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a b s t r a c t 

Touchless biometrics has become significant in the wake of novel coronavirus 2019 (COVID-19). Due to 

the convenience, user-friendly, and high-accuracy, touchless palmprint recognition shows great potential 

when the hygiene issues are considered during COVID-19. However, previous palmprint recognition meth- 

ods are mainly focused on close-set scenario. In this paper, a novel Weight-based Meta Metric Learning 

(W2ML) method is proposed for accurate open-set touchless palmprint recognition, where only a part 

of categories is seen during training. Deep metric learning-based feature extractor is learned in a meta 

way to improve the generalization ability. Multiple sets are sampled randomly to define support and 

query sets, which are further combined into meta sets to constrain the set-based distances. Particularly, 

hard sample mining and weighting are adopted to select informative meta sets to improve the efficiency. 

Finally, embeddings with obvious inter-class and intra-class differences are obtained as features for palm- 

print identification and verification. Experiments are conducted on four palmprint benchmarks including 

fourteen constrained and unconstrained palmprint datasets. The results show that our W2ML method is 

more robust and efficient in dealing with open-set palmprint recognition issue as compared to the state- 

of-the-arts, where the accuracy is increased by up to 9.11% and the Equal Error Rate (EER) is decreased 

by up to 2.97%. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Biometrics is a significant and useful technology for personal 

uthentication using the physical or behavioral characteristics of 

umans. There are some popular biometrics technologies widely 

tudied and applied, such as face recognition [1] and finger- 

rint recognition [2] . Though they have obtained promising per- 

ormance, there are still certain shortcomings about accuracy and 

ygiene considerations in some specific scenarios, especially for 

he outbreak of novel coronavirus 2019 (COVID-19). For example, 

ouched fingerprint recognition has to require the users to press 

he sensor, which may increase the risk of contracting coronavirus. 

n this paper, we are focused on a potential biometrics technol- 

gy, touchless palmprint recognition, which has attracted more and 

ore attentions from academia and industry [ 3 , 4 ]. There have been

ome touchless palmprint acquisition devices established to pro- 

ide data support for research, as shown in Fig. 1 . They consist of

imple cameras and lights, and some even smart phones, which 
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hows the potential of touchless palmprint recognition to be used 

s a convenient and hygeian biometrics technology [5] . 

There are many excellent palmprint recognition algorithms 

n the literature, e.g ., Local Microstructure Tetra Pattern (LMTrP) 

6] and Local Discriminant Direction Binary Pattern (LDDBP) [7] . 

owever, they often rely on carefully designed handcraft features. 

ith the emergence of deep learning, deep metric-based palm- 

rint recognition methods are proposed to give an end-to-end so- 

ution, which show superiority and obtain promising results on 

pecific databases [ 8 , 9 ]. There are two modes for palmprint recog- 

ition, i.e ., verification and identification [10] . The verification is a 

ne-to-one matching process to determine “whether the tester is 

hom he claims to be”. The identification is a one-to-many match- 

ng process to determine who the tester is. 

However, most of palmprint recognition algorithms are focused 

n the close-set scenarios, where all of the categories are seen 

uring training [14] . When new users join the system, it has to 

pend much time to update the model. While open-set palmprint 

ecognition is an important biometrics technology to be developed, 

hich allows us to easily add new users at any time. As shown in 

ig. 2 , different shapes and colors represent the features of differ- 

nt categories. For traditional close-set palmprint recognition, the 

https://doi.org/10.1016/j.patcog.2021.108247
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108247&domain=pdf
mailto:bell@xjtu.edu.cn
https://doi.org/10.1016/j.patcog.2021.108247
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Fig. 1. Some typical touchless palmprint acquisition devices [ 3 , 11-13 ]. 
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ategories of the test set and training set must be consistent. While 

or opens-set recognition, the test set can introduce more new cat- 

gories. Thanks to the powerful capability of feature extracting and 

ncoding, previous deep metric-based palmprint recognition meth- 

ds may be adaptive to unseen samples using a large amount of 

abeled training data. However, due to the difficulty of acquisition 

nd labeling of palmprint images, there are rarely enough samples 

o guarantee the generalization ability of model. 

Benefit from meta-learning, we propose a novel Weight-based 

eta Metric Learning (W2ML) framework with greater generaliza- 

ion ability to address the issue of open-set palmprint recognition. 

2ML method performs metric learning in a meta way to extract 

iscriminative palmprint features using an end-to-end network. 

irstly, palmprint dataset is divided into training set and testing 

et respectively, and there is no overlap in the categories. Then, 

ultiple subsets are randomly sampled from training set to define 

any tasks. Similar to meta learning, support set and query set are 

urther formed for each sub-task. Secondly, the features of support 

et are combined into a meta support set and matched with the 

uery set as positive and negative meta sets. Instead of traditional 

ample-based distances, the set-based distances between them are 

onstrained to train the model. Thirdly, hard sample mining and 

eighting are adopted to boost the performance. Informative sam- 

les are selected from positive and negative meta sets and given 

pecific weights. Finally, the model can adapt to unseen samples 

nd extract discriminative features for open-set palmprint recogni- 

ion. As shown in the meta-based optimization in Fig. 2 , the model 

earns from many recognition tasks during training and adapts to 

ew tasks of unseen categories in the test set. 

The contributions can be briefly summarized as follows: 

1) W2ML method is proposed for touchless open-set palmprint 

recognition. Only a part of palmprint images are adopted to 

train the model and the categories in the test set are not seen 
2 
during training at all. Discriminative features are learned in a 

meta way to improve the adaptation and generalization abil- 

ities of model. Compared with traditional metric-based palm- 

print recognition methods, our W2ML method can better ex- 

plain the learning process. 

2) Hard sample mining and weighting are adopted to improve 

the efficiency and accuracy. Informative samples are selected 

to form positive or negative meta sets based on relative dis- 

tance and then assigned specific weights to effectively encour- 

age intra-class similarity and inter-class separability. 

3) Adequate experiments are conducted on several touchless 

benchmark palmprint databases, including constrained and un- 

constrained datasets. The results demonstrate that our W2ML 

method can outperform other methods by a competitive mar- 

gin to obtain the state-of-the-arts. 

