologies could potentially be applied in situ. The present
article is not intended to provide comprehensive coverage of
each and every PFAS treatment project being funded by
SERDP and ESTCP, but rather to provide an overview, and to
highlight a select list of representative treatment projects.
The stability of the C-F bond is believed to be due to the
inherent bond strength, and the short length of the bond. The
C-F bond is the strongest single bond known to organic
chemistry, with a bond dissociation energy as high as 544 kJ/mol
(for tetrafluoromethane). Because of the close proximity of the
fluorine atoms that are bound to the carbon atoms, the outer
fluorine atoms shield the underlying carbon backbone of PFAS
constituents from reactive species. Owing to the extraordinary
stability of the C-F bonds within PFAS, a considerable amount
of energy is required to defluorinate PFAS constituents. Thus,
destruction technologies for PFAS-laden materials are relatively

energy intensive, whereas nondestructive treatment processes
are much less energy intensive. In general, the energy efficiency
of destruction technologies for PFAS-laden materials is greater
for moderate or highly concentrated waste streams; however,
most of the destruction technologies can be applied to either
dilute or concentrated waste streams. Nondestructive processes
may be coupled with destructive processes to achieve a com-
plete treatment solution (e.g., use of ion exchange resin to treat
groundwater, coupled with incineration of spent media). The
development of complete and energy-efficient treatment sol-
utions is critical. Both lifecycle costs and greenhouse gas emis-
sions will need to be taken into consideration, to compare and
rank the merits of specific processes and combinations of
processes.

Analysis of groundwater from AFFF fire training source areas
has revealed that a large fraction of the total organic fluorine
remains unmeasurable via conventional analytical methods
(Schaefer et al. 2019). A groundwater sample from a DoD fire
training source area was tested for the standard 24 PFAS ana-
lytes, total oxidizable precursors (TOPs), and also for total or-
ganic fluorine via combustion ion chromatography (TOF-CIC).
The result from the TOP assay was added to the sum-total result
from the 24 measured PFAS analytes, and then compared with
the result from TOF-CIC assay. The TOF-CIC assay result was
much higher, and comparison of the results indicated that
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approximately 65% of the organic fluorine present in the
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required for handling powdered activated carbon. The use of
superfine, powdered activated carbon is being studied under
an ESTCP project initiated in 2019 (J. Quinnan, Table 1). To
develop modified adsorbents that are more effective for
treatment of PFAS-impacted waters, chemical modifications to
organoclay-based media are also under investigation (J. Liu [A],
Table 1). Completely novel adsorbents are also under devel-
opment. Examples of a novel adsorbent media include: a
cyclodextrin-based adsorbent (D. Helbling, Table 1), a meso-
porous organosilica adsorbent (E. Edmiston, Table 1), and a
protein-based sorbent (M. Michalsen, Table 1). The goals of
these projects are to develop adsorbents that have a higher
adsorption capacity for PFAS, and also that are superior in
terms of being able to remove short-chain PFAS.

Batch test, isotherm studies are used to determine adsorp-
tion capacity (i.e., mass of chemical removed per mass of ad-
sorbent, or mass of ion exchange resin). However, column
studies must also be performed to determine the number of
bed volumes of water that can be treated before breakthrough
occurs. During treatment via either adsorption or ion exchange,
the short-chain PFAS are usually the first to break through.
Thus, comparative column studies measuring the number of
bed volumes until breakthrough of the high-priority, short-
chain PFAS must be performed to compare different types of
adsorbents. A comparative study of different types of ion ex-
change resins is being conducted (T. Strathmann, Table 1). In
addition, a comparative assessment of lifecycle costs of several
different treatment processes, including GAC, ion exchange,
nanofiltration, and reverse osmosis, as well as superfine pow-
dered activated carbon, is also underway (K. Ozekin, Table 1).

