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Abstract

We apply feature-extraction and machine learning methods to multiple sources of contrast (acetic 

acid, Lugol’s iodine and green light) from the white Pocket Colposcope, a low-cost point of 

care colposcope for cervical cancer screening. We combine features from the sources of contrast 

and analyze diagnostic improvements with addition of each contrast. We find that overall AUC 

increases with additional contrast agents compared to using only one source.

I. INTRODUCTION

Each year over 500,000 women are diagnosed with cervical cancer and more than half of 

them die [1]. A disproportionate burden of incidence and mortality (>80%) occurs in low- 

and middle-income countries and this is projected to increase [1]. Reasons for disparities 

in mortality include barriers to early screening, detection and treatment which have been 

proven to significantly reduce incidence and loss of life in high-income countries. These 

barriers include cost of the screening tools, availability of expert interpretation of images, 

and distance to centralized facilities. In high-resource settings, cervical cancer management 

has multiple steps: (1) Screening with the Pap smear with or without HPV testing, (2) 

Diagnosis with Colposcopy (low-magnification imaging) guided biopsy which involves 

application of three main contrasts: acetic acid causes acetowhitening in abnormal regions, 

with CIN2+ showing textured regions in addition to whitening, whereas normal cervix 

regions remain a light pink color. Lugol’s iodine, turns normal regions dark brown, while 

abnormal areas appear pale/mustard yellow. Green filter/illumination highlights vasculature 
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changes. To reduce loss to follow up, and due to barriers of limited resources, the 

WHO recommends visual inspection of the cervix with the naked eye after application 

of acetic acid (VIA) as a low-cost alternative to cervical cancer screening in low-resource 

settings [2]. However, it is subjective, dependent on user experience and has no image 

documentation for quality control. Additionally, it does not take advantage of other sources 

of contrast, visual inspection with Lugol’s iodine (VILI) and green illumination vascular 

imaging (GIVI) which are routinely used in high-income settings to supplement acetic acid 

contrast during colposcopy [3]. To address these barriers related to imaging limitations, 

we developed a low-cost, portable, tool, the Pocket colposcope for imaging lesions of the 

cervix at with magnification to reduce cost, improve sensitivity of diagnosis and enable 

screening at the point-of-care [4, 5]. The Pocket colposcope has been shown to enable 

cervical imaging quality on par with a high-end colposcope, while drastically reducing 

costs and increasing portability [6, 7]. The Pocket colposcope has onboard white LEDs 

at low and high brightness levels for capturing images from VIA and VILI respectively, 

and green LEDs for capturing GIVI images (Fig. 1). The Pocket Colposcope has been 

used in multiple clinical studies, yielding a database of images from VIA, VILI and GIVI. 

To address the limitations of subjectivity and user experience dependence, we propose 

algorithms for automated classification of images captured with the Pocket Colposcope. 

We have previously published on development of image processing algorithms to analyze 

VIA and VILI Pocket colposcope images of the cervix [8]. We described image processing 

methods to extract relevant color and texture features and train the features using a 

machine learning classifier. We also proposed methods to combine VIA and VILI images 

to enhance classification. In this work we expand our algorithms to include GIVI which 

reflects vascular features that are typically associated with high-grade dysplasias [3]. We 

look at individual performance of the algorithm on the three different sources of contrasts 

and on different combinations of contrast: VIA, GIVI, VILI, VIA+GIVI, VIA+VILI, 

VIA+VILI+GIVI. While this work builds on our previous work in terms of the automated 

algorithms we have developed, [8] it is distinct in that for the first time, it provides a 

comprehensive evaluation of combining the three different sources of contrast routinely used 

for cervical cancer detection. The manuscript is structured as follows: (1) description of 

the Pocket colposcope and images acquired, (2) feature extraction, and model training and 

validation, (3) results from the different combination of contrasts, and (4) discussion and 

conclusions.

II. Methods

A. Pocket Colposcope Image collection

Images, and pathology outcomes were retrospectively obtained from a database of Pocket 

colposcope images attained during various multi-site clinical studies over several years. 

This study was approved by Duke University Institutional Review Board (Pro00052865). 

The clinical sites included were Duke University Medical Center (DUMC), Durham, USA; 

La Liga Contra el Cancer (LLCC), Lima, Peru; Kilimanjaro Christian Medical Center 

(KCMC), Moshi, Tanzania; and University Teaching Hospital (UTH), Lusaka, Zambia. 

All sites collected VIA images as that is the primary source of contrast. LLCC collected 

VIA + VILI data and UTH only collected VIA+GIVI data. DUMC and KCMC collected 
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images for all three sources of contrast. Only data from sites which had corresponding 

ground truth pathology for positives were included in the study. Per standard-of-care, no 

biopsies were taken for cervices which appeared normal during visual inspection as per 

standard-of-care. Table 1 summarizes the number of data points per contrast and per hospital 

sorted by diagnosis. For the purposes of the algorithm binary classification labels were used. 

