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Abstract

In humans and mice, the first line of innate defense against inhaled pathogens and particles in 

the respiratory tract is airway mucus. The primary solid components of the mucus layer are 

the mucins MUC5AC and MUC5B, polymeric glycoproteins whose changes in abundance and 

structure can dramatically affect airway defense. Accordingly, MUC5AC/Muc5ac and MUC5B/
Muc5b are tightly regulated at a transcriptional level by tissue-specific transcription factors in 

homeostasis and in response to injurious and inflammatory triggers. In addition to modulated 

levels of mucin gene transcription, translational and post-translational biosynthetic processes 

also exert significant influence upon mucin function. Mucins are massive macromolecules with 

numerous functional domains that contribute to their structural composition and biophysical 

properties. Single MUC5AC and MUC5B apoproteins have molecular masses of >400 kDa, 

and von Willebrand factor D-like as well as other cysteine-rich domain segments contribute to 

mucin polymerization and flexibility, thus increasing apoprotein length and complexity. Additional 

domains serve as sites for O-glycosylation, which increase further mucin mass several-fold. 

Glycosylation is a defining process for mucins that is specific with respect to additions of glycans 

to mucin apoprotein backbones, and glycan additions influence the physical properties of the 

mucins via structural modifications as well as charge interactions. Ultimately, through their tight 

regulation and complex assembly, airway mucins follow the biological rule of ‘form fits function’ 

in that their structural organization influences their role in lung homeostatic mechanisms.
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Mucus: an essential first line of defense

Each day, respiratory tissues are exposed to billions of particles. Because inhaled particles 

include potentially infectious, injurious, and thus inflammatory stimuli, homeostatic 

mechanisms have evolved to reduce the inherent risks associated with their exposures in 

the lungs. The initial sites of particle exposure, the conducting airways, are lined by a barrier 

that constitutes the first line of innate defense. Defense is conferred by a mucus gel that 

traps particles and a ciliary escalator that transports mucus contents towards the oropharynx 

for ultimate elimination by expectoration or swallowing. This process is called mucociliary 

clearance (MCC) [1–3]. For MCC-mediated innate defense, two cell types are essential: 

ciliated cells and mucous cells [4–6].

In this review, we focus on mucous cells, and specifically, the mucin glycoproteins 

they produce, as critical mediators of the first line of innate defense. We use the term 

mucous cells to broadly define two mucin-producing cell types found in tracheobronchial 

submucosal glands (SMGs) and on airway surfaces. SMG mucous cells are interspersed 

among heterogeneous ciliated and secretory cell populations within glands and gland ducts 

in the large airways (trachea and bronchi) of humans and large mammals such as swine 

[7], but in mice these cells are present only in the trachea [8]. Surface mucous cells, often 

called goblet cells based on their chalice-shaped morphologies, are present on conducting 

airway surfaces, predominantly within the central tracheal and bronchial airways. Surface 

mucous cells are also present in small bronchiolar airways, but mucous cell numbers are 

lower in these peripheral air-spaces. Both mucous cell types produce secreted polymeric 

mucin glycoproteins that are released by regulated exocytosis and then become hydrated in 

the airway lumen to form the macromolecular matrix of the mucus gel [9–11].

Mucins are extremely large, heavily-glycosylated proteins with molecular masses ranging 

from 10 to 40 MDa. Over 20 different mucin genes are expressed in humans, each in a 

tissue-specific manner [12]. The lungs contain the membrane-bound mucins MUC1, MUC4, 

and MUC16, secreted mucin MUC7, and also the secreted polymeric mucins MUC5AC 

and MUC5B [13,14]. MUC5AC and MUC5B play dominant roles in the formation of 

viscoelastic mucus gels [15,16].

Mucin and mucus functions

Mucus is a complex mixture of salts, macromolecules, cells, and cellular debris that are 

contained in a hydrogel formed by polymeric mucins and water [17–21]. Mucus serves 

two important homeostatic functions in the lungs: innate airway defense and airway surface 

hydration. Mucus is critical for protection from inhaled particles and pathogens, as well as 

for the clearance of recruited leukocytes, dead cells, and endogenous debris [5]. Mucus 

also plays an important role in the maintenance of airway surface liquid equilibrium. 