For moderately concentrated aqueous waste streams, a
pretreatment step such as foam fractionation, polymer/coagu-
lant addition, or electrocoagulation may need to be used to
knock down high influent concentrations. Foam fractionation is
one of a handful of treatment processes that takes advantage
of the inherent attraction of PFAS to the air/water interface
(AWI) to remove PFAS from the aqueous phase. This strategy is
generally less effective for short-chain PFAS constituents, which
are not as strongly attracted to the AWI as longer chain-length
PFAS constituents. An electrocoagulation process is being in-
vestigated as a pretreatment step under a recent SERDP
project (D. Chiang, Table 1). Coagulation processes are usually
followed by sedimentation. A secondary treatment step (e.g.,
GAC or ion exchange) would typically be required following
one of the above pretreatment steps.

Destructive treatment processes

Most of the destructive processes require electrical power to
operate the treatment systems. Power is required to drive the
oxidative and/or reductive processes, and in some cases, for
ultraviolet (UV) light. The amount of power required is de-
pendent on the influent PFAS concentrations, and also on a
host of water quality parameters (e.g., dissolved organic
carbon, total dissolved solids, and cocontaminants). This cat-
egory includes the following treatment processes: nonthermal

Environmental Toxicology and Chemistry, 2021;40:44-56—C. Coyle et al.

plasma, electrochemical, UV-activated, and sonolysis. Although
it doesn't necessarily require power, biological treatment is
also included in this category. Ultimately, the various treatment
technologies under development will have to be compared
using consistent metrics for energy requirements (e.g., kilowatt
hour/cubic meter of water treated [kWh/m?]). The energy
metrics must also take into account the degree of PFAS de-
struction achieved (e.g., kWh/m? per log reduction in PFAS
concentration). Comparisons among plasma, electrochemical,
UV-persulfate, and sonolysis processes in terms of the energy
efficiency for defluorination of perfluorooctanoic acid (PFOA)
indicate that a high-efficiency plasma process is 15% more ef-
ficient than an electrochemical process, 2.9 times more effi-
cient than high-rate plasma, 10 times more efficient than
sonolysis, and 30 times more efficient than UV-persulfate
(Stratton et al. 2017). The high-rate and high-efficiency plasma
processes are the same basic process; however, the high-rate
reactor allows for a higher flow rate.

Nonthermal plasma treatment processes rely on contact
between rapid-fire pulses of electrical discharge streamers and
contaminated media. The electrical discharge plasma reactor
developed by S. Mededovic-Thagard and co-workers at
Clarkson University (Potsdam, NY, USA) operates by circulating
a shallow layer of water through a reactor with a row of elec-
trodes above the water surface. The reaction between con-
taminants and the arcs of electricity occurs at the AWI. Because
the reaction occurs primarily at the surface, the amount of
electrical power required for plasma treatment is believed to
be relatively insensitive to water quality parameters that could
cause adverse impacts in other types of treatment processes.
Rows of fine-bubble diffusers are used to move the PFAS
constituents up to the surface. The PFAS are attracted to the
AWI of the fine bubbles. In terms of level of development, the
Clarkson plasma reactor that is being investigated under sev-
eral projects (M. Crimi; N. Hagelin; T. Holsen, Table 1) is further
along than most of the other ex situ treatment process being
funded by SERDP. A similar plasma-based treatment process
is also being investigated and has recently successfully com-
pleted the first year proof-of-concept (C. Sales, Table 1).

Electrochemical treatment has been shown to be capable of
destroying PFAS, and is capable of treating both dilute and
relatively concentrated waste streams. Many different types of
electrodes have been tested. Boron-doped diamond elec-
trodes have been shown to be an effective material for con-
ventional electrochemical cell configurations. Other types of
configurations and electrode materials are also under inves-
tigation. A system currently under development (B. Chaplin,
Table 1) is configured such that the influent must flow through a
porous electrode composed of titanium oxide (Ti4O). This
configuration ensures intimate contact between contaminants
and the electrode surface. An electrochemical cell using solid
Ti4O7 electrodes is also being tested (Q. Huang, Table 1). One
advantage of electrochemical treatment is that it will not be
adversely affected by the high ionic strength of brine re-
generant solutions. A high level of ionic strength is desirable for
conventional electrochemical cell systems because the effec-
tiveness of treatment is dependent on the conductivity of the

© 2020 The Authors
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fluid within the electrochemical cell. However, if chloride is
present, perchlorate may be generated, as an undesirable
byproduct of electrochemical treatment.