Specifically, normal and CIN1s were grouped as “normal/benign”, as most CIN1 cases are 

non-malignant and regress on their own, whereas CIN2+ cases are is typically treated and 

thus grouped as abnormal.

B. Image processing for feature extraction

We describe image processing methods used for feature extraction for VIA and VILI images 

in detail in our previous study (Asiedu et al, 2019). A similar methodology summarized 

below in Figure 1 was applied to combining VIA, VILI and GIVI images. Pre-processing 

was performed to crop the cervix from the image to reduce noise from vaginal walls or 

the speculum that may be present in the image. Images captured typically contain specular 

reflections, which are bright white spots from light saturation. We performed specular 

reflection attenuation to reduce effects from these areas, by separating each RGB image 

into individual channels, thresholding to identify pixels > 220 in each channel, and using 

a Laplacian infill method to replace bright white pixels with pixels similar in color to the 

surrounding cervix pixels. Once pre-processed, Gabor filters and Kmeans clustering were 

applied to automatically identify and extract out high texture regions of interest (ROIs) 

in the images. From these Gabor-segmented ROIs, summary statistics (mean, median, 

mode, variance and Otsu threshold level) were derived from individual channels of color 

transformations (greyscale, RGB, YCbCr, HSV and CIELab). Haralick’s texture features 

(contrast, correlation, energy and homogeneity) described in detail in Asiedu et al were also 

extracted. Feature extraction yielded 65 color-based features and 4 texture features, yielding 

a total of 69 features for each contrast.

C. Feature selection and classification

All features were passed through the forward sequential feature selection (FSFS) algorithm 

to select a subset of optimal features for each contrast. Feature subsets were used to 

train and cross-validate (5-fold cross validation) a Support Vector Machine, K-Nearest 

Neighbor and Logistic Regression Classifier to compare results. To prevent overfitting from 

combining features from two or three contrasts images, images were classified individually 

and assigned classification scores/probabilities on likelihood of being normal/benign or 

high-grade. The scores from the different contrasts were combined into a feature matrix of 

m × 2 features, in the case of the two contrast combinations and a matrix of m × 3 features 

for 3 contrast combinations where m is the number of examples. These features were used as 

inputs to train the combined contrast classifier. Receiver operating curves were constructed 

for the different combinations and the area under the curve compared to the individual 

contrasts.
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III. RESULTS

A. Image processing and feature extraction

Fig. 2 shows representative images from the image processing steps for VIA, VILI and 

GIVI. Specular reflection attenuation results perform similarly qualitatively for all three 

sources of contrasts, preserving cervix tissue information while reducing the amount of 

bright white pixels. Gabor segments are obtained from applying Gabor filters to highlight 

regions of texture, and segmented using Kmeans clustering (n=2 clusters) and selecting the 

cluster with a high average pixel value post filtering. A bounding box around the Gabor 

segmented region is used for Haralick’s texture feature extraction, whereas the segment 

is used as is for color-based feature extraction. We observe qualitatively that the Gabor 

filter segments a region of high texture around the cervical os for a cervix with a lesion 

on it (Fig. 2). Since Haralick’s feature extraction requires a square/rectangular matrix of 

pixel values, a minimum bounding box around the Gabor segment is used for Haralick’s 

texture feature extraction. For color-based summary statistics, the segment is used as is. We 

make the assumption that a) segmenting a region of interest for feature extraction prevents 

dilution of features due to a larger area of non-lesion pixel values, and b) for color-based 

differences we can use the entire region of interest or a subset of the region of interest. 

For calculating summary statistics identifying pixels from the region of interest (ROI), 

specifically, pre-cancer is more relevant than including the entire ROI which might contain 

non-lesion pixels. For Haralicks texture features, the bounding box used may cause inclusion 

of a relatively smaller percentage non-lesion pixels. This would positively highlight textural 

differences between normal and abnormal regions.

B. Classification improves with combining contrasts

Logistic Regression Classifier consistently achieved higher performance in with 5-fold cross 

validation for the three contrast and was selected for classification analysis.

VIA and VILI: VIA and VILI Cervigram pairs were obtained from patients from LLCC, 

UTH, and a subset of DUMC patients. This yielded a total of 162 image pairs, of which 

58 were normal, 59 were CIN1 and 45 were CIN2+. Normal/CIN1 were binned in normal 

category for algorithm classification, while CIN2+ was binned in abnormal. ROC curves 

from 5-fold cross validation for VIA only, VILI only and VIA+VILI combinations specific 

to this subset of data are shown. ROC curves for VIA only, VILI only and VIA+ VILI are 

shown in Fig. 3A. Both VIA only and VILI only attain AUCs of 0.79, whereas combining 

the two result in an AUC of 0.86, a 7% increase, most notably improving the sensitivity at 

the specificity range 0.6–0.8 from ~0.7 to ~0.85.