This paper consists of 6 sections. In section 2 , the re- 

ated work is reviewed. Section 3 details our proposed methods. 

ection 4 presents the experiments and results. Section 5 analyzes 

he results carefully. Section 6 concludes the paper. 

. Related work 

.1. Palmprint recognition 

The general pipeline of palmprint recognition includes image 

cquisition, preprocessing, feature extraction and matching [15] . 

revious methods are mainly based on images collected in a 

ouched way. They often require the testers to place their hands 

o a platform, such as PolyU palmprint database [16] . However, 

he touched acquisition manner is not very user-friendly, and the 

sers are suffered from hygienic concerns [17] . Recently, there have 

een some palmprint recognition databases collected by touchless 

cquisition devices such as Tongji contactless palmprint database 
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Fig. 2. Difference between close-set palmprint recognition based on traditional optimization and open-set palmprint recognition using meta-based optimization. Open-set 

palmprint recognition allows that there are unseen categories in the test set, which is more suitable to practical application. In addition, meta-based optimization adopted 

can learn transferrable information to adapt to unseen samples by performing sub-tasks. 
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3] and IITD palmprint database [18] . Some of them are even col- 

ected by common mobile phones, such as Xi’an Jiaotong University 

nconstrained Palmprint (XJTU-UP) database [12] . These databases 

re more suitable in the realistic applications, especially in re- 

ponse to the outbreak of COVID-19. 

As important steps of palmprint recognition, feature extrac- 

ion and matching include direction-based, statistics-based, and 

tructure-based methods, which are mainly based on main lines, 

extures, and folds [15] . Kong and Zhang [19] first proposed Com- 

etitive Code for palmprint verification based on 2-D Gabor fil- 

ers to extract orientation information of palmprint. In order to ex- 

ract more valuable information using multiple dominant orienta- 

ion, researchers proposed Binary Orientation Co-occurrence Vec- 

or (BOCV) [20] , Extended BOCV (E-BOCV) [21] , and Neighboring 

irection Indicator (NDI) [22] methods. Jia et al . [23] proposed a 

ovel method, Histogram of Oriented Lines (HOL), for palmprint 

ecognition, which is not sensitive to changes of illuminations. Fei 

t al . [24] proposed LDDBP method to established the connection 

etween the extraction methods and discriminability of direction 

eatures. Li and Kim [6] proposed LMTrP for palmprint recognition, 

hich can extract the features of local descriptors’ direction and 

hickness and outperform other methods. Benjoudi et al . [25] pro- 

osed a simple but effective model called Patch Binarized Statis- 

ical Image Features Descriptor (PBSIFD) to present the palmprint 

eatures based on BSIF texture descriptor. Fei et al . [7] extracted 

he Discriminant Direction Binary Codes (DDBC) of palmprint im- 

ges based on Convolution Difference Vector (CDV) and then con- 

atenated them as a global feature vector, denoted as Discriminant 

irection Binary Palmprint Descriptor (DDBPD). 

With the development of deep learning, many palmprint recog- 

ition methods based on deep neural networks have emerged 

nd obtained promising performance [26] . Genovese et al . [8] pro- 

osed deep palmprint recognition algorithm using Gabor responses 

nd Principal Component Analysis (PCA), called PalmNet. Zhong 

t al . [14] extracted binary codes as palmprint features using 

eep Hashing Network (DHN) and proposed a hand-based multi- 

r

3 
iometrics framework. Matkowski et al . [27] collected a large 

almprint database from the Internet and proposed an end-to-end 

almprint recognition algorithm based on deep learning. Shao et 

l . [28] trained several weak feature extractors and concatenated 

hem as an ensemble model based on online gradient boosting 

or palmprint recognition, called Deep Ensemble Hashing (DEH). 

hao and Zhang [29] proposed Deep Discriminative Representa- 

ion (DDR) to learn discriminative features with limited palmprint 

raining data using deep convolutional networks. Shao and Zhong 

30] proposed a few-shot palmprint recognition framework based 

n graph neural networks using only a few of training samples. 

zadpanahkakhk et al . [31] proposed a deep mobile palmprint ver- 

fication framework via an effective weighted loss function, which 

ould extract discriminative features with high accuracy. Recently, 

here are also some researches focusing on cross-database palm- 

rint recognition, such as [32] and [33] . 

In summary, traditional palmprint recognition methods could 

btain relatively accurate results in some specific database, but 

hey usually rely on hand-crafted features. Deep palmprint recog- 

ition methods can construct end-to-end framework, but most of 

hem rely on a large amount of training data and require to see all 

ategories during training. On the contrary, our methods can gain 

reater generalization ability to adapt to unseen categories and are 

ore suitable to open-set palmprint recognition. 

.2. Metric learning and meta learning 

The goal of metric learning is to learn a distance model to es- 

ablish similarity or dissimilarity between different samples, which 

as gained great success in face recognition [34] and image re- 

rieval [35] . Metric learning can minimize the distance of gen- 

ine matchings and maximize the distance of imposter match- 

ngs to obtain discriminative features and embeddings. Chopra et 

l . [36] proposed contrastive loss and a discriminative learning 

ramework based on Siamese network to drive the similarity met- 

ic to be small for faces from the same subject and large for faces 
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rom different subjects. Then triplet loss was proposed to improve 

he performance by using both the in-class and inter-class rela- 

ions, where three subjects are formed as positive, negative, and 

nchor samples [ 37 , 38 ]. Ge et al . [39] proposed a new Hierarchi-

al Triplet Loss (HTL), which can collect informative training sam- 

les automatically to cope with the limitation of random sampling 

n original triplet loss. Song et al . [40] also modified triplet loss 

nd proposed a lifted structure loss to attempt to take full ad- 

antage of the training batches in training. Wang et al . [41] pro- 

osed Multi-Similarity loss (MS loss) to provide a principled ap- 

roach for collecting and weighting informative pairs. Duan et al . 

42] proposed Deep Adversarial Metric Learning (DAML) to gen- 

rate synthetic hard negatives from the original negative samples 

nd trained the feature extractor and hard negative generator using 

dversarial learning. These methods can obtain satisfactory perfor- 

ance on some visual task, such as face identification and verifica- 

ion. However, they may not be very adaptive to palmprint recog- 

ition, especially for the open-set recognition scenarios. Traditional 

etric learning methods are hungry for vast amounts of labeled 

ata. For palmprint recognition, due to privacy and cost concerns, 

t is difficult to collect enough training data like face recognition. 

o it requires the model to learn greater interpretability and gen- 

ralization ability using a small amount of training samples. 