Ultraviolet-light activated processes are a component of
several projects. The reaction between UV light (at 254 nm) and
sulfite can be used to generate hydrated electrons and sulfite-
free radicals. The only byproduct of this reaction is sulfate.
Destruction of PFAS constituents occurs due to reactions with
hydrated electrons. Two SERDP projects are currently inves-
tigating UV-sulfite treatment (J. Liu [A]; C. Schaefer, Table 1).

A BOHP UV reactor is currently being developed for PFAS
treatment (E. Cates, Table 1). The reactor utilizes catalyst par-
ticles, consisting of BizO(OH)(PO,4), microaggregates (BOHP)
and bismuth phosphate (nano-BiPO4 micro rods) The reactor
design relies on mixing the influent with the catalyst suspen-
sion, which circulates through a set of tubes. The center of the
tubes is occupied by a UV light source (a low-pressure mercury
lamp). After treatment, the catalyst suspension is separated
from the treated water, and recovered for re-use.

Photocatalytic processes are also being investigated in a re-
cently completed proof-of-concept project (D. Zhao, Table 1).
Researchers are developing a novel composite material with an
activated carbon core and a photocatalyst shell of titanate
nanotubes with high adsorption capacity and photochemical
degradation toward PFAS and regeneration capability.

Sonolysis relies on use of ultra-high-frequency sound waves
to induce formation of short-lived microbubbles in solution.
Violent collapse of the bubbles creates microsites with ex-
tremely high temperatures and pressures. Formation of free
radicals also occurs during collapse of the microbubbles. The
combination of high temperature, pressure, and free radicals
allows for destruction of PFAS constituents. The sonolysis
process benefits from the attraction of PFAS constituents to
the AWI of the microbubbles. Sonolysis was used by one
project for destruction of PFAS, following concentration and
desorption steps (H. Yu, Table 2).

The majority of studies regarding fate and transport proc-
esses for PFAS have shown only limited biodegradation of
some PFAS, or no biodegradation whatsoever (Pancras
et al. 2016). Under aerobic conditions, some types of PFAS
constituents (fluorotelomer alcohols and sulfonamides) can be
biotransformed into dead-end products such as carboxylates
and sulfonates, for example, 8:2 fluorotelomer alcohol —
PFOA, and perfluorooctane sulfonamide — perfluorooctane
sulfonic acid (PFOS). However, researchers at Princeton Uni-
versity (Princeton, NJ, USA) have recently discovered a bio-
degradation process that may be capable of complete
mineralization of PFOA and PFOS (Huang and Jaffé, 2019).
Instead of electrical power, the Feammox process relies on a
steady supply of iron (Fe) and ammonia. During the Feammox
process, Fe(lll) serves as the electron acceptor, and ammonia
serves as the electron donor. The autotrophic bacterium that
has been isolated, Acidimicrobiaceae sp. A4, is capable of re-
spiring PFOA and PFOS, but only for a portion of its electron
acceptor requirements. The study of Feammox as a PFAS
treatment technology is in its infancy. Before Feammox can be
considered economically viable, PFAS degradation rates would

have to be shown to be rapid enough to demonstrate that it
could be performed within a reasonably sized reactor. In
theory, a Feammox-based system similar to a constructed
wetlands basin could be designed for treatment of PFAS-
impacted surface water. P.R. Jaffé and his team are continuing
to work on this biodegradation process under a new SERDP
project (P.R. Jaffé, Table 1).

Several projects are also investigating combinations of
treatment processes in a treatment train approach. A set of
combined in situ/ex situ treatment approaches is being inves-
tigated whereby in situ groundwater treatment via oxidation
will be combined with ex situ treatment via regenerable ion
exchange resin, while plasma is used for treatment of the re-
generant solution (M. Crimi, Table 1). Another project team is
developing a process combining photolysis and electro-
chemical reduction (D. Jassby, Table 1). A system combining
physical adsorption, advanced oxidation, and reductive de-
fluorination is being assessed (H. Choi, Table 2), and another
team is examining a treatment train utilizing chemical oxidation
followed by regenerable adsorption and defluorination via
UV-sulfite—generated hydrated electrons (J. Liu [A], Table 1).