In conjunction with the regulated transport of ions and water across membranes, mucus 

facilitates hydration of the underlying epithelium by modulating airway surface liquid 

osmotic gradients, thereby maintaining epithelial tonicity and responses to mechanical stress 

[22,23]. Hydration of mucus is also essential for maintaining the stability and function of 

cilia [24]. Accordingly, mucus dysfunction can result in, or worsen, disease states [2–4,25–
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28]. Maintaining healthy and effective mucociliary function thus requires tight regulation of 

the mucus gel.

Mucins are components of mucus whose regulated production and secretion are strictly 

controlled. Their co-ordinated regulation is tissue- and cell-specific, resulting in mucus gels 

whose physical properties are tailored to their tissue environment. Healthy airway mucus is 

comprised mainly of water (>95%), and mucins constitute over 80% of the mass of solid 

materials within the gel. Increasing the mass of mucins in mucus can have dramatic effects 

on gel transport. Accordingly, MUC5AC and MUC5B are tightly regulated at the levels of 

expression, polymerization, and glycosylation [29–31].

Transcriptional regulation of mucin expression

MUC5AC/Muc5ac and MUC5B/Muc5b (per standard rules of nomenclature, all letters are 

capitalized for the human gene; first letter capitalized with all following letters lowercase 

for mouse gene) are located on chromosome 11p15.5 in humans and 7F5 in mice [32–

34]. Under normal conditions in human lungs, the MUC5AC gene is expressed in central 

airway tracheobronchial surface epithelial goblet cells at low levels, whereas MUC5B 
is primarily expressed in SMGs found throughout the central airways. MUC5B is also 

expressed in goblet cells in more peripheral bronchiolar airways, where glands are absent 

[35–39]. In mice, Muc5ac is hardly expressed at baseline, and Muc5b gene expression 

predominates within surface secretory cells [13,14,40,41]. Since mice lack submucosal 

glands in intrapulmonary airways, the patterns of gene expression for mouse airway 

mucins appear to resemble human bronchioles. MUC5AC/Muc5ac expression increases 

dramatically in lung diseases and in mouse models of lung disease. On the other hand, 

MUC5B/Muc5b expression remains relatively stable, or in some cases, its expression 

actually decreases [14,42–44].

With these patterns of gene expression, it is generally accepted that the two mucins serve 

separate functions: MUC5B is employed for MCC in regular maintenance of a healthy 

respiratory tract, and MUC5AC is primarily produced in response to acute respiratory 

inflammation for reasons that are not entirely clear. The consensus favoring a homeostatic 

role for MUC5B/Muc5b expression at baseline stems from findings that it is essential in 

the mouse respiratory tract to facilitate MCC and thus prevent infection [45,46]. On the 

other hand, induced expression of MUC5AC/Muc5ac in inflamed and diseased lungs is 

considered largely to be a detrimental factor, since it has been found to be overproduced 

in respiratory diseases such as asthma, where mucus obstruction plays an important role 

in pathophysiology [47]. To achieve these baseline and induced levels, mucin expression 

is broadly regulated by a network of transcription factors that are involved in secretory 

differentiation and inflammation signaling.

Mucin expression at baseline

In healthy lungs, baseline MUC5B/Muc5b gene expression is regulated by transcriptional 

mechanisms that are still poorly understood. The high levels of MUC5B/Muc5b transcripts 

expressed at baseline are linked to several gene regulatory programs that are tied to lung 

development and secretory epithelial cell lineage specification. Histological experiments and 

Symmes et al. Page 3

Biochem Soc Trans. Author manuscript; available in PMC 2021 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



western blots demonstrate the prevalence of Muc5b in airway epithelium even in the absence 

of allergic response [41,48,49]. During embryonic lung development, the transcription 

factor Nkx2-1 represses Muc5b gene expression [50–53], whereas GATA-6 activates Muc5b 
expression [53,54]. Forkhead box a2 (Foxa2) is required for normal differentiation of the 

airway epithelium, and it also suppresses Muc5ac transcription, whereas selective deletion 

of Foxa2 results in increased Muc5ac mRNA and immunohistochemically detectable protein 

[55,56], suggesting that this key developmental transcription factor plays an important role 

in maintaing low levels of Muc5ac expression relative to abundant Muc5b transcripts.