Another line of related work is meta learning, which is aimed 

o enable a base model to be adaptive to new tasks by extract- 

ng transferrable knowledge from auxiliary tasks [43] . Finn et al . 

44] proposed Model-Agnostic Meta-Learning (MAML) to search for 

eight configuration such that the given network can be effec- 

ively fine-tuned within a few update steps. Sung et al . [45] pro- 

osed Relation Network (RN) to learn a deep distance metric by 

omputing the scores of query images and support samples. Snell 

t al . [46] proposed Prototypical Networks, which learned a proto- 

ype representation for each class in metric space and performed 

he classification by computing the distances to prototype repre- 

entations. Then, Medina and Devos [47] pre-trained the model 

sing self-supervised learning to improve the performance of Pro- 

otypical Networks. Garcia and Bruna [48] proposed a graph neu- 

al network-based meta learning method and obtained the state- 

f-the-arts on several tasks. Chen et al . [49] proposed a Deep 

eta Metric Learning (DMML) framework for visual recognition 

nd proved that softmax and triplet loss were consistent in the 

eta space. Xu et al . [50] proposed a detection method based on 

eta learning to distinguish and compare a pair of traffic sam- 

les. Wu et al . [51] proposed a deep adversarial learning-based 

eta learning method for video-based person re-ID using the Vari- 

tional Recurrent Neural Networks (VRNNs). These methods are 

ainly used for few-shot learning scenarios, where many few-shot 

asks are formed to evaluate the model during testing. However, 

t may not be suitable for palmprint identification and verification, 

ecause discriminative features need to be extracted and further 

atched with each other. In this paper, our proposed method is fo- 

used on more general metric learning for visual recognition prob- 

ems like other palmprint recognition algorithms, such as [8] and 

14] . 

. Our method 

.1. Task description 

Open-set palmprint recognition is aimed to train the model 

sing a part of images to identify new unseen samples of un- 

een categories, which requires the model to have great gen- 

ralization ability. In order to help the model to adapt to un- 

een palmprint images, W2ML method formulates metric learn- 

ng in a meta way. Suppose there are η samples in the train- 

ng set, D = { (x , y ) , ..., (x , y ) , ..., (x n , y n ) } and y is the label
train 1 1 i i i 

4 
f image x i . According to the form of meta learning, M palm- 

rint images ( M < n ) belonging to N categories are randomly se- 

ected to generate a new task. Further, N × k < M images, k im- 

ges per category, are randomly sampled as support set, denoted as 

 = { ( x i , y i ) , i = 1 , ..., N × k } . Then the remaining images are sam- 

led as query set, denoted as Q = { ( x i , y i ) , i = N × k + 1 , ..., M } . The 

pisode-based training is adopted, and the embeddings of query 

amples are matched with those of support samples to get the cor- 

ect identity. During the testing, traditional meta learning meth- 

ds are mainly evaluated by performing few-shot learning tasks, 

hich construct many sub-tasks like training iteration process. Dif- 

erent from it, our W2ML method focuses on more general met- 

ic learning-based biometric recognition problems, which obtains 

he embeddings of images as low-dimensional features to carry out 

almprint identification and verification tasks. 

.2. Episode-based learning 

W2ML method is trained to adapt to unseen samples success- 

ully in an end-to-end way on episodes. In each episode, the meta 

etric is learned to correctly identify the query images from Q

ith support images in S by constraining their distances. The opti- 

ization object can be formulated as 

L = D ( S, Q ) , (1) where D (·) represents the distance. 

The traditional deep metric-based palmprint recognition meth- 

ds train the model by operating the distance between sample 

airs. For example, contrastive loss-based DHN tries to make posi- 

ive palmprint pairs closer and push negative palmprint pairs apart 

rom each other [14] . Different from them, benefit from the special 

raining data sampling format of meta learning, our W2ML model 

s optimized by set-based distances to improve the generalization 

bility. 

Specifically, in the feature space, all the features of the same 

ategory in the support set can be formed into a meta support set, 

enoted as 

 

j 
meta = 

{ 

k ∑ 

i =1 

w i j f 
(
x j 

i 

)} 

, (2) 

here j represents the j -th category and f (·) denotes the em- 

edding function implemented by Convolutional Neural Networks 

CNN). w i j is the weight for image x 
j 
i 
. Therefore, the distances be- 

ween query samples and meta support sets are constrained to 

earn discriminative representations. Similar to (2), the distance 

an be denoted as 

 

(
x j 

′ 
q , S 

j 
meta 

)
= 

k ∑ 

i =1 

w i j d 

(
x j 

′ 
q , x 

j 
i 

)
, (3) 

here x 
j ′ 
q is a query image of j’ -th category, S 

j 
meta is the j -th meta

upport set, and d(·) represents the distance between features of 

ifferent samples extracted by f (·) , which can be Euclidean dis- 

ance or cosine distance, and cosine distance is adopted in this pa- 

er. 

During each episode-based training iteration, the query samples 

nd meta support sets with the same class are combined into pos- 

tive meta sets, and the query samples and meta support sets with 

he different classes are combined into negative meta sets. The 

odel is optimized by minimizing the distance of positive meta 

ets and pushing away the negative meta sets. For example, as 

hown Fig. 3 , S 1 meta , S 2 meta , S 3 meta , and S 4 meta are four different meta

upport sets, and x 
j ′ 
q is a query image. Only x 

j ′ 
q and S 2 meta can form 

 positive meta set, and the other combinations are negative meta 

ets. During training, x 
j ′ 
q is encouraged to approach 

S 2 meta and stay away from S 1 meta , S 
3 , and S 4 meta . 
meta 
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Fig. 3. Schematic illustration of episode-based learning. The distances of positive 

meta sets are minimized and the distances of negative meta sets are maximized. 
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Algorithm 1 

W2ML. 

Input : Training set D train ; M, N, k , and l in each episode; the margin m ; 

parameters α, β , and γ . 