Treatment of IDW and soils

Table 2 provides the description of all funded projects re-
lated to ex situ treatment of PFAS-impacted IDW and soils
under SERDP and ESTCP. The IDW may include both liquids
and solids. The present discussion will focus on solids, as well
as materials containing very high levels of solids (e.g., slurries,
muds, and high-turbidity liquids). However, some of the treat-
ment processes we describe would also be suitable for liquids.

Thermal, hydrothermal, and supercritical water oxidation
(SCWO) processes are being researched for treatment of IDW
and/or soils. Low-temperature thermal desorption (LTTD) is best
suited for relatively low-moisture-content wastes (e.g., soils),
whereas hydrothermal processes are more suitable for high-
moisture-content wastes. Relatively high temperatures (at least
650°C) are required for complete desorption of PFAS con-
stituents from soil (Barranco et al. 2019). Any moisture present in
the soil must first be driven off, to achieve such high temper-
atures. A great deal of energy is required to “burn” off the pre-
existing moisture. Hydrothermal and SCWO processes use a
combination of heat and pressure for destruction of PFAS con-
stituents, without the need to drive off moisture, thereby al-
lowing for destruction to occur at lower temperatures. Data from
a recent SERDP project indicate that destruction temperatures
for hydrothermal treatment can be further reduced by elevating
the pH (i.e., alkaline hydrothermal treatment; Wu et al. 2019).

The traditional thermal treatment technologies that
have been used for soil treatment include incineration and
low-temperature thermal desorption. The LTTD process is used
to move the PFAS constituents from the solid to the vapor
phase, although a limited degree of thermal oxidation may
occur, depending on operational temperatures. The PFAS-
laden vapors that are generated during LTTD can be either
condensed or routed through a thermal oxidizer for on-site
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destruction. During thermal treatment, when contaminants are
collected in the condensate, they are typically concentrated by
passing the condensate through GAC. The GAC would then be
sent away for off-site disposal. On-site operation of a thermal
oxidizer usually requires an air permit, or meeting the sub-
stantive requirements of an air permit. On-site LTTD, with
capture of condensate for off-site disposal, is often deemed to
be more readily implementable, because it usually eliminates
the need to obtain an air permit, or to meet substantive
requirements of an air permit.

A fluorine mass balance was conducted using data from a
pilot-scale thermal treatment system for PFAS-impacted soil
(Barranco et al. 2019). The system included a pilot-scale in-
direct thermal desorption unit coupled with a thermal oxidizer
for destruction of vapors from the thermal desorption unit.
After thermal oxidation of the PFAS-laden vapors, the fluorine
mass balance indicated that nearly all the PFAS present in
the spiked soil was converted into hydrogen fluoride (HF) gas.
The 2 separate trial tests, with each trial test run in duplicate,
resulted in fluorine mass recoveries (recovered as HF gas), that
ranged from 84 to 114%, with a mean of 99%. The measured
destruction and removal efficiency for the soil treatment system
was 99.9997%, whereas the thermal desorption unit was
operated at 650 °C with a residence time of 1 to 1.5h. The
thermal oxidizer was operated at 1000 °C, with a residence
time of 2.

Blending of calcium hydroxide (Ca(OH),) into PFAS-impacted
soil prior to thermal treatment is being tested (P. Koster van
Groos, Table 2). The presence of Ca(OH), may allow for thermal
destruction of PFAS at a lower temperature and may also reduce
generation of HF emissions due to formation of fluorite residue.
A smoldering combustion process is also being investigated for
PFAS-impacted soils and IDW (D.W. Major, Table 2). Smoldering
combustion requires the presence of organic matter, which can
be added to the soil, unless the natural organic matter content is
already high enough. After ignition of the organic matter, a high-
temperature heat-front slowly moves through the soil causing
desorption and/or destruction of the PFAS constituents without
the need for further addition of energy into the system. Due to
the potential for volatilization, smoldering combustion may re-
quire an emissions control system.