Recently, it was revealed that the single-nucleotide polymorphism (SNP) rs35705950 in the 

promoter region of the human MUC5B gene strongly regulates its expression [39,57,58]. 

The presence of the rs35705950 minor allele enhances transcription of MUC5B, increasing 

mucin mRNA production, especially in the distal airways where SNP genotype correlates 

with MUC5B protein levels in the bronchioles in vivo and with promoter activity in 
vitro [3,39]. Importantly, rs35705950 strongly affects expression at baseline, with healthy 

subjects carrying either one or two copies of the minor allele expressing ~40-fold higher 

levels of MUC5B than major allele homozygotes [58]. The rs35705950 SNP is part of an 

active enhancer containing a FOXA2-binding site, suggesting that repression of MUC5B 
transcription by FOXA2 is lost when the gain-of-function SNP site is in an inactive state 

that was recently shown to potentially involve epigenetic control via methylation [59]. Since 

rs35705950 does regulate MUC5B expression under homeostatic conditions, it is important 

to note that the very high levels of expression imparted by rs35705950 may be detrimental 

in the long term. Chronic overexpression of MUC5B driven by rs35705950 is the single 

greatest risk factor for the development of idiopathic pulmonary fibrosis [60]. Paradoxically, 

though rs35705950 is a risk factor for developing the disease, patients who carry the minor 

allele variant actually live longer, on average, than their major allele-carrying counterparts 

[61]. Taken together, these data highlight the complexities underlying the regulation of the 

MUC5B gene and the long-term effects of MUC5B expression.

Mucin overexpression in inflammation and disease

Selective induction of MUC5AC gene expression is characteristic of numerous respiratory 

and inflammatory disease states including asthma, cystic fibrosis, and chronic obstructive 

pulmonary disease, as well as transient infectious or injurious responses [14,16,49,62,63]. 

Accordingly, a large number of cytokine and growth factor signaling pathways have 

been shown to drive MUC5AC expression. In innate inflammation, tumor necrosis factor 

(TNF) activates mitogen-activated protein kinases ERK and P38, which in turn activate 

cyclic AMP-responsive element-binding protein (CREB) downstream. CREB binds to a cis 
region of the MUC5AC promoter, resulting in increased transcriptional activation [64,65]. 

Epidermal growth factor receptor (EGFR) signaling has also been shown to drive MUC5AC 
expression. EGFR-mediated MUC5AC transcriptional regulation may utilize some of the 

same signal transduction pathways implicated above for TNF [66–68].

EGFR signaling in mouse lung epithelial cells up-regulates Muc5ac via hypoxia inducible 

factor-1 (HIF-1)-binding site, which is conserved in mammalian MUC5AC orthologs and 

is present in the core promoter [14]. This effect of EGFR was also observed with the 
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type 2 inflammatory cytokine IL-13 [42]. IL-13 and EGFR are drivers of mucin expression 

in classic type 2 inflammation settings such as allergy and asthma, and it has also been 

implicated in MUC5AC/Muc5ac responses to some viral infections [42,69–73]. Like EGFR, 

IL-13 also induces HIF-1 binding and Muc5ac promoter activation [14]. In addition to 

HIF-1, IL-13 has also been shown to induce Muc5ac expression via up-regulation of SAM­

pointed domain-containing ETS transcription factor, which in turn inhibits Foxa2-mediated 

Muc5ac repression during inflammation [56,74]. This loss of repressor function, along with 

the induction of activating transcription factors, has been proposed as a mechanism for 

tightly controlling Muc5ac expression levels and localization [75,76].