Output : Feature extractor f (·) 
for each episode in D train , do 

1, Select M images from D train randomly. 

2, Select support set and query set from M images randomly. 

3, Compute distances between query samples and meta support sets. 

4, Construct positive or negative meta sets. 

5, Select informative meta sets using (4) and (5). 

6, Update feature extractor f (·) using (8) 

end 

return f (·) 
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.3. Weight-based meta metric learning 

Our W2ML method is optimized by constraining the distances 

f positive meta sets and negative meta sets, i.e ., (3). However, it 

s difficult and inefficient to train directly. So inspired by [41] , the 

trategy of hard sample mining and weighting is adopted. Firstly, 

nformative samples are selected to form positive or negative meta 

ets, which is based on the relative similarity between negative 

nd positive meta sets. For a query sample x 
j ′ 
q , the positive pair 

 x 
j ′ 
q , x 

j 
s | j ′ = j } in positive meta sets is selected, when d( x j 

′ 
q , x 

j 
s ) sat- 

sfies 

 

(
x j 

′ 
q , x 

j 
s 

)
< max 

j ′ � = i ′ 
d 

(
x j 

′ 
q , x 

i ′ 
s 

)
+ m, (4) 

here m is a margin. 

Similarly, for the query sample x 
j ′ 
q , the negative pair 

 x 
j ′ 
q , x 

j 
s | j ′ � = j } in negative meta set is also selected, when d( x j 

′ 
q , x 

j 
s ) 

atisfies 

 

(
x j 

′ 
q , x 

j 
s 

)
> max 

j ′ = i ′ 
d 

(
x j 

′ 
q , x 

i ′ 
s 

)
− m. (5) 

Through the hard sample mining above, it can abandon the less 

nformative images to improve the efficiency of training. Particu- 

arly, for the query sample x 
j ′ 
q , the selected negative and positive 

eta sets are denoted as N 

j ′ 
q and P 

j ′ 
q respectively. Then, the se- 

ected positive or negative meta sets are further assigned different 

eights, as shown in Fig. 4 . Like Fig. 3 , x 
j ′ 
q , S 1 meta , S 2 meta , S 3 meta , and

 

4 
meta also form positive and negative meta sets. The relative posi- 

ions of S 1 meta , S 
2 
meta , S 

3 
meta , and S 4 meta are the same in Figs. 4 (a) and

 (b). However, due to the different positions of x 
j ′ 
q in the feature 

pace, their weights are correspondingly different. 

Specifically, the distance between x 
j ′ 
q and S 2 meta in Fig. 4 (a) is 

arther than in Fig. 4 (b), and thus the weight should be increased 

ccordingly. 

For a selected pair { x j ′ q , x 
j 
s | j ′ = j } in positive meta sets, its 

eight can be written as 

 = 

1 

e 
−α

(
γ −d 

(
x j 

′ 
q ,x 

j 
s 

))
+ 

∑ 

x ∈ P j ′ q 

e 
−α

(
d 

(
x j 

′ 
q ,x 

)
−d 

(
x j 

′ 
q ,x 

j 
s 

))

= 

e 
−α

(
d 

(
x j 

′ 
q ,x 

j 
s 

)
−γ

)

1 + 

∑ 

x ∈ P j ′ q 

e 
−α

(
d 

(
x j 

′ 
q ,x 

)
−γ

) , (6) 

here α and γ are two hyper-parameters. (6) is obtained 

y considering the relationship between a single positive pair 

 x 
j ′ 
q , x 

j 
s | j ′ = j } and all positive pairs in the positive meta sets. 
5 
Correspondingly, for { x j ′ q , x 
j 
s | j ′ � = j } in negative meta sets, its 

eight can be written as 

 = 

1 

e 
β
(
γ −d 

(
x j 

′ 
q ,x 

j 
s 

))
+ 

∑ 

x ∈ N j ′ q 

e 
β
(

d 

(
x j 

′ 
q ,x 

)
−d 

(
x j 

′ 
q ,x 

j 
s 

))

= 

e 
β
(

d 

(
x j 

′ 
q ,x 

j 
s 

)
−γ

)

1 + 

∑ 

x ∈ N j ′ q 

e 
β
(

d 

(
x j 

′ 
q ,x 

)
−γ

) , (7) 

here β and γ are two hyper-parameters. Similarly, (7) is calcu- 

ated by a single negative pair and all negative sample pairs in neg- 

tive meta set. 

Therefore, the overall optimization object of W2ML method in 

n episode is formulated as 

 = 1 

l 

l ∑ 

j ′ =1 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 

α
log 

⎡ 

⎢ ⎢ ⎣ 

1 + 
∑ 

x ∈ P j ′ q 

e 
−α

(
d 

(
x 

j ′ 
q ,x 

)
−γ

)⎤ 

⎥ ⎥ ⎦ 

+ 1 
β

log 

⎡ 

⎢ ⎢ ⎣ 

1 + 
∑ 

x ∈ N j ′ q 

e 
β

(
d 

(
x 

j ′ 
q ,x 

)
−γ

)⎤ 

⎥ ⎥ ⎦ 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

, 

(8) 

here l represents the number of query samples. In (8), the first 

art is optimized for positive meta sets, and the latter part is op- 

imized for negative meta sets. During episode-based learning it- 

ration, hard sample mining and weighting scheme are integrated 

nto a single framework in an elegant and suitable manner to op- 

imize the model. Particularly, the partial derivative of (8) with re- 

pect to the selected samples in positive or negative meta sets, i.e ., 

( x j 
′ 

q , x 
j 
s ) , is just the weight defined in (6) or (7) respectively. α is 

et to 2 and β is set to 40, like [41] . The pseudocode of W2ML

ethod is provided in Algorithm 1 . 