Preliminary testing of high-energy electron beam has been
completed under a proof-of-concept study (S.D. Pillai, Table 2).
The process relies on an electrically powered accelerator to
generate high concentrations of electrons, which react with
water to produce free radicals, hydrogen peroxide, hydrogen
atoms, and hydrated protons. In theory, the beam gun would
be positioned above the contaminated media, with a convey-
ance system to allow the media to pass under the beam. The
beam causes unavoidable heating of the media, which may
contribute to degradation reactions. Due to the heating, this
type of process may require an emissions control system.

Several projects are also investigating combinations of the
treatment processes. Studies combining adsorption and
photolysis are being conducted in 2 projects, one of which
was previously described in Destructive treatment processes
(D. Zhao, Table 2). A chitosan-modified montmorillonite
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nanocomposite will be used to adsorb both 3-indole acetic
acid (IAA) and PFAS constituents (H. Dong, Table 2). On
exposure to UV light, hydrated electrons are released from IAA.
The hydrated electrons are capable of defluorinating PFAS
constituents.

Treatment of residuals

The term residuals includes materials such as spent treat-
ment media (GAC, ion exchange resin), concentrated brines
derived from regeneration of ion exchange resin, and rejectate
from membrane filtration processes such as reverse osmosis.
Many of the treatment processes previously discussed are also
applicable to treatment of residuals. Energy content, moisture
content, ionic strength, corrosivity, and foaming potential are
all important properties for residuals, which can affect treat-
ment/disposal alternatives. For GAC, the option or reactivation
and reuse must also be considered. Interactions between PFAS
constituents and GAC during thermal treatment are also worth
reviewing because the presence of GAC can have profound,
and unexpected, effects on the behavior and destruction of
PFAS constituents.

Water content is a key aspect of residuals treatment. High
water content residuals will be more amenable to processes
such as hydrothermal and SCWO. Energy content of residuals
is also an important factor for some types of treatment proc-
esses. The British thermal unit (BTU) content of the waste can,
in some cases, off-set the amount of energy required to drive
the treatment process. For LTTD and incineration, low water
content and high BTU content are desired. lon exchange resin
has a BTU content of approximately 12000 BTU/lb, whereas
GAC has a BTU content of 2000 to 4000 BTU/Ib. However,
during incineration of GAC, the majority of the combustion
occurs in the primary combustion chamber, and only a limited
amount of organic vapors are generated. For the waste mate-
rial to be beneficial toward off-setting the amount of fuel re-
quired to operate the secondary combustion chamber (SCC),
the organic vapors must carry through to the SCC. Thus, GAC
represents a low-value feedstock for incinerators, whereas ion
exchange resin represents a higher value feedstock because
the organic vapors from ion exchange resin can significantly
contribute to off-setting the cost of fuel for operation of
the SCC.

For cement kilns, the BTU content of spent GAC can sig-
nificantly offset fuel requirements. Unlike most incineration fa-
cilities, where the primary combustion is indirectly fired,
cement kilns are directly fired. Thus, the heating of the kiln, due
to combustion of the GAC, contributes toward reducing fuel
requirements.

Immediately after removal from adsorption vessels, spent
GAC and spent ion exchange resin will have a high moisture
content. The high moisture content can reduce the desirability
of the material for incineration facilities and cement kilns be-
cause additional fuel will be required to drive off the moisture.
Thus, the moisture content can partially off-set the BTU content
and reduce the value of the material as a feedstock for the
thermal treatment facility.

© 2020 The Authors
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During reactivation of spent GAC, destruction of PFAS can
occur on the surface of the GAC (i.e., while the PFAS con-
stituents remain in the adsorbed phase), or the PFAS con-
stituents may move into the vapor phase before destruction
occurs. Temperature can be used as a variable to control the
extent of destruction on the surface of the GAC versus the
extent to which transfer to the vapor phase occurs. Laboratory
studies have shown that destruction of PFAS constituents on
the surface of the GAC can be favored by limiting heating to
700°C, or slowly increasing the temperature after reaching
700 °C (Watanabe et al. 2016). At 800 and 900 °C, an increased
percentage of the adsorbed PFAS constituents were shown to
move into the vapor phase. At 700 °C, that study indicated that
a much greater degree of PFAS destruction occurred for PFAS
that were adsorbed onto GAC, relative to PFAS in the absence
of GAC. However, Watanabe et al. (2018) also showed that a
temperature of 1000°C was necessary for nearly complete
destruction of vapor-phase PFAS constituents. This conclusion
was based on mass balance data for PFAS destruction, showing
that volatile organic fluorine was <0.1% of adsorbed PFAS
when the process was operating at 1000°C. The authors
therefore suggested that a primary combustion chamber tem-
perature set to ramp up slowly after reaching 700 °C, in com-
bination with an SCC temperature of 1000°C, would be
desirable for reactivation of PFAS-laden GAC, in that it would
maximize destruction of PFAS on the surface of the GAC, limit
corrosive HF emissions, and minimize fuel consumption.