Lastly, some core promoter elements include sites for specificity protein 1 (Sp1) and nuclear 

factor κ-B (NFκB), which are present in both the MUC5AC and MUC5B genes [77–81]. 

The extents to which these regulate baseline versus inducible expression are still being 

deciphered. Ultimately, while mucin expression levels are tightly regulated by transcription, 

the functions of those expressed are also significantly affected by protein biosynthesis and 

post-translational modifications.

Form fits function: airway mucin function depends on protein structure and 

formation

Structurally, mucins are huge macromolecules with apoprotein lengths ranging from 3000 

to >5000 amino acids. MUC5AC and MUC5B monomers are ~500 nm long, and they 

form homopolymeric chains of up to 100s of μm in length [82,83]. Given the size of 

these sequences, it is no surprise that each mucin contains multiple functional domains that 

contribute to their structure and their function (Figure 1). The primary amino acid sequences 

of MUC5AC and MUC5B contain multiple cysteine-rich von Willebrand factor D (vWD)­

like domains at their N-terminal and C-terminal regions. These vWD domains mediate 

mucin polymerization via disulfide bonding (described below) and thus contribute to the 

overall assembly and ultimate size of mature mucins [34,84–86]. In addition, MUC5AC 

and MUC5B have internal glycosylated domains, separated by short, cysteine-rich domain 

(CysD) segments, which demonstrate high intra- and interspecies conservation in structure, 

albeit with variation in their frequencies. This structural homology within CysDs suggests 

that those segments contribute to mucus gel formation [84,87,88]. This is supported by a 

recent functional study, showing that increasing the number of CysD residues in intestinal 

mucins increases the strength of the intestinal mucus layer and reduces bacterial infection 

in mice [89]. The glycosylated domains of mucins are rich in proline, threonine, and serine 

residues, and are thus referred to as ‘PTS’ domains. The frequencies and specific sequences 

of PTS domains vary across animal species, among mucins isoforms, and even between 

alleles of individual mucin genes, affording unique structural and functional modifications 

for specialization purposes [90–95].

vWD domains

In one sense, mucins follow the classic model for protein assembly from primary 

through quaternary structuring (Figure 2). MUC5AC and MUC5B form three-dimensional 

conformations through intramolecular interactions at their globular ends, solidified with 
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tertiary interactions between (and within) the molecular functional domains. These mucins 

also utilize disulfide intra- and intermolecular linkages to conduct quaternary protein 

assembly that results in complex homo-oligomers that begin with dimers attached via the 

cysteine-rich segments.

Cysteine-mediated polymerization is essential for mucus viscoelasticity. These segments are 

stabilized by C-terminal-to-C-terminal disulfide linkages formed inside the endoplasmic 

reticulum (ER) via protein disulfide isomerase (PDI) enzymes [96]. Anterior gradient 

homolog (AGR)2, a disulfide isomerase-like protein, is essential for production of MUC2 in 

intestines, as well as MUC5AC and MUC5B overproduction in an asthma model [97,98]. 

Originally suggested as being involved in disulfide-mediated assembly, the role of AGR2 is 

now less clear [99]. AGR2 can be induced by XBP-1, a transcription factor, which in turn 

is activated by inositol-requiring enzyme (IRE)1β. IRE1β is specifically expressed in mouse 

and human respiratory mucosal cells and is required for mucin production [100].

The dimers formed in the ER are further connected via N-terminal-to-N-terminal linkage 

within the Golgi, thus establishing the mucin polymer in a manner similar to von Willebrand 

factor assembly [85,101–103]. It was recently observed that in the acidic, calcium-rich 

conditions of the Golgi, these disulfide bridges pull the D3 domains of MUC5B in close 

proximity to cross-link (non-covalently) into tetrad-like structures, which link in turn to form 

dense linear constructs for condensation of MUC5B in secretory granules [103,104]. Thus, 

MUC5AC and MUC5B proteins, which are already significant in size upon translation, 

become even larger as the result of disulfide-mediated polymerization in the ER and Golgi. 