. Experiments and results 

.1. Database 

XJTU-UP database is collected by five common mobile phones 

n an unconstrained manner, i.e ., iPhone 6S, HUAWEI Mate8, LG G4, 

amsung Galaxy Note5, and MI8 [12] . Two kinds of illuminations 

re adopted, one is indoor natural illumination and the other is 

he flash light. 100 volunteers provided their right and left hand 

mages using different mobile phones and illuminations. Therefore, 

JTU-UP database consists of 10 datasets, denoted as IN (iPhone 

s using Natural illumination), IF (iPhone 6s using Flash light), HN 

HUAWEI Mate8 using Natural illumination), HF (HUAWEI Mate8 

sing Flash light), LN (LG G4 using Natural illumination), LF (LG G4 

sing Flash light), SN (Samsung Galaxy Note5 using Natural illumi- 

ation), SF (Samsung Galaxy Note5 using Flash light), MN (MI8 us- 

ng Natural illumination), and MF (MI8 under Flash light), like [52] . 

n each dataset, there are 2,0 0 0 palm images belonging to 200 cat- 

gories. The images are cropped to form Regions of Interest (ROIs) 
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Fig. 4. Schematic diagram of hard weighting. The query image in (a) and (b) needs to be assigned by different weights. 

Fig. 5. Typical samples in XJTU-UP database. (a) and (b) are original images in HF and MN; (c) and (d) are ROI images in IF and LN. 

Fig. 6. Typical samples in Tongji contactless palmprint database. (a) and (b) are original images; (c) and (d) are ROI images. 
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ith the size of 224 × 224 pixels using the method in [12] . Fig. 5

hows some typical images in XJTU-UP database. 

Tongji contactless palmprint database consists of 12,0 0 0 palm 

mages of right and left hands from 300 individuals using touch- 

ess device [3] . For each hand, 20 images were collected in two 

essions, and 10 images in each session. The images are cropped 

nto ROIs with the size of 224 × 224 pixels. Fig. 6 shows some 

amples. 

Mobile Palmprint Database (MPD) is also an unconstrained 

almprint database collected by multi-brand smartphones, Huawei 

nd Xiaomi [53] . Using different acquisition devices, 200 volun- 

eers provided their right and left hand images. So there are two 

atasets and each one contains 8,0 0 0 images belonging to 400 cat- 

gories, denoted as HW and Mi. Original palmprint images are also 

ropped into ROIs with the size of 224 × 224 pixels, like [53] . Due

o the complex background and illumination, it is also challenging 

o delineate these ROIs accurately, especially for open-set recogni- 

ion. Fig. 7 shows some typical images. 

IITD palmprint database is also captured by a touchless device 

18] . The acquisition is convenient where the hands are variable in 

ose, rotation, and translation freely. There are 2,600 palm images 

rom 230 subjects. Each individual captured their five or six palm- 

rint images of right or left hand, as shown in Fig. 8 . All ROIs are

ropped and resized to 150 × 150 pixels. In this paper, 5 images 

f each hand are selected randomly for fair experiments. So total 
6 
,300 images of 460 categories are adopted to evaluate the algo- 

ithms. 

.2. Implementation details 

During the experiments, each database is divided into train- 

ng set and test set with the ratio of 1:1 and there is no overlap

n categories. During the training, the test set is not available to 

he model, neither the images nor labels. So it is challenging for 

he model to extract discriminative features for unseen samples. 

n each database, the first half of categories are used as training 

et and the remaining are used as test set. For example, in each 

ub-dataset of XJTU-UP database, 1,0 0 0 images of the first 100 cat- 

gories are selected to train the model and the remaining images 

re used for testing. Both palmprint identification and verification 

re performed on these databases, and the accuracy and Equal Er- 

or Rate (EER) are calculated to evaluate the algorithms. ResNet 18 

54] is adopted as the backbone of feature extractor, whose last 

ayer is followed by a 128-dimensional fully connected layer to ob- 

ain 128-dimensional features. Empirically, for every task, the num- 

er of categories N is set to 32 and k is set to 4. In addition, benefit

rom transfer learning [55] , the weights pre-trained on ImageNet 

re adopted to initialize the neural networks and fine-tuned on the 

atabases. PyTorch framework is adopted to implement the exper- 

ments on a NVIDIA GPU GTX1080. Adam Optimizer is applied and 
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Fig. 7. Typical samples in MPD. (a) and (b) are original images; (c) and (d) are ROI images. 

Fig. 8. Typical samples in IITD palmprint database. (a) and (b) are original images; (c) and (d) are ROI images. 

Table 1 

Details of implementation in the experiments. 

Database Training images Test images Backbone Feature dimension N k Metric 

XJTU 1,000 1,000 ResNet 18 128 32 4 Accuracy, EER 

Tongji 6,000 6,000 ResNet 18 128 32 4 Accuracy, EER 

MPD 4,000 4,000 ResNet 18 128 32 4 Accuracy, EER 

IITD 1,150 1,150 ResNet 18 128 32 4 Accuracy, EER 

Table 2 

Results of palmprint identification and verification on XJTU-UP database. 

Database Accuracy (%) EER (%) Database Accuracy (%) EER (%) 

HF 91.00 2.97 SN 90.00 3.23 

HN 90.44 3.27 MF 93.44 2.11 

IF 94.78 1.91 MN 89.33 3.06 

IN 89.78 3.35 LF 95.56 1.97 

SF 92.00 2.42 LN 90.00 2.87 
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Table 3 

Results of palmprint identification and verification on 

Tongji, IITD, and MPD databases. 

Database Tongji IITD HW Mi 

Accuracy (%) 93.39 94.02 71.82 71.66 

EER (%) 1.76 2.33 6.02 5.12 
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he base learning rate is set to 0.0 0 02. The implementation details 

re summarized in Table 1 . 

.3. Results of palmprint recognition 

In this paper, open-set palmprint identification and verification 

re performed to evaluate our W2ML method on constrained and 

nconstrained databases. Palmprint identification carries out one- 

o-many matching. The first palmprint image of each category in 

est set is selected as registration sample, and the remaining im- 

ges are adopted to form query set. Each query image is matched 

ith all of the registration images to find the most similar one. 

f they belong to the same individual, the matching is successful, 

nd then the identification accuracy can be calculated. For palm- 

rint verification, it carries out one-to-one matching in the test set. 

fter extracting the features of test data, they are matched with 

ach other and their distances are obtained. Through a threshold, 

he False Acceptance Rate (FAR) and False Rejection Rate (FRR) can 

e calculated. When FAR is equal to FRR, the EER is further ob- 

ained. The results are list in Tables 2 and 3 . For XJTU-UP database,

he best performance of palmprint identification is obtained on IF 

ataset, where the accuracy is 95.56%, and the best performance 
7 
f palmprint verification is also obtained on IF dataset, where the 

ER is 1.91%. For MPD, the accuracies of two datasets are about 71% 

nd the EERs are about 6%. For Tongji and IITD databases, they can 

lso obtain relatively good results. 