The extent to which the adsorbent media has been loaded
with PFAS can also affect reuse/disposal options. Media that
have been highly loaded with PFAS can be undesirable for
thermal treatment processes because of the amount of corro-
sive HF gas that will be generated during treatment. Re-
activation and reuse of spent GAC can be an option when the
PFAS influent levels are relatively low. However, if the PFAS
influent concentration approaches the area of 100 pg/L (based
on the sum of the 24 commonly measured PFAS constituents),
GAC vendors may no longer accept the spent material for re-
activation, and it may have to be sent to an incinerator.

One difficulty that has been observed during treatment of
concentrated brines is that, because the concentration of PFAS
constituents is so high, foaming may interfere with the treat-
ment process. The electrical discharge plasma reactor relies on
fine-bubble diffusers to move PFAS toward the surface, which
has caused the foaming. During a treatability study (N. Hagelin,
Table 1), it was found that the brine concentrate had to be
diluted by a factor of 10, to prevent foaming from interfering
with operation of the plasma reactor. During the same study,
the Clarkson University team, led by T.M. Holsen, also found
that improved removal of short-chain PFAS constituents (e.g.,
perfluorobutane sulfonate [PFBS]) could be achieved by adding
a cationic surfactant to the diluted brine solution. The complex
that formed between PFBS and the cationic surfactant was
more strongly attracted to the AWI of the bubbles than PFBS
alone. Antifoaming agents often have to be mixed into con-
centrated PFAS residuals prior to incineration to prevent
foaming. However, the high BTU content of the antifoaming
agents may interfere with incinerator operations by causing

rapid fluctuations in oxygen concentrations in the kiln, and the
SCC. Treatment of concentrated brines is being investigated
under 2 separate projects (M. Fuller; Q. Huang, Table 1).

IN SITU REMEDIATION TECHNOLOGIES

Table 3 provides a description of all funded projects
related to in situ treatment of PFAS-impacted aqueous
media, including source zone and plume under SERDP and
ESTCP. Injection of amendments for long-term sorption of
PFAS constituents is being investigated under 2 projects
(P. Hatzinger; D. Helbling, Table 3). Colloidal activated carbon
amendments have been commercially available for several
years for in situ treatment of chloroethene-contaminated
groundwater, and these same materials are being tested for
PFAS treatment. Polydiallyldimethylammonium chloride, a
polymer-based sequestrant commonly referred to as poly-
DADMAC, is also being investigated under 2 separate projects
(M. Simcik [A]; M. Simcik [B], Table 3). Destruction of PFAS
constituents does not occur via the use of any of these sorbent-
based amendments. However, they can be effective as a pas-
sive means for containment of groundwater plumes. To assess
the long-term effectiveness of sorbent-based amendments,
several years of monitoring at field test sites will be required.

Although they were originally developed under ESTCP for
treatment of chlorinated solvents (Divine et al. 2017), horizontal
flow reaction wells (HRX) may also be applied for in situ treat-
ment of PFAS. The HRX wells are installed perpendicular to the
direction of groundwater flow, and are designed to create a
preferential flow conduit that draws in water from an upgra-
dient area. Water that is drawn into the HRX well then flows
through treatment cartridges, containing adsorbent media,
before being discharged to the outlet of the HRX well. The
treatment cartridges can be removed, and periodically re-
placed with new cartridges containing fresh media. Laboratory
studies have been performed to assess design parameters for
HRX wells and sorption of PFAS onto various types of GAC-
based media (M. Crimi [B], Table 3). An HRX well is currently
being designed for PFAS-impacted groundwater at Peterson
Air Force Base (Colorado Springs, CO, USA). It may also be
possible to use in-well destructive processes (e.g., sonolytic
reactors), connected to an above-ground electrical power
source, in conjunction with HRX wells.