In addition to this process of polymeric assembly, within the Golgi, MUC5AC and MUC5B 

become even more massive through glycosylation.

PTS domains

Glycosylation is the ultimate determining factor of mucin function, as these huge molecules 

are actually comprised 50–90% of carbohydrates [87]. Ultimately, glycosylation increases 

mucin size 3–5-fold [3,34], and glycans can dramatically affect the functions of mucins 

within the mucus gels that they form [12,105,106]. The composition of this dense mass of 

protein is highly variable between each mucin type, and because of its structural influences, 

greatly affects the function of individual mucins. The PTS tandem repeats in MUC5AC and 

MUC5B serve as the sites for this O-glycosylation, accommodating the addition of hundreds 

of O-glycans to each molecule [87].

Glycosylation

Inside the Golgi, O-glycosylation is initiated by the transfer of N-acetylgalactosamine 

(GalNAc) from UDP-GalNAc to serine and threonine amino acids within the mucin PTS 

domains by a polypeptide GalNAc-transferase (GALNT). In humans, 20 distinct GALNT 

family members have been identified with some GALNTs expressed ubiquitously, and 

others with restricted expression across tissue types. The addition of O-GalNAc to a serine/

threonine amino acid in a PTS domain is affected by both the sequence of amino acids 

immediately flanking (−3 to +3) and longer-range interaction with neighboring glycosylated 

residues (6–17 residues away) [107,108]. This addition of GalNAc to the apomucin results 
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in the formation of a ‘Tn’ antigen that functions as a scaffold for the further elaboration 

of mucin glycans [109]. Neutral sugar(s) can then be attached to O-GalNAc, which allows 

for the formation of the O-glycan ‘cores’ [12,110–112]. Core 1 structures are formed 

by the addition of galactose (Gal) β1–3 onto GalNAc-O-Ser/Thr, which is catalyzed 

by the glycosyltransferase C1GalT1 and which also requires the chaperone C1CALT1C1/

Cosmc. The core 2 structure is formed by the addition of a second neutral sugar, N­

acetylglucosamine (GlcNAc), β1–6 to the core 1 structure by core 2 synthases GCNT1/3. 

Core 3 structures are formed by the addition of a single GlcNAc in a β1–3 linkage to 

the GalNAc-O-Ser/Thr catalyzed by B3GNT6. Lastly, core 4 structures are formed by 

the further branching of a core 3 O-glycan via the addition of a second GlcNAc-linked 

β1–6 to the GalNAc-O-Ser/Thr catalyzed is GCNT3 [12,87,109]. These cores ultimately 

form a central glycosylation backbone off of which the rest of the glycan complexes are 

constructed.

After core glycosylation, the further addition of Gals and GlcNAcs proceeds to lengthen 

core 1- and 3-anchored strands, and core 2 and 4 bi-antennary structures. In addition, 

cores 2 and 4 can become further branched leading to tri-antennary and tetra-antennary 

structures on mucins [113]. These chains are extended with highly variable combinations 

of glycans. Additionally, glycan chains may be modified by the addition of fucose 

by fucosyltransferases including FUT2 [109,114]. Ultimately, these elaborated structures 

terminate in either Gal or GlcNAc to form ‘uncapped’ glycan structures, or they can 

be ‘capped’ by sulfate (SO4) or sialic acid (NeuNac). In general, the addition of 

terminal sialic acid prevents further elaboration of the glycan chain [109,115–117]. The 

heterogeneity of glycan structures is what endows each mucin with unique physical 

properties. Sialic acid and sulfates, for example, confer negative charges to molecules, 

which introduce steric repulsion between glycosylated side chains that, in turn, confer 

rigidity to mucins [12,105,106,118]. In contrast, fucose can confer more neutrally charged 

attributes [12,87,105,106,119]. These can contribute to the viscous gel properties of mucins 

by regulating how many water molecules (or other charged ions) can interact with them.