.3. Results of cross-database palmprint recognition 

In order to further evaluate the effectiveness of our methods, 

ross-database palmprint recognition are also carried out in XJTU- 

P database. HF and IN are selected as training sets and the re- 

aining datasets are selected as test sets. The first 100 categories 

re used to train the model and the remaining 100 categories are 

sed for testing. Palmprint identification and verification are also 

erformed. Table 4 shows the results. The best result is obtained 

hen IN is selected as training set and IF is selected as test set, 

here the accuracy is 88.78% and the EER is 4.60%. It can be ob- 

erved that the performance is worse than that of common open- 

et recognition. The experiment settings of cross-database palm- 

rint recognition are difficult. The acquisition devices, illumina- 

ions, and environment are various significantly, which brings dif- 

culties to the recognition model. So the model need to not only 

earn the distribution of unknown categories, but also overcome 

he gaps between different datasets. 
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Table 4 

Results of cross-database palmprint recognition on XJTU-UP database. 

Training set Test set Accuracy (%) EER (%) Training set Test set Accuracy (%) EER (%) 

HF HN 52.56 18.87 IN HF 57.44 12.41 

IF 87.33 6.33 HN 76.89 8.47 

IN 62.56 13.44 IF 87.89 3.82 

SF 83.11 5.80 SF 86.44 5.29 

SN 60.78 14.22 SN 75.00 9.86 

MF 79.78 6.17 MF 81.22 5.42 

MN 54.22 17.32 MN 74.00 7.18 

LF 75.56 7.35 LF 87.00 5.16 

LN 64.11 17.02 LN 76.22 6.88 
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Table 5 

Results (accuracy, %) of palmprint identification on different γ and m . 

HF HN IF IN SF SN 

γ = 0 . 1 , m = 0 . 05 88.89 88.22 93.89 87.78 90.44 89.89 

γ = 0 . 5 , m = 0 . 05 91.00 90.44 94.78 89.78 92.00 90.00 

γ = 1 , m = 0 . 05 88.67 84.78 94.56 85.78 89.78 88.44 

γ = 0 . 5 , m = 0 . 01 90.44 87.78 93.44 89.44 88.78 90.44 

γ = 0 . 5 , m = 0 . 5 88.22 87.78 94.11 87.22 91.67 90.89 

Table 6 

Results (EER, %) of palmprint verification on different γ and m . 

HF HN IF IN SF SN 

γ = 0 . 1 , m = 0 . 05 3.53 3.70 2.40 3.45 2.57 3.75 

γ = 0 . 5 , m = 0 . 05 2.97 3.27 1.91 3.35 2.42 3.23 

γ = 1 , m = 0 . 05 3.39 4.11 2.05 3.88 3.18 3.43 

γ = 0 . 5 , m = 0 . 01 3.09 4.10 2.42 3.39 2.84 3.41 

γ = 0 . 5 , m = 0 . 5 3.46 4.19 1.93 3.79 2.48 3.56 

Table 7 

Results (accuracy, %) of palmprint identification on different N and k . 

HF HN IF IN SF SN 

N = 16 , k = 4 88.22 88.56 94.22 89.56 90.33 89.44 

N = 32 , k = 4 91.00 90.44 94.78 89.78 92.00 90.00 

N = 48 , k = 4 88.56 87.78 93.33 88.89 91.22 89.67 

N = 32 , k = 2 87.78 87.33 91.67 87.11 91.00 89.22 

N = 32 , k = 6 91.56 87.67 92.78 89.67 91.22 89.56 

Table 8 

Results (EER, %) of palmprint verification on different N and k . 

HF HN IF IN SF SN 

N = 16 , k = 4 3.55 4.07 2.10 3.17 2.78 3.63 

N = 32 , k = 4 2.97 3.27 1.91 3.35 2.42 3.23 

N = 48 , k = 4 3.26 3.69 2.02 3.84 3.17 3.95 

N = 32 , k = 2 3.39 3.94 2.57 4.25 2.65 4.16 

N = 32 , k = 6 3.58 3.88 2.43 3.41 2.87 3.72 
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. Result evaluation and analysis 

.1. Result analysis 

Open-set palmprint recognition is a difficult task, especially for 

nconstrained databases. There are so many unseen samples from 

nknown categories in the test set. These images are various in 

erms of illumination, angle, and noise, which may cause signif- 

cant degradation of performance. The model can only learn po- 

ential information from the training set, which requires it to have 

 strong generalization ability, especially for cross-database recog- 

ition. However, from the results, our W2ML method can obtain 

romising results of open-set palmprint identification and verifica- 

ion on several databases. Thanks to meta-learning, W2ML learns 

o accurately distinguish between positive and negative pairs in a 

eta way. Traditional metric learning methods pay much attention 

o independent samples. They are difficult to find the difference 

etween palmprint images of different categories and learn the 

imilarity between samples of the same category. W2ML treats the 

ingle overall classification task as multiple sub-tasks and adopts 

et-based distance instead of sample-based one to learn discrim- 

native metric in each sub-task. Informative samples are further 

elected and set to specific weights, which drives the model to 

ocus on difficult samples to improve training efficiency. So the 

ovel sampling and training make W2ML better suitable for open- 

et palmprint recognition. 

In the experiments, different databases are adopted. Compared 

ith unconstrained palmprint databases, constrained palmprint 

mages can get better performance. It may be because the uncon- 

trained images have more complex lighting, background, and an- 

le, just as shown in Figs. 5 and 7, which increases the difficulty 

f ROI and feature extractions. In contrast, it is relatively easy to 

egment stable ROIs in Tongji and IITD databases, which can fur- 

her help to extract discriminative features. In addition, it can be 

bserved that cross-database palmprint recognition is more diffi- 

ult. There are significant gaps between different datasets, which 

eads to the model not being able to learn the feature distribu- 

ion of the test set well. From the results, the best performance is 

btained when databases collected by similar devices or illumina- 

ions, whose gap is relatively small. 