VIA and GIVI: VIA and GIVI cervigram pairs were obtained from patients from KCMC, 

UTH and a subset of DUMC patients. This yielded a total of 128 image pairs with 26 

normal, 28 low-grade and 74 high grades, with normal/CIN1 in normal category and 

CIN2+ in abnormal category. We show ROC curves from 5-fold cross validation for VIA 

only, GIVI only specific to this subset of data set, and VIA+GIVI combination of the 

individual classification scores (Fig 3B). We attain an AUC for VIA only of 0.76, GIVI 

only of 0.81 and VIA + GIVI of 0.86. GIVI outperforms VIA, however combing GIVI 
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and VIA outperform the individual contrasts. Most notably improving the sensitivity at 

high specificity values. Results demonstrate that combining VIA and GIVI algorithms 

outperforms VIA only or GIVI only.

VIA, VILI and GIVI: We show ROC curves for VIA+VILI, VIA+GIVI and 

VIA+VILI+GIVI for this specific data set (Fig 3C). For individual values, not shown in 

the graph, VIA only attained an AUC of 0.86, VILI only an AUC of 0.89 and GIVI only, 

an AUC of 0.93. VIA + GIVI attains an AUC of 0.94, and VIA + VILI and AUC of 0.95. 

We observe that combining all three contrasts provides the best results 0f 0.98. Only a small 

subset of DUMC images and a subset of KCMC images had all three sources of contrast. 

This yielded a total of 45 image trios with 7 normal, 18 CIN1 and 20 CIN2+. Since this is a 

small data set, results may be overly optimistic, seeing as the performance is higher than the 

algorithms performance on larger data sets. However, we focus on the trend in improvement 

with contrast addition rather than the absolute scores.

IV. Discussion

Several studies have looked at using machine learning and more recently deep learning 

for improving diagnostic performance of colposcopy [9–15]. However, these have mainly 

focused on VIA images without consideration for VILI and GIVI images. Even though 

VIA is the most widely used source of contrast, we demonstrate that combining additional 

contrasts, VILI, and GIVI, has the ability to improve accuracy, especially in situations where 

VIA is used for diagnostic and referral decisions. Most previous studies have also been 

done with high end colposcopes which have different image contents such as outer genitalia, 

and the speculum, compared to the Pocket colposcope which is closer to the cervix (~3cm) 

than standard colposcopes (~30cm). Deep learning methods used have been shown to have 

high performance on standard VIA colposcopy images [13]. However, these require large 

corpus of data sets on an order of thousands, which is currently not feasible with the Pocket 

colposcope, due to its novelty. Additionally, these algorithms have not been demonstrated to 

transfer to images captured with low-cost colposcopes.

V. Conclusions

We hereby demonstrate that combining multiple sources of contrast from colposcopy 

images for machine learning algorithm development, outperforms individual sources of 

contrast, and that using all three types of contrast has the potential to outperform pair-wise 

combinations. These algorithms though applied to the Pocket colposcope can easily be 

customized and transferred for other colposcopes. In addition, our group is developing the 

Callascope a device which will enable self-cervix imaging by women at home. Combining 

these algorithms with self-cervix imaging can potentially enable at home self-cervical cancer 

screening, however large-scale clinical validation is needed.
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Clinical Relevance—

This establishes that development of algorithms for automated colposcopy may benefit 

from combining multiple sources of contrast. The Pocket colposcope is a low-cost tool 

that can capture all three standard-of-care sources of contrast. This technology has 

the potential to provide automated diagnosis of cervical pre-cancer in the hands of 

non-experts.
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Figure 1: 
Representative normal, CIN1 and CIN2+ images of VIA, GIVI and VILI taken with the 

Pocket Colposcope. White arrows represent lesion locations.
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Figure 2: 
Representative images of a cervix with CIN2+ from image processing methods showing 

the original image, specular reflection attenuation, automatic Gabor segmentation showing 

original segment and segment with the bounding box for texture-based extraction. The figure 

also shows results from texture analysis and color transforms.
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Figure 3: 
A) ROC curves for VIA and VILI datasets showing curves for VIA only, VILI only and 

VIA + VILI with corresponding AUCs. B) ROC curves for VIA and GIVI datasets showing 

curves for VIA only, GIVI only and VIA + GIVI with corresponding AUCs. C) ROC curves 

for subset of data with all three contrasts showing results from VIA + GIVI, VIA + VILI and 

VIA + VILI + GIVI.
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