CysD domains

Beyond glycosylation of the PTS domains, the CysD domains of mucins serve as sites that 

affect physical properties conferred by glycans. It has been suggested that the interruption 

of PTS domains in MUC5AC and MUC5B by CysD domains may confer flexibility 

within the molecules to allow for intermolecular interactions [87]. In addition, CysD’s 

also potentially serve as mannosylation sites, where a single α-mannose residue can be 

covalently added to the second carbon of tryptophan in WxxW motifs within CysDs. 

MUC5AC and MUC5B contain nine and seven potential mannosylation sites, respectively 

[12,88,120]. CysD mannosylation may be essential to the maturation of secreted mucins, 

as lack of mannosylation in MUC5AC and MUC5B arrests these proteins in the ER in 

a cell culture model of mucin synthesis [121]. While CysD mannosylation function is 

incompletely understood, it is thought to be related to intracellular trafficking, subcellular 

localization, and protein folding.
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Transglutamination

One further potential post-translational modification to mucins is cross-linking via 

transglutamination. Transglutaminase 2 has been shown to mediate cross-linking of MUC2 

via the second CysD domain as part of mucus formation [122,123]. Inhibition of this 

enzyme in a mouse model of asthma leads to decreased airway hyperresponsiveness, 

decreased number of inflammatory and goblet cells, and decreased expression of TNF, 

NFκB, and Muc5ac transcripts, indicating that transglutamination plays a key role in 

asthma-induced inflammation and mucin production [124]. In a somewhat conflicting study, 

overexpression of transglutaminase 1 in a mouse model of dry eye led to a decrease in 

goblet cells and Muc5ac [125]. Thus, there is still much to learn about transglutamination 

in mucin production and formation. It is possible that different transglutaminases serve 

unique functions in mucin regulation and structure, depending upon which tissues they are 

expressed in.

Summary and implications

For all their size and complexity, the synthesis of polymeric mucins is remarkably efficient. 

Polymeric mucins are translated and dimers are assembled within the endoplasmic reticulum 

in ~20 min [101,102]. Processing through the Golgi takes 90–120 min to yield a fully 

constructed mucin glycopolymer [102]. Upon completion, the mucins bud from the trans­

Golgi and undergo homotypic fusion to form large secretory granules (SGs) that are 

calcium-rich vesicles and have low pHs [12,126]. Large SG’s mature can be stored for 

long periods of time, awaiting a secretory stimulus that mobilizes SGs towards apical plasma 

membrane docking sites where they fuse and release their contents via regulated exocytosis 

[40,127,128]. There is also emerging evidence that some mucins are secreted via small 

vesicles in a tonic fashion to maintain steady-state levels of secreted mucins in the mucus gel 

[41,129].

The formation of mucin glycopolymers is a complex and highly regulated process. Disulfide 

bonding and glycosylation are heterogeneous between different mucin types, tissues, and 

disease states versus homeostasis [12,130–132]. In healthy states, the production of hydrated 

and easily transported mucus is critical for maintaining airway homeostasis and MCC. In 

diseases such as asthma, the production of tenacious mucus plugs is clearly detrimental in 

the context of contemporary clinical settings. Emerging techniques have been utilized to 

produce glycopeptide polymers through direct polymerization of glycosylated monomers 

or post-polymerization glycosylation of reactive polypeptides [133]. These new synthetic 

routes not only begin to mimic the assembly process described on the cellular level, but 

also lead to polymers that recapitulate the structure and function of natural glycoproteins 

[134,135]. Delivery of glycopeptide polymers has immense potential to alleviate the effects 

of changes in natural mucus viscosity caused by disease or inflammation and help to return 

airways to homeostasis.