.2. Ablation study 

). Hyper-parameters analysis 

There are two important hyper-parameters, γ and m . Here, sev- 

ral experiments are conducted to evaluate their roles on the per- 

ormance using HF, HN, IF, IN, SF, and SN datasets. The results of 

almprint identification and verification are shown in Tables 5 and 

 . γ and m are two margins used for hard sample mining and 

eighting. Informative negative and positive meta sets are selected 

nd less informative ones are discarded, which can improve the 

fficiency of training. When γ = 0 . 5 and m = 0 . 05 , the optimal re-

ults are obtained on palmprint identification and verification. 
8 
In addition, there are two other hyper-parameters, the cate- 

ories N and the number of images per category k . Several experi- 

ents are also conducted to show their impact on the performance 

sing HF, HN, IF, IN, SF, and SN datasets. The results of palmprint 

dentification and verification are shown in Tables 7 and 8 . It can 

e observed that as the numbers of categories and support sam- 

les grow, the identification accuracy first increases and then de- 

reases, while the EER first decreases and then increases. Due to 

he episode-based training, when there are more categories used 

n the support set, the training time and resource consumption are 

reater. When N = 32 and k = 4 , the performance is optimal, where 

he scale of sub-tasks is enough to estimate the distribution of 

asks. 
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Fig. 9. The comparison of palmprint features with different sizes. (a) shows the results of palmprint identification (accuracy, %) and (b) shows the results of palmprint 

verification (EER, %). 

Table 9 

Comparison (accuracy, %) of palmprint identification using different methods on XJTU-UP database. 

Methods HF HN IF IN SF SN MF MN LF LN 

ALDC 89.56 80.33 90.89 79.89 87.78 76.89 88.78 78.22 88.78 81.00 

LDDBP 85.22 88.22 88.67 84.44 83.78 85.89 85.78 88.44 87.67 87.56 

DDBPD 88.33 86.78 90.56 88.44 86.22 86.44 92.11 89.78 87.11 88.00 

PalmNet 88.78 88.78 87.89 81.67 81.00 83.56 87.89 85.00 87.00 82.89 

DEH 

(adversarial) 

70.44 60.00 78.22 66.11 76.00 65.44 75.89 56.56 73.78 59.44 

DEH 

(activation) 

73.78 71.67 84.22 73.11 81.89 70.89 82.44 71.44 83.11 68.00 

DHN 72.11 69.22 80.56 72.00 77.44 76.56 75.78 64.22 73.44 66.22 

Contrastiveloss 72.89 61.22 91.11 76.22 85.33 75.88 84.11 75.89 74.67 76.56 

Softmax loss 86.11 84.55 92.22 85.06 89.67 87.44 87.44 83.89 89.67 86.00 

Lifted structure 

loss 

75.89 76.78 91.22 77.44 85.11 78.22 85.44 76.89 89.11 83.78 

W2ML 91.00 90.44 94.78 89.78 92.00 90.00 93.44 89.33 95.56 90.00 
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). Feature sizes 

Our W2ML method extracts the embeddings of palmprint im- 

ges as features for palmprint recognition. Here, we evaluate the 

erformance of W2ML method with different feature sizes, i.e ., {32, 

4, 128, 256} on HF, HN, IF, and IN datasets. As shown in Fig. 9 ,

he accuracy is increased consistently with the feature dimension, 

hile the EER is decreased consistently with the feature dimen- 

ion. 

.2. Comparison with other works 

In order to evaluate the effectiveness of our model, we further 

onduct several experiments to compare it with other works. Dif- 

erent deep learning and non-deep learning palmprint recognition 

lgorithms are carried out, as follows: 

• DDBPD [7] extracts several DDBCs by calculating the convolu- 

tion difference vector and concatenates them as a global feature 

vector for palmprint recognition. 
• LDDBP [24] extracts the discriminative direction features of 

palmprint images based on exponential and Gaussian fusion 

model (EGM). 
• DHN [14] is a deep learning-based palmprint recognition 

method, which transfers palmprint images into binary codes as 

discriminative features. Here, VGG 16 pre-trained on ImageNet 

is adopted as backbone. 
9 
• ALDC [56] is a novel double-layer direction extraction method, 

which extracts apparent and latent direction features for palm- 

print recognition. 
• DEH [28] trains several local feature extractors and concate- 

nates their features as a global discriminative feature based on 

online gradient boosting. Activation loss and adversarial loss are 

constructed to increase the diversity of learners. The VGG 16 

pre-trained on ImageNet is also adopted. 
• PalmNet [8] applies Gabor filters in CNN to extract discrimina- 

tive specific descriptors of palmprint images. 
• Softmax loss [57] is a popular probabilistic interpretation loss 

widely used for classification tasks. 
• Contrastive loss [36] is aimed to shorten the distances of pos- 

itive samples and push away those negative samples. 
• Lifted structure loss [40] takes full advantage of training 

batches by sampling an equal number of negative pairs as the 

positive ones randomly. 

Note that to be fair, all of modules are implemented using 

imilar settings, such as the feature size and datasets. These se- 

ected comparison methods are representative in the literature of 

almprint recognition and published in top journals. In addition, 

ur method is modified from metric learning, so some deep met- 

ic learning-based methods are also compared, such as contrastive 

oss and lifted structure loss, where ResNet 18 is also adopted as 

he backbone of feature extractor. For PalmNet, contrastive loss, 

ifted loss, DEH, and DHN, the official released codes are used. For 

LDC, LDDBP, and DDBPD, the codes shared from the authors are 
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Table 10 

Comparison (EER, %) of palmprint verification using different methods on XJTU-UP database. 