Development of a new type of permeable adsorptive barrier
(PAB) for PFAS treatment will be tested under a new ESTCP
project (D. Lippincott, Table 3). Both regenerable and single-
use ion exchange resin will be tested for this in situ PFAS
treatment as part of the project. A funnel and gate layout will
be incorporated into the design of the PAB system.

In situ thermal treatment system for PFAS-impacted soil in
the vadose zone will also be tested (I. lery, Table 3). The system
will utilize thermal conduction heating (TCH), with a vapor ex-
traction system coupled with ex situ destruction of PFAS con-
densate using UV-sulfite and hydrothermal destruction
technologies. The TCH system will be comprised of a coiled
single wire heated to 900 °C and can deliver varying amounts
of heat vertically in a steel heater well.
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The term “"D-FAS” was coined to describe an in situ treat-
ment process that is being tested to concentrate PFAS con-
stituents from groundwater within treatment wells (D. Reynolds,
Table 3). The treatment process involves injection of air and/or
ozone, in the form of fine bubbles, near the bottom of the
treatment well. The PFAS are attracted to the AWI of the
bubbles. Air-lift pumping within the treatment well creates a
circulation cell that moves a portion of the surrounding
groundwater toward the treatment well. During treatment, a
foam concentrate forms at the surface of the water table, within
the treatment well. Periodically, the foam concentrate is re-
moved, and sent away for off-site treatment. Geology is a
critical factor for D-FAS, and it is most likely to be viable only
for high-to-moderate permeability settings.

CONCLUSIONS

As regulations evolve, treatment processes will need to be
proved to be capable of treating PFAS constituents that were
previously not measured, and previously unregulated. Also,
improvements in capabilities for measuring total organic fluo-
rine, volatile fluorinated constituents, and fluorinated trans-
formation products will have to be taken into account during
assessment of treatment performance. Anticipated changes in
regulations governing treatment and disposal of media will
have important impacts. The potential for new regulatory re-
strictions (e.g., increasingly stringent cleanup levels, landfilling
restrictions, hazardous waste classification, and emissions cri-
teria), and the need to limit greenhouse gas emissions will
create new challenges. Developmental technologies must
take all of these “moving targets” into consideration. Also,
the presence of currently unmeasurable PFAS constituents
will continue to present challenges for the design and
implementation of treatment systems.

A wide array of new technologies is currently under devel-
opment for treatment of PFAS-laden materials. However, to be
commercially viable, and receive widespread adoption, new
technologies must be shown to be cost effective, energy effi-
cient, and competitive with established technologies, capable
of meeting stringent clean-up criteria, and have a favorable
greenhouse gas emission profile. It is critically important that
standardized performance data be generated during devel-
opment and demonstration of new technologies. Execution of
experimental protocols that allow for consistent measurements
is imperative for objective and consistent comparisons of
treatment technologies. Standardized performance data must
be obtained for both nondestructive (e.g., adsorption capacity
and bed-volumes until breakthrough) and destructive tech-
nologies (e.g., energy consumption and defluorination effi-
ciency). For destructive technologies, fluorine mass balance
data are essential for determining the extent to which complete
mineralization is achieved.
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The established, nondestructive technologies such as GAC
and ion exchange are likely to continue to be the default choice
for treatment of impacted groundwater, for at least the next
several years. However, opportunities are emerging to couple
existing nondestructive technologies with new types of de-
struction technologies. At the same time, new and improved
nondestructive technologies are also rapidly emerging, in ad-
dition to new in situ treatment alternatives. Development of
improved treatment trains, and innovative combinations of
nondestructive and destructive technologies will eventually
lead to advanced capabilities for remediation of PFAS-laden
materials.

Disclaimer—The views expressed in this article are those of the
individual authors and do not necessarily reflect the views and
policies of the US Army Corps of Engineers, or the US Army.
Mention of trade names or commercial products does not
constitute endorsement or recommendation for use.

Data Availability Statement—Data, associated metadata, and
calculation tools are available from the corresponding author
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