However, mucus overproduction in disease states may also reflect an evolutionarily guided 

mechanism for controlling the spread and transport of bacteria, viruses, and nematodes 

[136–140]. Recent data have demonstrated novel mechanisms through which mucins 

steer both innate and adaptive immune responses across many phases: mediating antigen 
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presentation during early phases, driving inflammosuppression during persistent exposures 

during chronic phases, and inducing apoptosis of potentially toxic immune effector cells 

during late phases [113,141–144]. As data emerge in the field, it has become clear that 

mucus is more than just a sticky substance. Rather, it is a crucial component of an integrated 

system that is designed to maintain health and to do so in by employing diverse ways to 

promote health while limiting the detrimental effects of foreign and host-derived challenges.
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Abbreviations

AGR2 anterior gradient homolog

CGNT core glycosyltransferase

CREB cAMP response element-binding protein

CysD cysteine-rich domain

EGFR epidermal growth factor receptor

ER endoplasmic reticulum

Foxa2 forkhead box a2

Gal galactose

GalNAc N-acetylgalactosamine

GALNT GalNAc-transferase

GalT βGal transferase

GlcNAc N-acetylglucosamine

GlcNAcT GlcNAc transferase

HIF-1 hypoxia inducible factor-1

IRE1β inositol-requiring enzyme (IRE)1β

kDa kilodalton

MCC mucociliary clearance

NeuNAc sialic acid
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NFκB nuclear factor κ-B

PDI protein disulfide isomerase

PTS proline-, serine-, threonine-rich sequence

SG secretory granule

SMG submucosal gland

SNP single-nucleotide polymorphism

SO4 sulfate

TNF tumor necrosis factor

vWD von Willebrand factor D
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Figure 1. MUC5AC/MUC5B structural domains and molecular interactions.
(A) MUC5AC and MUC5B apoproteins are lengthy constructs containing PTS domains 

(light blue ovals) interspersed with CysD (dark blue ovals), capped with vWD (black ovals). 

Each of these domains contributes toward overall structure, and thus function, of these 

mucins in a unique way. (B) PTS domains serve as sites for core glycosylation. GalNAc 

(yellow squares) is attached to serine and threonine residues for all four core structures. 

This is followed by β1–3 linkage of galactose (yellow circle) to form core 1, addition of 

both a β1–3 linkage of galactose and a β1–6 linkage of GlcNAc (blue squares), to form 

core 2, a β1–3 linkage of GlcNac to form core 3, or both a β1–3 linkage of GlcNAc and 

a β1–6 linkage of GlcNac to form core 4. These cores can be further elongated by the 

addition of extra sugars, including fucose (red triangles), or capped/terminated by SO4 (gray 
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circles) or NeuNAc (purple diamonds). (C) CysD segments reinforce tertiary structure of 

mucins via intramolecular disulfide linkage. (D) vWD-like domains assist in assembly of 

homo-oligomers into linear- or tetrad-like structures via intermolecular disulfide linkage.
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Figure 2. Pathways of mucin biosynthesis.
1. MUC5AC/MUC5B transcription in the nucleus is tightly regulated by specific 

transcription factors. 2. Co-translational import of mucin into the rough ER. 3. Assembly of 

mucin disulfide dimers is mediated by PDIs. 4 and 5. Mucin is folded and transported from 

ER to the Golgi complex under the guidance of chaperone and trafficking proteins. 6. In the 

cis Golgi, mucin is O-glycosylated by the addition of GalNAc (yellow squares) by GALNTs. 

7. Mucin transits through the middle Golgi where additional core 1–4 structures are formed 

by the addition of GlcNAc (blue squares) and/or Gal (yellow circles) by CGNTs. 8. 

Sugars are extended by additional βGal and GlcNAc transferases (GalTs and GlcNAcTs). 9. 

Mucin glycosylation terminates in sialylation via α2,3-sialyltransferase or fucosylation via 

α1,2 fucosyltransferase enzymes ST3GAL3 and FUT2, respectively (fucose, red triangles; 

sialic acid, purple diamonds). 10. Mucin oligomeric subunits multimerize via N-terminal 

assembly. 11. Fully synthesized mucin is then transported from the trans-Golgi by vesicular 

trafficking to growing secretory granules, where it is stored for eventual release by regulated 

exocytosis.
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