Methods HF HN IF IN SF SN MF MN LF LN 

ALDC 6.95 10.29 6.73 11.40 8.08 11.14 5.71 10.53 5.62 9.36 

LDDBP 7.43 7.34 6.63 9.23 8.94 7.35 6.59 6.89 6.86 7.22 

DDBPD 5.98 6.47 5.60 7.77 7.11 6.78 4.67 5.69 5.27 5.76 

PalmNet 4.94 8.67 7.11 9.98 9.04 9.18 6.10 8.65 6.41 8.27 

DEH 

(adversarial) 

10.04 11.57 9.06 11.28 8.27 10.76 7.80 11.43 6.91 12.30 

DEH 

(activation) 

7.55 8.26 6.83 9.16 6.22 8.05 4.69 7.51 4.98 9.67 

DHN 8.10 9.64 7.59 9.46 7.18 6.79 7.39 9.26 7.47 10.21 

Contrastive 

loss 

12.46 16.82 5.06 12.64 9.75 14.17 7.55 11.27 10.68 13.81 

Softmax loss 3.40 3.91 2.08 4.58 2.55 3.95 2.84 4.13 2.22 4.22 

Lifted structure 

loss 

5.79 6.60 2.65 6.12 3.16 6.56 3.71 5.97 4.01 5.21 

W2ML 2.97 3.27 1.91 3.35 2.42 3.23 2.11 3.06 1.97 2.87 

Table 11 

Comparison of palmprint recognition using different methods on Tongji, IITD, and MPD databases. 

Methods 

Accuracy (%) EER (%) 

Tongji IITD HW Mi Tongji IITD HW Mi 

ALDC 87.30 75.00 44.63 45.47 5.71 10.26 20.48 20.59 

LDDBP 88.19 81.74 54.63 54.84 5.25 7.98 17.39 16.35 

DDBPD 89.16 82.07 56.11 59.68 4.45 7.47 14.92 14.46 

PalmNet 89.47 79.24 46.39 49.42 5.44 10.92 24.44 24.36 

DEH 

(adversarial) 

63.21 60.11 36.45 36.29 8.23 10.32 18.81 19.67 

DEH 

(activation) 

79.54 74.67 42.08 42.45 4.72 6.86 14.92 16.23 

DHN 88.11 66.85 63.05 61.87 2.86 11.18 8.96 8.93 

Contrastive 

loss 

56.58 65.43 53.44 53.21 15.51 14.51 19.24 21.02 

Softmax loss 80.63 87.93 59.03 59.92 4.55 4.01 9.52 8.77 

Lifted structure 

loss 

84.53 85.76 62.74 62.55 3.22 3.67 7.50 8.09 

W2ML 93.39 94.02 71.82 71.66 1.76 2.33 6.02 5.12 

a

a

t

u

m

i

m

l

o

c

d

w

a

f

I

l

p

s

i

p

i

m

s

o

t

v

c

6

p

c

s

p

a

n

t

o

s

s

t

I

l

t

dopted. During the experiments, we have retrained the codes of 

ll the comparison methods. For the deep learning methods, fine- 

uning is adopted and the weights pre-trained on ImageNet are 

sed for initialization. The same validation protocol and evaluation 

etrics, accuracy and EER, are also adopted. The results are shown 

n Tables 9 , 10 , and 11 . 

From the results, our W2ML method can outperform other 

ethods to be the state-of-the-arts on the tasks of open-set touch- 

ess palmprint identification and verification. For traditional meth- 

ds, i.e ., ALDC, LDDBP, and DDBPD, their features are handcrafted 

arefully designed, so they can obtain better results on XJTU-UP 

atabase when there are only a few training samples. However, 

hen Tongji, IITD, and MPD databases with more training data 

re adopted, deep learning-based methods can obtain better per- 

ormance, which truly indicates the superiority of deep learning. 

n the future, there will be more and more palmprint images col- 

ected by touchless devices available, so the deep learning-based 

almprint recognition algorithms may gradually become the main- 

tream and trend. 

Contrastive loss is a sample-based optimization method, which 

s aimed to minimize the distances of genuine matchings and 

ush away the imposter matchings from each other. However, 

t treats different samples equally. Similarly, DEH and DHN are 

ainly based on contrastive loss, so they may be suitable to close- 

p

10 
et palmprint recognition but not adaptive to unseen categories in 

pen-set recognition. Lifted structure loss only considers the nega- 

ive relative similarity, and it cannot be adaptive to unseen samples 

ery well. However, our meta learning-based optimization process 

an learn more potential information for better generalization. 

. Conclusion 

In this paper, a novel deep metric-based method, W2ML, is pro- 

osed for open-set touchless palmprint recognition. Only a part of 

ategories is adopted to train the model, which satisfies the open- 

et recognition scenario. In order to be adaptive to the unseen 

almprint samples, our W2ML method performs metric learning in 

 meta way to improve its generalization ability to obtain discrimi- 

ative embeddings. Specifically, multiple subsets are sampled from 

raining set to define different tasks. In each sub-task, the features 

f the same category in the support set are combined into a meta 

upport set. During each episode-based learning iteration, query 

amples and meta support sets are further combined into posi- 

ive and negative meta sets to constrain the set-based distances. 

n addition, hard sample mining and weighting are adopted to se- 

ect informative meta sets, which are then given specific weights 

o improve the efficiency. Extensive experiments including palm- 

rint identification and verification are conducted on several con- 



H. Shao and D. Zhong Pattern Recognition 121 (2022) 108247 

s

b

a

T

o

b

s

p

u

c

i

t

l

s

a

d

p

D

c

i

A

d

Z

d

R

x

R

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

[  

[  

[  

[  

[

[

[  

[

[

[

[

[

[  

[  

[

[  

[

[  

 

[  

[  

[

[  

[  

[

trained and unconstrained palmprint databases. Compared with 

aselines, the identification accuracy is increased by up to 9.11% 

nd the EER of palmprint verification is decreased by up to 2.97%. 

he results demonstrate the superiority of our W2ML method on 

pen-set touchless palmprint recognition. 

Touchless palmprint recognition is a significant and potential 

iometrics technology, especially when the hygiene issues are con- 

idered in response to the outbreak of COVID-19. Touchless palm- 

rint recognition uses a visual sensor, which does not require the 

sers to directly touch the device. Therefore, it is possible to avoid 

ross-infection between users, which is particularly important dur- 

ng the pandemic of COVID-19. The experimental results show 

hat our W2ML method can improve the performance of touch- 

ess palmprint recognition to a new level, which provides the pos- 

ibility to promote its practical application. In the future, domain 

daption strategies can be introduced to close the gaps between 

ifferent databases to improve the cross-database open-set palm- 

rint recognition. 
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